
MT362/462/5462 CIPHER SYSTEMS

MARK WILDON

These notes are intended to give the logical structure of the course; proofs
and further examples and remarks will be given in lectures. Further in-
stallments will be issued as they are ready. All handouts and problem
sheets will be put on Moodle.

These notes are based in part on notes written by Dr Siaw-Lynn Ng. I
would very much appreciate being told of any corrections or possible
improvements.

You are warmly encouraged to ask questions in lectures, and to talk to
me after lectures and in my office hours. I am also happy to answer ques-
tions about the lectures or problem sheets by email. My email address is
mark.wildon@rhul.ac.uk.

Lectures: Monday 4pm (MFLEC), Friday 11am (MC201), Friday 4pm
(MC336).

Extra lecture for MSc students doing MT5462: Friday 9am (MC201).

Office hours in McCrea 240: Tuesday 3pm, Wednesday 10am, Thursday
11am or by appointment.

Date: First Term 2017/18.

2

CIPHER SYSTEMS

We will study symmetric and public key ciphers, understand how they
promise confidential communication, and see how they have been at-
tacked, and in many cases defeated, using mathematical ideas from lin-
ear algebra, elementary number theory, probability theory, and statistics.

Outline.

(A) Introduction: alphabetic ciphers including the Vigenère cipher and
one-time-pad. Statistical tests and applications of entropy. Secu-
rity models and Kerckhoff’s Principle.

(B) Stream ciphers: linear feedback shift registers and pseudo-random
number generation.

(C) Block ciphers: design principles, Feistel networks, DES and AES.
(D) Public key ciphers and digital signatures: one-way functions, Diffie–

Hellman, RSA and ElGamal. Factoring and discrete logs. Hash
functions and certificates. Extra (and non-examinable): the Bit-
coin blockchain.

The MT5462 course has additional material on boolean functions, the
Berlekamp–Massey algorithm and linear cryptanalysis of block ciphers.
Separate lecture notes will be issued.

Recommended Reading. All these books are in the library. If you find
there are not enough copies, email me.

[1] Cryptography, theory and practice, D. Stinson, Chapman & Hall /
CRC (2006). Concise and usually very clear, covers all the course
(and more), 001.5436 STI (one copy on three day loan).

[2] Introduction to cryptography with coding theory, W. Trappe and L. C.
Washington, Pearson / Prentice Hall (2006), 001.5436 TRA. Simi-
lar to [1], but a bit more relaxed with more motivation.

[3] Cryptography: a very short introduction, F. C. Piper and S. Murphy,
Oxford University Press (2002). A nice non-technical overview of
cryptography: you can read it online via the library website.

[4] Codes and cryptography, D. Welsh, Oxford University Press (1988),
001.5436 WEL. Goes into more detail on some of the MSc topics.

Also you will find a link on Moodle to Dr. Siaw-Lynn Ng’s notes. These
will give you a different view of the course material. Highly recom-
mended.

3

Problem sheets. There will be 8 marked problem sheets; the first is due
in at noon on Wednesday 9th October. (If you prefer, hand in at the Mon-
day lecture.) Answers to the preliminary problem sheet will be posted on
Moodle on Monday 2nd October. The second Friday lecture will usually
be ‘flipped’, and should give you a good start on the problem sheets.

Moodle. All handouts, problem sheets and answers will be posted on
Moodle. You should find a link under ‘My courses’, but if not, go to
moodle.royalholloway.ac.uk/course/view.php?id=380.

Exercises in these notes. Exercises set in these notes are mostly simple
tests that you are following the material. Some will be used for quizzes
in lectures. Doing the others will help you to review your notes.

Optional questions and extras. The ‘Bonus question’ at the end of each
problem sheet, any ‘optional’ questions, and any ‘extras’ in these notes
are included for interest only, and to show you some mathematical ideas
beyond the scope of this course. You should not worry if you find them
difficult.

If you can do the compulsory questions on problem sheets, know the
definitions and main results from lectures, and can prove the results
whose proofs are marked as examinable in these notes, then you should
do very well in the examination.

4

(A) Introduction: alphabetic ciphers and the language of cryptography

1. INTRODUCTION: SECURITY REQUIREMENTS

Lecture 1 This course is about the mathematics underlying cryptography. But it
is only sensible to have some idea of the overall goal!

As a basic model, Alice wants to send Bob a plaintext message. This
message may be intercepted in the channel by the eavesdropper Eve, so
Alice first encrypts the plaintext using some secret key known to her and
Bob. At the other end Bob decrypts the ciphertext.

- - -

plaintext
message Alice

encrypts
ciphertext Bob

decrypts

decrypted
ciphertext

channel

6

Eve eavesdrops
@
@@R

key

Alice and Bob may have any of the following security requirements.

• Confidentiality: Eve cannot read the message.
• Data integrity: any change made by Eve to the ciphertext is de-

tectable
• Authentication: Alice and/or Bob are who they claim to be
• Non-repudiation: Alice cannot plausibly deny she sent the mes-

sage

Example 1.1.

(1) If you encrypt a file using a password on your computer, you care
most about confidentiality and data integrity. In this case, you are
Alice, and Bob is you a week later. The channel is the hard-disk
(or SSD) in your computer.

(2) Using online banking to make a payment, the bank’s main secu-
rity requirements are authentication and non-repudiation. It is
now considered good practice to use two-factor authentication,
so the key is a code sent to your mobile phone, or generated by a
‘PIN-sentry’ device, in addition to a password. The channel is the
internet.

(3) One online chess site requires a password to login, but the moves
are then sent unencrypted. Here the main concern is authentica-
tion, ensuring that no-one else can steal your account.

Remarkably we will see that Alice and Bob do not need to exchange
the key before they communicate. Instead they can establish a shared

5

secret key over an insecure channel, and even authenticate1 each other,
by using Public Key Cryptography. We will learn how in Part D of the
course. Our course MT366/466/5466 goes into more detail.

The extended diagram below shows how cryptography fits into the
broader setting of communication theory. You can learn about source en-
coding (for compression) in MT341/441/5441 Channels and channel en-
coding (for error correction) in MT361/461/5461 Error Correcting Codes.
But there is no need to do these courses to understand this one!

- - - -

?

����

source
encoding cryptography channel

encoding

compress encrypt pad

decompress decrypt unpad

noise
Eve

2. ALPHABETIC CIPHERS

We begin with some ciphers that operate directly on English letters
and words. It is a useful convention to write plaintexts in lower case and
ciphertexts in upper case.

Caesar and substitution ciphers.

Example 2.1. The Caesar cipher with key s ∈ {0, 1, . . . , 25} encrypts a
word by shifting each letter s positions forward in the alphabet, wrap-
ping round at the end. For example if the key is 3 then ’hello’ becomes
KHOOR and ’zany’ becomes CDQB. The table overleaf shows all 26 possible
shifts.

Exercise 2.2.

(a) Malcolm (the mole) knows that the plaintext ’apple’ was encrypted
as CRRNG. What is the key?

1Authentication raises an interesting distinction between your identity (who
you are), and your identifiers (username, email address, fingerprint, and so on).
For instance, every bitcoin includes, in its blockchain, every transaction it has been
part of: this includes the identifiers of all the parties involved. But provided the
connection between your identifier and your identity is kept secret, you can still
use Bitcoin for anonymous transactions. We will study the SHA-256 hash function
used in bitcoin in Part E of the course.

6

(b) Eve has intercepted the ciphertext ACCB. What is the key and what
is the plaintext?

(c) Repeat (b) supposing the intercepted ciphertext is GVTJPO. Sup-
pose Eve later intercepts XKIX. What can she conclude?

