
Proof of Ore’s Theorem
⋆

Here is a more carefully explained proof of Ore’s Theorem than the one given
in lectures. The first two steps are illustrated by the attached example. This

proof may be considered non-examinable.

Theorem 3.9 (Ore). Let G be a simple graph on n vertices. If n ≥ 3, and

δ(x) + δ(y) ≥ n

for each pair of non-adjacent vertices x and y, then G has a closed Hamilto-

nian path.

Proof. Suppose, for a contradiction, that G does not have a closed Hamilto-
nian path.

1. Pick any any two vertices of G which aren’t already joined by an edge,
and add a new edge between them. Keep on doing this until we reach a graph
Glast which does have a closed Hamiltonian path. (The process must stop
because eventually we will reach the complete graph on n vertices, which
obviously has a closed Hamiltonian path.)

2. Let Ḡ be the graph obtained immediately before Glast, and suppose
that {x, y} is the edge added to Ḡ to obtain Glast.

Let (z1, . . . , zn, z1) be a closed Hamiltonian path in Glast. This must use
the edge {x, y} at some point (otherwise Ḡ would have a closed Hamiltonian
path, and there would have been no need to consider Glast). If {zn, z1} =
{x, y} then (z1, . . . , zn) is a non-closed Hamiltonian path in Ḡ. Otherwise
there is some r such that 1 ≤ r < n and zr = x and zr+1 = y; now

(zr+1, . . . , zn, z1, . . . , zr)

is a non-closed Hamiltonian path in Ḡ. Note that either way, all the edges
used in this path appear in Ḡ: it is only {x, y} that appears in Glast but not
in Ḡ. Relabel the vertices so that this path is (x1, . . . , xn).

3. Suppose we could find a vertex xi such that x is adjacent to xi, and y

is adjacent to xi−1. Then

(x, xi, . . . , xn−1, y, xi−1, . . . , x)

would be a closed Hamiltonian path in Ḡ, a contradiction.
Aside: It is at this point that we need n ≥ 3: if n = 2 then the first step

is (x, y), and the second is (y, x), which means we have used an edge twice.
Paths are, in particular, trails, so they aren’t allowed to repeat edges. As
long as n ≥ 3 this problem doesn’t arise.
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4. It remains to show that there must be such a vertex xi. This is where
we need the hypothesis on degrees. Since Ḡ is obtained from G by adding
edges, it still satisfies this hypothesis. Let

A = {i : 2 ≤ i ≤ n and xi is adjacent to x},

B = {i : 2 ≤ i ≤ n and xi−1 is adjacent to y}.

As our graphs have no loops, |A| = δ(x) and |B| = δ(y). As x and y are
not adjacent in Ḡ (recall that {x, y} was added to Ḡ to obtain Glast), our
hypothesis tells us that δ(x) + δ(y) ≥ n.

Hence A and B are subsets of {2, . . . , n} containing at least n elements
between them. It follows that they must intersect non-trivially. If i ∈ A∩B

then xi is a suitable vertex for step 3.
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Example: Let n = 5. The graph below has vertex set {1, 2, 3, 4, 5} and
edges {1, 2}, {1, 3}, {2, 3}, {2, 4}, {2, 5}.

1 2

3

4

5

(This graph doesn’t satisfy the hypothesis on the degrees, but we don’t use
this until step 4. This saves drawing a large number of edges which would
be irrelevant in steps 1 and 2.)

1. We might first add the edge {3, 4}. The resulting graph still doesn’t
have a closed Hamiltonian path, so we add another edge, say {4, 5}. This
gives the graph
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which has (1, 2, 5, 4, 3, 1) as a closed Hamiltonian path. (So z1 = 1, z2 = 2,
z3 = 5, z4 = 4, z5 = 3.)

2. The last edge added is {x, y} = {4, 5} so Ḡ is as shown below.
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Starting with the closed path (1, 2, 5, 4, 3, 1) in Gfinal we find that r = 3,
x = 5, y = 4. The resulting non-closed Hamiltonian path in Ḡ is (4, 3, 1, 2, 5).
So in the relabelling step we take x1 = 4, x2 = 3, x3 = 1, x4 = 2, x5 = 5.
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