A 0 ABCDEFGHIJKLMNOPQRSTUVWXYZ N 13 NOPQRSTUVWXYZABCDEFGHIJKLM

B 1 BCDEFGHIJKLMNOPQRSTUVWXYZA O 14 OPQRSTUVWXYZABCDEFGHIJKLMN

C 2 CDEFGHIJKLMNOPQRSTUVWXYZAB P 15 PQRSTUVWXYZABCDEFGHIJKLMNO

D 3 DEFGHIJKLMNOPQRSTUVWXYZABC Q 16 QRSTUVWXYZABCDEFGHIJKLMNOP

E 4 EFGHIJKLMNOPQRSTUVWXYZABCD R 17 RSTUVWXYZABCDEFGHIJKLMNOPQ

F 5 FGHIJKLMNOPQRSTUVWXYZABCDE S 18 STUVWXYZABCDEFGHIJKLMNOPQR

G 6 GHIJKLMNOPQRSTUVWXYZABCDEF T 19 TUVWXYZABCDEFGHIJKLMNOPQRS

H 7 HIJKLMNOPQRSTUVWXYZABCDEFG U 20 UVWXYZABCDEFGHIJKLMNOPQRST

I 8 IJKLMNOPQRSTUVWXYZABCDEFGH V 21 VWXYZABCDEFGHIJKLMNOPQRSTU

J 9 JKLMNOPQRSTUVWXYZABCDEFGHI W 22 WXYZABCDEFGHIJKLMNOPQRSTUV

K 10 KLMNOPQRSTUVWXYZABCDEFGHIJ X 23 XYZABCDEFGHIJKLMNOPQRSTUVW

L 11 LMNOPQRSTUVWXYZABCDEFGHIJK Y 24 YZABCDEFGHIJKLMNOPQRSTUVWX

M 12 MNOPQRSTUVWXYZABCDEFGHIJKL Z 25 ZABCDEFGHIJKLMNOPQRSTUVWXY

Barring the (very exceptional behaviour) in (c), the key can typically
be deduced from a single ciphertext; (a) shows that the Caesar cipher is
always broken by knowledge of a plaintext/ciphertext pair.

Example 2.3. Let π : {a, . . . , z} → {A, . . . , Z} be a bijection. The substitu-
tion cipher eπ applies π to each letter of a plaintext in turn. For example,
if

π(a) = Z, π(b) = Y, . . . , π(z) = A

then eπ(hello there) = SVOOL GSVIV. (In practice spaces were deleted
before encryption, but we will keep them to simplify the cryptanalysis.)
The Caesar cipher with key s is the special case where π shifts each letter
forward s times.

Lecture 2 A sufficient long ciphertext can be decrypted by using frequency anal-
ysis to deduce π(e), π(t), . . ., and then guessing likely words. Even the
10 character message above has ’e’ as its most common character. Some
common digraphs and trigraphs are ’th’, ’he’, ’in’, ’er’, ’the’, ’ing’, ’and’.

The table below (taken from Stinson’s book) shows the frequency dis-
tribution of English, most frequent letters first. Probabilities are given as
percentages.

7

e t a o i n s h r d l u c

12.7 9.1 8.2 7.5 7.0 6.7 6.3 6.1 6.0 4.3 4.0 2.8 2.8

m w f g y p b v k j x q z

2.4 2.3 2.2 2.0 2.0 1.9 1.5 1.0 0.8 0.2 0.1 0.1 0.1

Example 2.4. Eve intercepts the ciphertext

KQX WJZRUHXZKUY GTOXSKPIX GW SMBFKGVMUFQB PL KG XZUTYX KDG

FXGFYX JLJUYYB MXWXMMXR KG UL UYPSX UZR TGT KG SGHHJZPSUKX

GIXM UZ PZLXSJMX SQUZZXY PZ LJSQ U DUB KQUK UZ GFFGZXZK

XIX SUZZGK JZRXMLKUZR DQUK PL TXPZV LUPR KQX SQUZZXY SGJYR

TX U KXYXFQGZX YPZX GM KQX PZKXMZXK WGM XCUHFYX

The relative frequencies, again expressed as percentages, of the 13 most
common letters are shown below. (All the donkey work in this exam-
ple can be done using the MATHEMATICA notebook AlphabeticCiphers

available on Moodle.)

X Z U K G Y S P M Q L J F

14.7 10.3 9.5 8.6 7.7 5.2 4.7 4.7 4.7 4.3 3.4 3.4 3.4

The first word is KQX; this also appears in the final line, and X is com-
fortably the most common letter. We guess that KQX is ’the’ and that ZUKG
are most probably four of the letters ‘taoin’. Since U appears on its own,
it is surely ‘a’, and since UZ cannot be ‘at’, it is probably ‘an’. Substituting
for KQXUZ gives

the WJnRaHentaY GTOeStPIe GW SMBFtGVMaFhB PL tG enaTYe tDG

FeGFYe JLJaYYB MeWeMMeR tG aL aYPSe anR TGT tG SGHHJnPSate

GIeM an PnLeSJMe ShanneY Pn LJSh a DaB that an GFFGnent

eIe SannGt JnReMLtanR Dhat PL TePnV LaPR the ShanneY SGJYR

Te a teYeFhGne YPne GM the PnteMnet WGM eCaHFYe

From here it should not be too hard to decrypt the ciphertext. Good
words to guess are ‘teYeFhGne’ and ‘PnteMnet’ in the bottom line and
‘ShanneY’ in two lines above.

Exercise 2.5.

(a) After deciphering, Eve knows that π(a) = U, π(b) = T, and so
on. Does she know the key π?

(b) Will Eve have any difficulty in decrypting further messages en-
crypted using the same substitution cipher?

8

The substitution cipher is weak because the same permutation is ap-
plied to each letter of the plaintext. Choosing a different permutation for
each letter, even if it has to be a Caesar shift, gives a stronger cipher.

Lecture 3 Vigenère cipher. We need some more mathematical notation. Define a bi-
jection between the alphabet and {0, 1, . . . , 25} by

a←→ 0, b←→ 1, . . . , z←→ 25.

Using this bijection we identify a word of length ` with an element of
{0, 1, . . . , 25}`. For example, ‘hello′ ←→ (7, 4, 11, 11, 14) ∈ {0, 1, . . . , 25}5.

After converting letters to numbers, the Caesar cipher with shift s be-
comes the function x 7→ x + s mod 26.

Definition 2.6. The key k for the Vigenère cipher is a word. Suppose that
k has length `. Given a plaintext x with its spaces deleted, we define its
encryption by

ek(x) = (x1 + k1, x2 + k2, . . . , x` + k`, x`+1 + k1, . . .)

where xi + ki is computed by converting xi and ki to numbers and adding
them mod 26.

Example 2.7. Take k = emu, so k has length 3. Under the bijection be-
tween letters and numbers, emu ←→ (4, 12, 20). The table below shows
that

eemu(meetatmidnightnear) = QQYXMNQUXRUALFHIML.

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

xi
m e e t a t m i d n i g h t n e a r
12 4 4 19 0 19 12 8 3 13 8 6 7 19 13 4 0 17

ki 4 12 20 4 12 20 4 12 20 4 12 20 4 12 20 4 12 20

xi + ki
16 16 24 23 12 13 16 20 23 17 20 0 11 5 7 8 12 11
Q Q Y X M N Q U X R U A L F H I M L

Exercise 2.8.
(a) If you had to guess, which of the following would you say was

more likely to be the ciphertext from a substitution cipher?
QXNURA , QMUUFM , QNRFLX.

These come from taking every 2nd, 3rd and 4th position in the cipher-
text QQYXMNQU. . . above, starting at the second Q, supposing the plaintext
continues ‘. . . near the tree’.

(b) Why should we expect the split ciphertext to have the most spiky
frequency distribution at the length of the keyword?

9

This gives some motivation for the following statistic.

Definition 2.9. The index of coincidence of a ciphertext y, denoted I(y),
is the probability that two entries of y, chosen at random from different
positions, are equal.

Exercise 2.10. Explain why I(QXNURA) = I(QNRFLX) = 0 and check that
I(QMUUFM) = 2

15 . What is I(AAABBC)?

There is a simple formula for I(y). (An examinable proof.)

Lemma 2.11. If the ciphertext y of length n has exactly fi letters corresponding
to i, for each i ∈ {0, 1, . . . , 25} then

I(y) =
25

∑
i=0

fi(fi − 1)
n(n− 1)

.

We now have a strategy for decrypting a Vigenère ciphertext.

Attack 2.12. Given a Vigenère ciphertext, split it into groups by taking every
`-th letter for all small `, as in Exercise 2.8. If the ciphertext is long enough, the
Index of Coincidence will be greatest at the key length. Each split ciphertext is
the output of a Caesar cipher; assuming the most common letter is the encryption
of ‘e’ determines the shift.

Example 2.13. The final 554 words (or 2534 characters) of Chapter 1 of
Persuasion by Jane Austen begin

Such were Elizabeth Elliot’s sentiments and sensations; such the
cares to alloy, the agitations to vary, the sameness and the ele-
gance, the prosperity and the nothingness of her scene of life;
such the feelings to give interest to a long, uneventful residence
in one country circle, to fill the vacancies which there were no
habits of utility abroad,

Encrypted using the Vigenère cipher with key ‘secretkey’, the ciphertext
is KYEYAXBICDMBRFXDLCDPKFXLCILLMOVRMCEL

The graph overleaf shows the mean Index of Coincidence when the
ciphertext is split by taking every `-th position, for ` ∈ {1, 2, . . . , 15}. We
correctly guess that the length of the key is 9. Taking every 9-th letter of
the ciphertext we get ‘KDDLVFUDLNELUHLYJA . . . ’. The frequency table (as
in Example 2.4) begins

W L S K

11.0 10.6 7.4 7.1

10

+ +

+

+ +

+

+ +

+

+ +

+

+ +

+

0 2 4 6 8 10 12 14

0.045

0.050

0.055

0.060

0.065

0.070

Assuming ′W′ ←→ 22 is the encryption of ′e′ ←→ 4, the shift in the
Caesar cipher is 18←→ ′s′, so we guess the first letter of the key is ’s’. The
MATHEMATICA notebook on Moodle shows this simple strategy works in
all 9 key positions to reveal the key.

Exercise 2.14. Explain why there are smaller peaks at 3, 6, 12 and 15 in
the plot of Indices of Coincidence above.

Statistical methods. A better way to finish the decryption, which is reli-
able on smaller ciphertexts, re-uses the Index of Coincidence: see Sheet 1.
The f 2

i in the numerator of the formula in Lemma 2.11 may remind you
slightly of the χ2-test: the connection is explored in the optional question
on Sheet 1.

Statistics can appear a dry subject. I hope this example has shown you
that it can be both useful and interesting. For further examples, one only
has to look at the many triumphs of machine learning (the buzzword for
statistical inference), from ‘Intelligent personal assistants’ such as Siri to
the recent shocking defeat of the world Go champion by AlphaGo.

3. CRYPTOSYSTEMS, ATTACK MODELS AND PERFECT SECRECY

Lecture 4 Cryptosystems. The three different encryption functions for the Caesar ci-
pher with ‘alphabet’ {0, 1, 2} are shown in the diagram below.

0

1

2

0

1

2

key 0
0

1

2

0

1

2

key 1
0

1

2

0

1

2

key 2

Exercise 3.1. Which of the diagrams overleaf show plausible cryptosys-
tems?

11

Putative cryptosystems with keys k (black, first) and k′ (red, second).
Note that in (iv) the decryption functions are shown.

(i)

0

1

2

0

1

2

0

1

2

0

1

2

(ii)

0

1

2

0

1

2

0

1

2

0

1

2

(iii)

0

1

0

1

2

0

1

0

1

2

(iv)

0

1

0

1

2

0

1

0

1

2

(v)

0

1

2

0

1

2

0

1

2

0

1

2

(vi)

0

1

2

0

1

2

0

1

2

0

1

2

This gives some motivation for the following definition.

Definition 3.2. Let K,P , C be finite sets. A cryptosystem is a family of
encryption functions ek : P → C and decryption functions dk : C → P , one
for each k ∈ K, such that for each k ∈ K,

(?) dk
(
ek(x)

)
= x

for all x ∈ P . We call K the keyspace, P the set of plaintexts, and C the set
of ciphertexts.

Provided the decryption maps are defined in the unique way so that (?)
holds, the Caesar cipher, substitution cipher and Vigenère cipher and the
ciphers shown in Exercise 3.1(i) and (ii) are all cryptosystems. (In each
case the encryption functions are bijective: see remark after Exercise 3.4.)

In Exercise 3.1(iii) we have to specify dk(2) and dk′(2), but any choice
gives a cryptosystem with P = {1, 2}, C = {0, 1, 2} andK = {k, k′}, such
that ek(x) = x and ek′(x) = 1− x for all plaintexts x. We therefore allow
(iii) to define a cryptosystem.

Exercise 3.3.

(a) What is special about ciphertext 2 in (iii)?

12

(b) Define ek and ek′ so that (iv) becomes a cryptosystem. How many
choices did you have? Should (iv) be allowed as the definition of
a cryptosystem?

(c) What is the problem with (v)?
(d) What are the two problems with (vi)?

Exercise 3.4. Prove that the encryption functions in a cryptosystem are
injective and that the decryption functions are surjective.

In particular, if P = C then, since an injective function between two
sets of the same size is bijective, the encryption functions are bijective
and uniquely determine the decryption functions.

Affine cipher. Recall that Zn denotes the set {0, 1, . . . , n− 1}with addition
and multiplication defined modulo n. (If you prefer the definition as a
quotient ring, please feel free to use it instead.) For example 7 + 8 ≡ 4
mod 11 and 7× 8 ≡ 1 mod 11.

Example 3.5. Let p be prime. The affine cipher on Zp has P = C = Zp
and

K = {(a, c) : a ∈ Zp, c ∈ Zp, a 6= 0}.
The encryption maps are defined by e(a,c)(x) = ax + c mod p. The de-
cryption maps are defined by d(a,c)(x) = b(x− c) mod p, where b ∈ Zp
is the unique element such that ab = 1 mod p. With these definitions, the
affine cipher is a cryptosystem.

For example, in the affine cipher on Z11, e(7,2)(5) = 4 since 7× 5 + 2 ≡
4 mod 11 and, as expected, d(7,2)(4) = 5 since 8× (4− 2) ≡ 5 mod 11.

To find b, the inverse of a in Zp, you can either do an exhaustive search,
or run Euclid’s algorithm to find b and r such that ab + rp = 1 mod p;
then ab ≡ 1 mod p.

Lecture 5

Exercise 3.6. Consider the affine cipher on Z5.
(i) Suppose that Eve observes the ciphertext 2. Does she learn any-

thing about the plaintext?
(iii) Suppose that Malcolm knows that e(a,c)(1) = 2. What does he

learn about the key? What happens if he later learns e(a,c)(0)?

See Problem Sheet 2 for the definition of the affine cipher on Zn for
general n.

13

Attack models. In each of the attack models below, we suppose that Alice
is sending ciphertexts to Bob encrypted using the key k ∈ K. The aim of
the adversary (Eve or Malcolm) is to determine k.

• Known ciphertext. Eve knows ek(x) ∈ C.
• Known plaintext and ciphertext. Malcolm knows x ∈ P and ek(x) ∈ C.
• Chosen plaintext. Malcolm may choose any x ∈ P and is given the

encryption y = ek(x).
• Chosen ciphertext. Malcolm may choose any y ∈ C and is given the

decryption x = dk(y).

Each attack model has a generalization where the adversary observes
multiple plaintexts and/or ciphertexts.

Remark 3.7.
(1) All the cryptosystems we have seen so far are broken by a chosen

plaintext attack. The affine cipher requires two choices and by
Question 3 on Sheet 1, the substitution cipher and the Vigenère
cipher just one.

(2) Later in the course we will see modern block ciphers where it is
believed to be computationally hard to find the key even allowing
unlimited choices of plaintexts.

(3) In a known plaintext attack it might be impossible to determine
the key because there are two different keys k, k′ such that ek(x) =
ek′(x) = y. (This is the case when x = 2 in Exercise 3.1(ii).) This is
rarely a problem in practice.

Probability and perfect secrecy. We agreed in Exercise 3.6 that Eve learned
nothing about the plaintext by observing ciphertext 2. One way to make
this intuitive idea mathematically precise uses probabilities.

Fix a cryptosystem in our usual notation. Suppose that the plaintext
x ∈ P is sent with probability px. Let X, Y and K be the random variables
standing for the plaintext, ciphertext and key, respectively.2

Assumption 3.8. The plaintext X and the key K are independent.

2There are notes on Moodle reviewing basic probability theory. See also the
preliminary problem sheet for some practice questions. To be very formal (i.e. you
are welcome to stop reading this footnote now), X, Y and K are the functions
defined on the probability space Ω = K × P × C by K(k, x, y) = k, X(k, x, y) = x
and Y(k, x, y) = y ; if key k ∈ K is used with probability rk then the probability
measure on Ω is defined by

p(k,x,y) =

{
pxrk if y = ek(x)
0 otherwise.

14

Typically the key is chosen first, and the plaintext does not refer to the
key. So Assumption 3.8 holds in practice.

Example 3.9. Suppose in each case that the keys are used with equal
probability.

(a) In Exercise 3.1(i), P[Y = 1] = p0+p1
2 and

P[X = 0|Y = 1] =
p0

p0 + p1
,

P[X = 1|Y = 1] =
p1

p0 + p1

P[X = 2|Y = 1] = 0.

These probabilities are usually not the same as p0, p1, p2. (Just
take p2 6= 0.) Hence an Eve intercepting ciphertext 1 learns some-
thing about the plaintext.3

(b) In the Caesar cipher on {0, 1, 2}, shown before Exercise 3.1, we
have P[X = x|Y = y] = px for all x, y ∈ {0, 1, 2}. Knowing the
ciphertext tells Eve nothing about the plaintext.

Definition 3.10. A cryptosystem has perfect secrecy if P[X = x|Y = y] =
px for all plaintexts x ∈ P and all ciphertexts y ∈ C such that P[Y = y] > 0.

By Example 3.9(b), the Caesar cipher on {0, 1, 2} has perfect secrecy
when keys are used with equal probability. If instead P[K = 0] = P[K =
1] = 1

2 and P[K = 2] = 0 we get the cryptosystem in Example 3.9(a),
which does not have perfect secrecy.

The aim of the remainder of this section is to prove a theorem (origi-
nally due to Shannon) describing cryptosystems with perfect secrecy.

Lemma 3.11. A cryptosystem has perfect secrecy if and only if

P[Y = y|X = x] = P[Y = y]

for all plaintexts x ∈ P such that px > 0 and all ciphertexts y ∈ C.

The second hypothesis of Shannon’s theorem requires that each cipher-
text may be sent. It excludes cryptosystems such as Exercise 3.1(c) where
there is a ciphertext (number 2) that is never used, and some other ‘de-
generate’ cases.

Lecture 6

Theorem 3.12 (Shannon 1949). Suppose a cryptosystem (in our usual nota-
tion) has perfect secrecy and that P[Y = y] > 0 for all y ∈ C.

3In the language of Bayesian statistics, Eve’s posterior probabilities are different
to her prior probabilities. Again, if you do not find this remark helpful, please
ignore it.

15

(a) For each x ∈ P such that px > 0 and each y ∈ C there is a key k such
that ek(x) = y.

(b) |K| ≥ |C|.
(c) Suppose |K| = |C|. For all x ∈ P such that px > 0 and all y ∈ C there

exists a unique key k ∈ K such that ek(x) = y. Moreover for each fixed
y ∈ C, the keys k such that ek(x) = y for some x ∈ P with px > 0 are
used with equal probability.

Lecture 7Correction. As stated above, part (c) is what I proved in lectures. In the
lecture I wrote ‘Moreover each key is used with equal probability’, which
I realised later is too vague.

Corollary 3.13. Suppose a cryptosystem (in our usual notation) has perfect
secrecy and that

(i) P[Y = y] > 0 for all y ∈ C;
(ii) |K| = |C|;

(iii) px > 0 for all x ∈ P .

Then for all x ∈ P and y ∈ C there exists a unique key k ∈ K such that
ek(x) = y. Moreover each key is used with equal probability.

Proof. This is immediate from (c) in Theorem 3.12. �

Some good questions to ask about a theorem are ‘What examples of
it have I seen?’, ‘Can the hypotheses be weakened?’, ‘Does the converse
hold?’. These are explored on Problem Sheet 2. In particular, Question 6
asks you to show that the converse of Corollary 3.13 is true.

4. ENTROPY AND KEY UNCERTAINTY

Entropy. The entropy of a random variable is a measure of how uncertain
it is. The right way to make this notion precise was found by Shannon4.

Definition 4.1. The entropy H(X) of a random variable X taking values
in a finite setR is

H(X) = ∑
x∈R

P[X = x] log2
1

P[X = x]
.

4The story goes that Shannon asked von Neumann what he should call his mea-
sure of uncertainty, and von Neumann replied, ‘You should call it entropy, for two
reasons. In the first place your uncertainty function has been used in statistical mechanics
under that name, so it already has a name. In the second place, and more important, no one
really knows what entropy really is, so in a debate you will always have the advantage.’
While this may still be true, there is now a well-developed mathematical theory of
entropy.

16

Note that log2 is the base 2 logarithm, so log2 2n = n for all n ∈ N0.
If P[X = x] = 0 then P[X = x] log2

1
P[X=x] should be interpreted as its

limiting value of 0. Since log2(1/P[X = x]) = − log2 P[X = x] we have

H(X) = − ∑
x∈R

P[X = x] log2 P[X = x].

You might prefer to work with this form, but please note the minus sign!

Example 4.2.
(1) Suppose X records a single coin flip of a coin, biased to land heads

with probability p. Then H(X) = p log2
1
p + (1− p) log2

1
1−p , as

shown in the graph below.

p

p log2
1
p + (1− p) log2

1
1−p

0

1
2

1
2

1

1

Thus the entropy of a single ‘yes/no’ random variable takes val-
ues between 0 and 1, with a maximum at 1 when the outcomes
are equally probable.

Lecture 8 (2) Suppose a cryptographic key K is equally likely to be any ele-
ment of the keyspace K. If |K| = n then H(K) = 1

n log2 n + · · ·+
1
n log2 n = log2 n.

(3) Consider the cryptosystem in Exercise 3.1(iii). Suppose that P[X =
0] = p, and so P[X = 1] = 1− p, and that the keys are used with
equal probability 1

2 . Then

H(X) = p log2
1
p
+ (1− p) log2

1
1− p

.

Exercise: show that H(Y) = 1.
(4) Consider the affine cipher on Z5, as in Exercise 3.6. The keys are

all (a, c) with a ∈ {1, 2, 3, 4} and c ∈ {0, 1, 2, 3, 4}. If each key is
used with equal probability then, by (2), H(K) = log2 20 ≈ 4.322.
After Malcolm observes that e(a,c)(1) = 2, he knows that

(a, c) ∈ {(1, 1), (2, 0), (3, 4), (4, 3)}.
Each possibility is equal likely, so the entropy in K, given Mal-
colm’s observation, is log2 4 = 2.

17

Exercise 4.3.
(a) Suppose in Example 4.2(2) that the keyspace is {0, 1, . . . , n − 1}.

If n = 2m, how many yes/no questions does it take to learn the
key? If n = 26 how many questions do you need?

(b) A friend chooses 0, 1, 2, 3, 4 with probabilities 1
2 , 1

8 , 1
8 , 1

8 , 1
8 , respec-

tively. How many yes/no questions do you need, on average, to
guess her number?5 Would your answer change if the probabili-
ties changed to 1

8 , 1
8 , 1

8 , 1
8 , 1

2?

This motivates the following informal interpretation of entropy:

A random variable has entropy h if and only if you can learn its value
by asking, on average, h well-chosen yes/no questions.

For this reason entropy is often regarded as measured in bits.

Conditional entropy and key uncertainty.

Definition 4.4. Let K and Y be random variables each taking values in
finite sets K and C, respectively. The joint entropy of K and Y is defined
by

H(K, Y) = ∑
k∈K

∑
y∈C

P[K = k and Y = y] log2
1

P[K = k and Y = y]
.

The conditional entropy of K given that Y = y is defined by

H(K|Y = y) = ∑
k∈K

P[K = k|Y = y] log2
1

P[X = k|Y = y]
.

The conditional entropy of K given Y is defined by

H(K|Y) = ∑
y∈C

P[Y = y]H(K|Y = y).

Note that H(K, Y) is the entropy, as already defined, of the random
variable (K, Y) taking values in K× C.

In Example 4.2(4) we found H(K) = log2 20. After observing that
e(a,c)(1) = 2, there were four possible keys. Correspondingly,

H
(
K|(X, Y) = (1, 2)

)
= log2 4 = 2.

Example 4.5. Consider the Caesar cryptosystem in which all 26 keys are
equally likely. What is H(K)? Suppose, as Eve, you observe the cipher-
text ACCB. What is H(K|Y = ACCB)? What if instead you observe NCYP?

5Probably you started by asking ‘is it 0?’, and then (if necessary) doing a binary
search on the remaining four options. This corresponds to the Fano (and Huffman
code) for the probability distribution 1

2 , 1
8 , 1

8 , 1
8 , 1

8 , with codewords 0, 100, 101, 110,
111, which you will have seen if you are doing MT362/462/5462.

18

The most important property of conditional entropy is stated in the
lemma below. Intuitively ‘the uncertainty of K and Y is the uncertainty
of K given Y plus the uncertainty of Y’. (Now try reading this replacing
‘uncertainty of’ with ‘information in’.)

Lecture 9
Lemma 4.6 (Chaining Rule). Let K and Y be random variables. Then

H(K|Y) + H(Y) = H(K, Y).

We need two further results to prove the main theorem of this section.

Lemma 4.7. Let K and X be random variables.

(a) If K and X are independent then H(K, X) = H(K) + H(X).
(b) If f is a bijective function then H(f (X)) = X.

The proof of (a) is Question 1 on Sheet 3. The idea behind (b) is the
same as the final part of Exercise 4.3(b). If this does not convince you
then please see the optional Question 7 on Sheet 2.

Theorem 4.8. Take a cryptosystem in our usual notation. Then

H(K|Y) = H(K) + H(X)− H(Y).

Alphabetic ciphers: the one-time pad. Let A = {a, b, . . . , z} be the alphabet.
We apply Theorem 4.8 to cryptosystems where P = C = An for some
n ∈ N. Examples include substitution ciphers (with spaces disallowed)
and the Vigenère cipher.

To indicate that plaintexts and ciphertexts have length n, we write Xn
and Yn rather than X and Y.

Exercise 4.9. If Yn is equally likely to be each element of An, what is
H(Yn)?

We suppose only those x ∈ An that make good sense in English have
px > 0. Thus if n = 8 then ‘abcdefgh’ and ’goodwork’ are both plaintexts,
but P[X = ‘abcdefgh′] = 0 whereas P[X = ‘goodwork′] > 0.

Shannon estimated6 that, with this assumption, H(Xn) is at most 1.5n.
This is much less than the (log2 26)n ≈ 4.700n from Exercise 4.9. (Tak-
ing into account the frequency distribution of characters, but no further
redundancy, gives 4.195n, still much too high.)

Thus the per-letter redundancy of English is at least log2 26 − 1.5 ≈
3.200. Let R = 3.200.

19

Example 4.10 (One-time pad). Fix n ∈ N. The one-time pad is a cryp-
tosystem with plaintexts, ciphertexts and keyspace An. The encryption

Lecture 10 maps are defined by

ek(x) = (x1 + k1, x2 + k2, . . . , xn + kn)

where, as in the Vigenère cipher, xi + ki is computed by converting xi
and ki to numbers and adding modulo 26. (In fact the one-time pad is the
Vigenère cipher when the key has the same length as the plaintext.) For
example, if n was fixed as 8,

eabcdefgh(goodwork) = gpqgatxr

since

a←→ 0, g←→ 6, 0 + 6 = 6←→ g,

b←→ 1, o ←→ 14, 1 + 14 = 15←→ p

and so on. Suppose that all keys are equally likely. Then

H(Xn) ≈ (log2 26− R)n

H(K) ≈ (log2 26)n

H(Yn) ≈ (log2 26)n

H(K|Yn) ≈ (log2 26− R)n.

Since H(K|Yn) = H(Xn), the one-time pad is safe against a known ci-
phertext attack: the key remains just as uncertain as the plaintext

Exercise 4.11. In the one-time pad of length n, what are H(K|(Xn, Yn))
and H(Xn|Yn)? What does this imply about the security of the one-time
pad against a known plaintext/ciphertext attack?

Unicity distance. We end by considering cryptosystems, like the Vigenère
cipher, where the plaintexts and ciphertexts can be much longer than the
key.

Exercise 4.12. Show that if Yn is equally likely to be each element of An

then H(Yn)− H(Xn) = Rn and so

(†) H(K|Y) = H(K)− Rn.

What is the largest n for which (†) could hold with equality?

In his 1949 paper7, Shannon argues that (†) should be a good approx-
imation to H(K|Yn), for a large class of cryptosystems, including the Vi-
genère cipher. The approximation is best when |K| is large and n is small.

6You can play the game Shannon invented to make this estimate online at
https://repl.it/LX00/2.

7Communication theory of secrecy systems, Bell Systems Technical Journal (1949)
28, 656–715

20

The graph below shows the expected behaviour of H(K|Y).

en
tr

op
y

H(K|Y)
H(K)− nR

n

In particular, Shannon proved H(K|Yn) is as shown in the graph above
when the cryptosystem is the random cipher, in which the encryption
functions and decryption functions are chosen at random, subject to (?)
in Definition 3.2.

Definition 4.13. The quantity H(K)/R is the unicity distance of the cryp-
tosystem.

If H(K|Y) < 1 then on average it takes less than one yes/no question to
guess the key K. Therefore Shannon’s argument predicts that most of the
key is known when n is about the unicity distance of the cryptosystem.

In practice, the various assumptions in Shannon’s argument mean more
ciphertext may well be required. But even if the key is not determined
completely, this may not be a problem for the attacker.

Exercise 4.14. In Question 2 on Sheet 1, the ciphertext y, of length 356
(without spaces), determined the key π up to π(j), π(x), π(z) ∈ {F, S, V}.
Assuming equally likely keys, what is H(K|Y356 = y)?

You are not expected to remember details of the example below. But I
hope you will find it interesting! It should give you some flavour of how
computing and mathematical arguments come together in cryptography.

Example 4.15.
(i) The unicity distance for the substitution cipher is log(26!)/R ≈

88.382/3.200 = 27.6. So 28 characters of ciphertext should, in
theory, determine most of the key.

For instance the first 28 characters of the ciphertext in Question 2
on Sheet 1 are (with extra spaces) XNKWBMOW KWH JKXKRJKRZJ RA

KWRJ. A computer search using a corpus of about 70000 words

21

gives 13 decryptions, all of the form ’although th? statistics i?
this’; where ? ∈ {e, y} and the only plausible choice for ? is n.
This essentially unique decryption is in good agreement with Shan-
non’s argument.

Since 12 characters do not appear in the ciphertext, H(K|Y =
y28) = log2 12! = 28.3. But since π is determined on the most
common plaintext letters, further decryptions will not be hard.

(ii) Suppose that the plaintext is made by concatenating arbitrary four
letter English words in the New General Service List8. There are
493 such words, so H(X4m) = (log2 493)m = 8.945m, compared
with (4 log2 26)m ≈ 18.811m for an arbitrary string of 4m charac-
ters. The per-character redundancy is

4 log2 26− log2 493
4

≈ 2.464

and so Shannon’s argument says that the unicity distance for the
substitution cipher is about log2(26!)/2.464 = 35.868. Therefore
about 9 words should determine a large part of the key.

The blue points in the graph below show H(K|Yn) for the ran-
domly chosen plaintext (shown with spaces for readability) ‘case
sale thin coal bore will much fuel gain soil site wear form fill wise
task bend wild pray easy’. The black line shows the average of
over 600 randomly chosen plaintexts.

++
+
+++
+++
+
++
++
+++
++++
+++

+
+++
+
++++++++++++++++++++++++++++++

++++
+++++++

+++++

10 20 30 40 50 60 70

20

40

60

80

Again there is good agreement with Shannon’s argument. In par-
ticular, the slope (the amount we learn per new character) drops
off noticeably at about the unicity distance.

8This is a basic vocabulary of 2500 words aimed at English learners, available
online at http://www.newgeneralservicelist.org.

22

The final graph overleaf shows H(K|Yn) for the contrived plain-
text ‘away bank city drug exam from have lazy joke pose’ chosen
to contain every letter except ‘q’.

+++
+
++++

++++++++
++++

++++
++++

++++++++++++
10 20 30 40

20

40

60

80

Almost all the key is known by the unicity distance. In fact, by
the final character, there are just 6 decryptions consistent with the
NGSL; one is the plaintext, another is ‘away bank city drug exam
from save lazy joke hope’, obtained by permuting the plaintext
by the 3-cycle h 7→ s 7→ p 7→ h.

Exercise 4.16.
(a) Why is it unnecessary to specify the ciphertexts in Example 4.15(2)?
(b) Explain why the biggest drops in the two graphs in this example

are every 4th character.

Kerckhoff’s Principle. It is obviously important in cryptography to be very
clear about what is public information and what is private. Kerckhoff’s
Principle is that

‘all the security in a cryptosystem lies in the key’.
More precisely, the attacker is assumed to know the set of plaintexts P ,
the set of ciphertexts C and the keyspaceK. Moreover, for each key k ∈ K,
she knows the encryption function ek and decryption function dk. But she
does not know which key is being used.9

For more (non-examinable) on the advantages and disadvantages of
keeping other parts of the cryptosystem secret, try searching for ‘security
by obscurity’ on the web.

9In Public Key Cryptography the attacker even knows the function ek for the
chosen key k. These functions are chosen to be hard to invert, so knowing ek does
not imply knowing dk.

23

(B) Stream ciphers

5. LINEAR FEEDBACK SHIFT REGISTERS

Lecture 11Kerckhoff’s Principle states that ‘all the security is in the key’. We saw
in Corollary 3.13 that (under reasonable conditions on the possible mes-
sages) perfect secrecy requires that each key is used with the same prob-
ability. So we need keys that ‘look random’.

Computers are deterministic: given the same inputs, you always get
the same answer. In this section we will see how to get keys that ‘look
random’ out of deterministic algorithms. We will also see some ways to
define randomness more precisely.

Definition of LFSRs. Recall that F2 is the finite field of size 2 with elements
the bits (short for binary digits) 0, 1. Addition and multiplication are de-
fined modulo 2, so

+ 0 1

0 0 1
1 1 0

× 0 1

0 0 0
1 0 1

By definition, F`
2 is the set of `-tuples (x0, x1, . . . , x`−1) where each xi is

a bit. For brevity we may write this tuple as x0x1 . . . x`−1. As seen here,
we number positions from 0 up to `− 1.

For example x = 0111 ∈ F4
2 is the tuple (0, 1, 1, 1) with entries x0 = 0,

x1 = 1, x2 = 1, x3 = 1.

Example 5.1. Consider the function F : F4
2 → F4

2 defined by

F
(
(x0, x1, x2, x3)

)
= (x1, x2, x3, x0 + x1).

(i) Solving the equation F
(
(x0, x1, x2, x3)

)
= (y0, y1, y2, y3) shows

that F has inverse

F−1((y0, y1, y2, y3)
)
= (y0 + y3, y0, y1, y2).

(ii) Starting with x = 0001, the sequence x, F(x), F2(x), F3(x), . . . is
(0001, 0010, 0100, 1001, 0011, 0110, 1101, 1010, 0101, 1011, 0111, 1111,
1110, 1100, 1000, 0001, . . .). We stop when we see 0001 again since
we then know what happens when we apply F.

Exercise: What is the set of m ∈ Z such that Fm(x) = x? Would
your answer change if x was replaced with another x′ ∈ F`

2?

Exercise 5.2. Repeat Example 5.1 for the function G : F4
2 → F4

2 defined
by G

(
(x0, x1, x2, x3)

)
= (x1, x2, x3, x0 + x1 + x2 + x3).

The functions F and G are instances of the following definition.

24

Definition 5.3. A linear feedback shift register of width ` ∈ N with taps
Lecture 12T ⊆ {0, 1, . . . , `− 1} is a function F : F`

2 → F`
2 of the form

F
(
(x0, x1, . . . , x`−2, x`−1)

)
= (x1, . . . , x`−1, ∑

t∈T
xt).

The function f : F`
2 → F2 defined by f (x) = ∑t∈T xt is called the feedback

function.

We abbreviate ‘linear feedback shift register’ to LFSR. Thus an LFSR
shifts the bits in positions 1 to `− 1 left, and puts a new bit, defined by
its feedback function, into the rightmost position `− 1.

Exercise 5.4. What is ‘linear’ about an LFSR?

In the cryptographic literature it is conventional to represent LFSRs by
circuit diagrams, such as the one below showing F. By convention

⊕

denotes addition modulo 2, implemented in electronics by the XOR gate.

⊕

The word ‘register’ in LFSR refers to the boxed memory units storing the
bits.

The LFSRs F and G seen earlier have width 4 and taps {0, 1} and
{0, 1, 2, 3} respectively.

width taps feedback function

F 4 {0, 1} f (x0, x1, x2, x3) = x0 + x1
G 4 {0, 1, 2, 3} g(x0, x1, x2, x3) = x0 + x1 + x2 + x3

The cryptosystem defined by an LFSR.

Exercise 5.5.
(a) Let F be as in Example 5.1. Find the sequence Ft(0111)0 for t ∈

N0. (Note that F0 is, by definition, the identity function.)
(b) Let F be an LFSR of width ` and let k ∈ F`. Show that Ft(k)0 = kt

if 0 ≤ t < ` and that F`(k)0 = f (k0, . . . , k`−1).

Definition 5.6. Let F be an LFSR of width `.
Lecture 13 (a) The keystream defined by F for key k ∈ F`

2 is the sequence

(k0, k1, k2, . . . , kt, . . .)

where kt = Ft(k)0 for each t ∈N0.

25

(b) Fix n ∈ N. The cryptosystem defined by F has P = C = Fn
2 and

keyspace K = F`
2. The encryption functions are defined by

ek(x) = (k0, k1, . . . , kn−1) + (x0, x1, . . . , xn−1)

for each k ∈ K and x ∈ P .

By Exercise 5.5, kt = Ft(k)0 if t < `, so, as the notation requires, the
keystream starts with k. More generally, by Question 2 on Sheet 4,

Fs(k) = (ks, ks+1, . . . , ks+`−1)

for each s ∈ N. So you can read off Fs(k) from the keystream simply by
taking the ` positions starting with ks in position s.

Example 5.7. In Exercise 5.5(a) we found that the keystream for the LFSR
F in Example 5.1 with key k = 0111 was

(0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, . . .)
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8

For example,

F3(0111) = (k3, k4, k5, k6) = (1, 1, 0, 0)
F14(0111) = (k14, k15, k16, k17) = (1, 0, 1, 1)
F15(0111) = (k15, k16, k17, k18) = (0, 1, 1, 1) = k.

The keystream has period 15. Correspondingly 15 is the smallest num-
ber m such that Fm((0, 1, 1, 1)

)
= (0, 1, 1, 1).

Definition 5.8. We define the period of an invertible LFSR F to be the least
m such that Fm = id, the identity function.

For example, the LFSRs F and G in Example 5.1 and Exercise 5.2 have
periods 15 and 5, respectively.

For cryptographic use we want the period to be large. Small periods
are dangerous because the repetition in the keystream means they can be
attacked like the Vigenère cipher.

Cycles and the matrix representation of an LFSR. To understand how to find
LFSRs with long periods we use methods from linear algebra.

Proposition 5.9. Let F be an LFSR of width ` and taps T ⊆ {0, 1, . . . , `− 1}.
The matrix (acting on row vectors) representing F is

0 0 0 . . . 0 [0 ∈ T]
1 0 0 . . . 0 [1 ∈ T]
0 1 0 . . . 0 [2 ∈ T]
...

...
...

0 0 0 . . . 0 [`− 2 ∈ T]
0 0 0 . . . 1 [`− 1 ∈ T]

26

where

[t ∈ T] =

{
1 if t ∈ T
0 otherwise.

This matrix is invertible if and only if 0 ∈ T. So, as conjectured in
Lecture 12, an LFSR is invertible if and only if 0 is one of its taps. (You
are asked to prove this directly, in a way that gives a stronger result, in
Question 4 on Sheet 4.)

Recall that the minimal polynomial of a matrix M with coefficients in
F2 is the non-zero polynomial g(X) ∈ F2[X] of least degree such that
g(M) = 0.

In the following lemma we work with column vectors of length `. For
i ∈ {0, 1, . . . , `− 1}, let v(i) denote the column vector with 1 in position i
(numbering positions from 0), and 0 in all other positions. The vectors
v(0), v(1), . . . , v(`− 1) are shown in the margin.

1
0
...
0

0
1
...
0

 . . .

0
0
...
1

Lemma 5.10. Let F be an LFSR of width ` with taps T representing by the
matrix M. Define g(X) = X` + ∑t∈T Xt.

(a) If t < ` then Mtv(0) = v(t);
Lecture 14 (b) ∑t∈T Mtv(0) = M`v(0),

(c) g(M)v = 0 for all column vectors v,
(d) g(X) is the minimal polynomial of M.

Motivated by the lemma we define the minimal polynomial of an LFSR
F of width ` with taps T to be gF(X) = X` + ∑t∈T Xt.10

We now show the minimal polynomial determines the period. We
need the following fact: if M is a matrix with entries in F2 and f (X) ∈
F2[X] is a polynomial such that f (M) = 0 then f (X) is divisible by the
minimal polynomial of M.11

Lecture 15

Corollary 5.11. The period of an invertible LFSR F is the least m such that
gF(X) divides Xm + 1.

10The term ‘characteristic polynomial’ is also used: this is justified because gF
is the characteristic polynomial of the matrix M representing F. This follows from
Lemma 5.10, or can be proved directly; see Question 9 on Sheet 4.

11Proof: let g(X) be the minimal polynomial of M. By polynomial division we
have f (X) = q(X)g(X) + r(X) where either r(X) = 0 or deg r(X) < deg g(X).
Then 0 = f (M) = q(M)g(M) + r(M) = q(M)0 + r(M) = r(M) so r(M) = 0.
But g(X) has the least degree of non-zero polynomials such that g(M) = 0, so
r(X) = 0, i.e. g(X) divides f (X).

27

It is a useful fact that every LFSR has a cycle of length equal to its
period. (For a proof, non-examinable, see the optional Question 7 on
Sheet 4.) Since there are 2` − 1 non-zero elements of F`

2, this implies that
the period of an LFSR of width ` is at most 2` − 1.

To illustrate Corollary 5.11 we find an LFSR of width 11 with period
211 − 1 = 2047. One reason why LFSRs are useful is that the period is
typically far more than the width.

Example 5.12. The MATHEMATICA command
Factor[X^(2^11 - 1) + 1, Modulus -> 2]

returns (1 + X)(1 + X2 + X11)(1 + X + X2 + X4 + X11) (Here . . .
stands for 185 omitted factors all of degree 11.) The LFSR of width 11
with minimal polynomial 1+ X2 + X11 has taps {0, 2}. By Corollary 5.11,
its period is the least m such that 1+X2 +X11 divides Xm + 1. The output
of

Select[Table[{m,

PolynomialRemainder[X^m + 1, X^11 + X^2 + 1,

X, Modulus -> 2]}, {m, 1, 2047}], #[[2]] == 0 &]

shows that the least such m is 211 − 1.

The computation can be much reduced from a lot to nothing using
some finite field theory, but this is beyond the scope of this course.12

Using the field theory in this footnote it follows that for every ` ∈ N

there exists an LFSR of width ` of maximum possible period 2` − 1.

Attacks on LFSRs. Take an LFSR cryptosystem in whichP = C = 2n. Sup-
pose, as in the known plaintext/ciphertext attack, we know that ek(x) =
y where x, y ∈ Fn

2 . Then, as seen for the one-time pad, (k0, k1, . . . , kn−1) =
x + y. We therefore learn the first n bits of the keystream.

Provided n ≥ ` we now know the key. Following Kerckhoff’s Principle
that ‘all the security is in the key’, the width ` of the LFSR and the taps T
can be supposed to be known. So we can learn the entire keystream and
can decrypt any further messages sent with this key.

12Let F2` be the finite field of size 2`. The multiplicative group of F2` is cyclic;
let α ∈ F2` be a generator of order 2` − 1. Let g(X) be the minimal polynomial
of α. Such minimal polynomials are said to be primitive. Then g(X) is irreducible
of degree ` and divides Xm − 1 if and only if m is a multiple of 2` − 1. Hence
the LFSR with minimal polynomial g(X) has period 2` − 1. If ` is prime then any
irreducible polynomial of degree ` is primitive; correspondingly F2` has no proper
subfields except for F2. For example, X7 + 1 = (X + 1)(X3 + X + 1)(X3 + X2 + 1)
where both cubics are primitive. Thus any irreducible polynomial of degree 11
gives an LFSR of maximal possible period 211 − 1. Example 5.1 and Exercise 5.2
show two of the LFSRs coming from the factorization X15 + 1 = (X + 1)(X2 + X +
1)(X4 + X3 + X2 + X1 + 1)(X4 + X + 1)(X4 + X3 + 1); here the final two factors
are primitive, corresponding to the φ(15) elements of F24 of order 15.

28

In the following example we suppose ` is known and use linear algebra
to determine the taps T. In practice the method works even if we have to
guess `: see Question 2 on Sheet 5.

Example 5.13. Malcolm the mole knows the plaintext/ciphertext pair

x = (0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1)
y = (0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1)

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

for an LFSR cryptosystem of width 5, and deduces the keystream starts

x + y = (0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0)
k0 k1 k2 k3 k4 k5 k6 k7 k8 k9 k10 ... k19

The keystream does not obviously repeat, so he guesses that the period
of the LFSR is more than 20. Taking the first five bits, Malcolm learns
that k = (0, 0, 0, 0, 1). By Question 2 on Sheet 4 (see also Example 5.7), he
knows that

F(k) = (k1, . . . , k5) = (0, 0, 0, 1, 1)

F2(k) = (k2, . . . , k6) = (0, 0, 1, 1, 1)

F3(k) = (k3, . . . , k7) = (0, 1, 1, 1, 1)

and so on. The six vectors k, F(k), . . . , F5(k) lie in the 5-dimensional vec-
tor space F5

2 so are linearly dependent. By row-reducing the matrix

k
F(k)
F2(k)
F3(k)
F4(k)
F5(k)

0 0 0 0 1
0 0 0 1 1
0 0 1 1 1
0 1 1 1 1
1 1 1 1 1
1 1 1 1 0

or by inspection, he sees that k + F4(k) + F5(k) = (0, 0, 0, 0, 0). This sug-
gests (in fact proves, using the optional Question 7 on Sheet 4) that the
minimal polynomial of the LFSR is 1+X4 +X5, and so the taps are {0, 4}:
this can be checked by computing F(k), F2(k), . . . assuming these taps.

The Berlekamp–Massey algorithm is a faster way to determine the taps
that does not require a guess of the width. It will be seen in the M.Sc.
course. (It is not part of the 362/462 course.)

Given a known ciphertext we can try to guess part of the plaintext, and
use the known plaintext/ciphertext attack above. If the ciphertext is so
long that the key repeats then the methods used to break the Vigenère
cipher and the re-used one-time pad are also applicable.

29

6. PSEUDO-RANDOM NUMBER GENERATION

Lecture 16 The keystream generated by an invertible LFSR can be used as a source
of random numbers. In this section we look at its statistical properties.

We saw after Corollary 5.11 that the maximum possible period of an
LFSR of width ` is 2` − 1. Given such an LFSR and any non-zero k ∈ F`

2,
the first 2` − 1 positions of the keystream for k are the generating cycle
for k.

Exercise 6.1. Let F be the LFSR of width 4 with taps {0, 1} and period
15 = 24 − 1 seen in Example 5.1 (and later examples). It has the maxi-
mum possible period for its width. The keystream for k = (1, 1, 0, 0) is
(1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0 . . .). Correspondingly, by Ques-
tion 2 of Sheet 4,

F(1, 1, 0, 0) = (1, 0, 0, 0), F2(1, 1, 0, 0) = (0, 0, 0, 1), . . . , F14(1, 1, 0, 0) = (1, 1, 1, 0)

and F15(1, 1, 0, 0) = (1, 1, 0, 0). By taking the first 15 positions we get the
generating cycle

(1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1)
k0 k1 k2 k3 k4 k5 k6 k7 k8 k9 k10k11k12k13k14

In Example 5.5(a) we used this LFSR with the alternative key (0, 1, 1, 1).
(a) Find all the positions t such that

(kt, kt+1, kt+2, kt+3) = (0, 1, 1, 1).

(b) What is the only element of F4
2 not appearing in the keystream for

(0, 0, 0, 1)?
(c) Why is the generating cycle for (0, 1, 1, 1) a cyclic shift of the gen-

erating cycle for (1, 1, 0, 0)?
(d) Find all the positions t such that (kt, kt+1, kt+2) = (0, 1, 1). How

many are there?
(e) Repeat (d) changing (0, 1, 1) to (0, 0, 1), (0, 0, 0), (0, 1) and (0, 0).

Explain the pattern.

Question 1(c) on Sheet 4 needs the same idea as (c). There was nothing
special about (0, 1, 1, 1) here, except that it is non-zero, so any non-zero
x ∈ F4

2 has a keystream of period 15.

Proposition 6.2. Let F be an invertible LFSR of width ` and period 2` − 1.
Let k ∈ F`

2 be non-zero and let (k0, k1, . . . , k2`−2) be its generating cycle. We
consider positions t within this cycle, so 0 ≤ t < 2` − 1.

(a) For each non-zero x ∈ F`
2 there exists a unique t such that

(kt, . . . , kt+`−1) = x.

(b) Given any non-zero y ∈ Fm
2 where m ≤ `, there are precisely 2`−m

positions t such that (kt, . . . , tt+m−1) = y.

30

(c) There are precisely 2`−m − 1 positions t such that (kt, . . . , kt+m−1) =
(0, 0, . . . , 0) ∈ Fm

2 .

Lecture 17 In particular, (b) and (c) imply that, in a generating cycle of an invert-
ible LFSR of width ` and maximal possible period, there are 2`−1 ones
and 2`−1 − 1 zeros. How many times do 00, 01, 10 and 11 appear?

Exercise 6.3. Write down a sequence of 33 bits, fairly quickly, but trying
to make it seem random. Count the number of zeros and the number of
ones. Now count the number of adjacent pairs 00, 01, 10, 11. Does your
sequence still seem random?

Random sequences of length 33 will have, on average, 8 of each pair
00, 01, 10, 11. But because they are random, some will have more, and
some less. At what point should we suspect that the sequence is not truly
random?

Here we answer this question for the first test in the exercise, counting
the number of zeros and ones. This is the monobit test.

Exercise 6.4. Let M0 be the number of zeros and let M1 be the number
of ones in a binary sequence B0, B1, . . . , Bn−1 of length n.

(a) Explain why if the bits are random we would expect that M0 and
M1 both have the Bin(1

2 , n) distribution.

(b) Show that the χ2 statistic with (a) as null hypothesis is (M0 −
M1)

2/n.
(c) A sequence with n = 100 has 60 zeros. Does this suggest it is not

truly random? (This is the ‘monobit test’.) [Hint: if Z ∼ N(0, 1)
then P[Z2 ≥ 3.841] ≈ 0.05 and P[Z2 ≥ 6.635] ≈ 0.01.]

Lecture 18 (d) The 2001 version of FIPS 140-2 required that 9725 < M0 < 10275
when n = 20000. This requirement was withdrawn13 in 2002.
Suggest a possible reason for this change.

See Question 3 on Problem Sheet 5 for the analogous test looking at
pairs.

Another interesting measure of randomness is the degree to which a
sequence is correlated with a shift of itself.

Definition 6.5. Given (x0, x1, . . . , xn−1) and (y0, y1, . . . , yn−1) ∈ Fn
2 define

csame =
∣∣{i : xi = yi}

∣∣

cdiff =
∣∣{i : xi 6= yi}

∣∣.
The correlation between x and y is (csame − cdiff)/n.

13See the struck-out text on page 57 of http://nvlpubs.nist.gov/nistpubs/
FIPS/NIST.FIPS.140-2.pdf. FIPS stands for Federal Information Processing
Standard.

31

Exercise 6.6. Find the correlation between a generating cycle for the LFSR
of width 3 with taps {0, 1} and each cyclic shift of itself. Why is there no
need to specify the key?

More generally we shall prove the following proposition.

Proposition 6.7. Let (k0, k1, . . . , k2`−2) be a generating cycle of a maximal
period LFSR of width `. The correlation between (k0, k1, . . . , k2`−2) and any
proper cyclic shift of (k0, k1, . . . , k2`−2) is −1/(2` − 1).

Again this shows that the keystream of a full-width LFSR has a strong
randomness property.

7. NON-LINEAR STREAM CIPHERS

Lecture 19Mathematically an LFSR of width ` is a function F : F`
2 → F`

2. The
domain F`

2 corresponds to the ` bits stored in the registers: we call these
bits the internal state of the LFSR. It is updated by the linear function F.

The cryptosystem in Definition 5.6(b) is trivially broken by a known
plaintext/ciphertext attack (see bottom page 27) because every bit of in-
ternal state appears, unmodified, in the keystream.

Example 7.1. Totally Trusted Transmission Technologies thinks that tak-
ing the sum of the keystreams for two LFSRs with different keys should
obscure the keys and give a cryptographically strong sequence.

• Let F be the LFSR of width 3 with taps {0, 1}.
• Let F′ be the LFSR of width 4 with taps {0, 3}.

The periods of F and F′ are 7 and 15, maximum possible for their widths.

(a) The first 20 bits in the keystreams for F′ with keys k = (0, 0, 0, 1)
and k′ = (1, 0, 0, 0) sum to the sequence (u0, u1, . . . , u19) below:

ki 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1
k′i 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1
ui 1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

TTTT are soon informed by an irate customer that (u0, u1, u2, . . .)
is generated by F′. Exercise: check this and explain why.

Exercise: can the keys k and k′ be recovered from (u0, u1, . . . , u19)?
If so, explain how; if not, will this deter attackers?

32

(b) TTTT decides their error was to use the same LFSR twice. The
first 20 bits in the keystreams for F and F′ with keys k = (0, 0, 1)
and k′ = (1, 0, 0, 0) and their sum (u0, u1, . . . , u19) are:

ki 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1
k′i 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1
ui 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

Exercise: what is the period of (u0, u1, u2, . . .)?

The linear algebra method from Example 5.13 or Question 2 on
Sheet 5 shows that the first 10 bits of (u0, u1, u2, . . .) are generated
by the LFSR of width 7 with taps {0, 1, 5, 6}.
Exercise: check this holds for the first 20 bits.

The optional Question 4 on Sheet 6 shows this holds for all the bits
of the sequence, regardless of the choice of keys k and k′ and that
any 7 consecutive bits from (u0, u1, u2, . . .) determine the keys k
and k′. So again (u0, u1, u2, . . .) is weak.

To avoid these problems, modern stream ciphers use non-linear func-
tions, such as multiplication. They also avoid using every bit of the inter-
nal state in the keystream.

Example 7.2. A Geffe generator is constructed using three LFSRs F, F′

and G of widths `, `′ and m, all with maximum possible period. Follow-
ing Kerckhoff’s Principle, the widths and taps of these LFSRs are public
knowledge.

• Let (k0, k1, k2, . . .) and (k′0, k′1, k′2, . . .) be keystreams for F and F′

• Let (g0, g1, g2, . . .) be a keystream for G.
The Geffe keystream (u0, u1, u2, . . .) is defined by

ui =

{
ki if gi = 0
k′i if gi = 1.

For example, if F and F′ and their keystreams are as in Example 7.1 and G
is the LFSR of width 4 with taps {0, 1} and (g0, g1, g2, g3) = (0, 0, 0, 1)
then

ki 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1
k′i 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1
gi 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0
ui 0, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

Exercise: give an upper bound on the period of (u0, u1, u2, . . .), for this
example, and in general.

Lecture 20

33

The Geffe generator is much better than taking the sum of (k0, k1, k2, . . .)
and (k′0, k′1, k′2, . . .), or their product (see Question 2 on Sheet 6). But it is
vulnerable to a correlation attack.

Exercise: Assume the keys (k0, k1, . . . , k`−1) and (k′0, k′1, . . . , k′`′−1) are cho-
sen with equal probability from F`

2 and F`′
2 , respectively. Find P[ks = us]

for each s ∈N0.14

Thus the correlation between (k0, k1, k2, . . .) and (u0, u1, u2, . . .) is 3
4 − 1

4 =
1
2 . Recall that 0 corresponds to no correlation, 1 to equality in every posi-
tion and −1 to inequality in every position.

Attack 7.3. Suppose that n bits of the Geffe keystream are known. The at-
tacker computes, for each candidate key (v0, v1, . . . , v`−1) ∈ F`

2, the correla-
tion between (v0, v1, . . . , vn−1) and (u0, u1, . . . , un−1). If the correlation is
not nearly 1

2 then the candidate key is rejected. Otherwise it is likely that
(k0, . . . , k`−1) = (v0, . . . , v`−1).

Exercise: is it better to guess the key for F or for F′?

One can repeat Attack 7.3 to learn (k′0, k′1, . . . , k′`′−1). Overall this re-
quires at most 2` + 2`

′
guesses. This is a huge improvement on the 2`+`′

guesses required by trying every possible pair of keys. (There are also
faster ways to finish: see Question 2(b) on Sheet 6.)

The Geffe cipher is weak because each keystream bit xy is a product
biased to 0. This exercise suggests one way to reduce, but not eliminate,
this bias.

Lecture 21Exercise 7.4. Let x, y, z be independent unbiased bits. Find the correlation
between xy + z and x, and between xy + z and z.

We use xy + z as the source of feedback function in the next cipher. It
serves as an example of several important ideas, but you are not expected
to remember details of how it is defined or attacked.

Example 7.5. Let F be the LFSR of width 5 with taps {0}. The keystream
of F with key (k0, k1, k2, k3, k4) is simply (k0, k1, k2, k3, k4, k0, k1, . . .). The
diagram overleaf, as in Exercise 5.2 or Question 3(c) on Sheet 4, shows
the cycles of F.

Define Q(x0, x1, x2, x3, x4) = (x1, x2, x3, x4, x0 + x1x2).

Exercise. Prove that Q is invertible.

14Formally, this means P[Ks = Us], where Ks and Us are the random variables
for the first keystream and the Geffe keystream. The informal notation should be
clear and will be used for the rest of this section.

34

00001 00010

00100

01000

10000

00011 00110

01100

1100010001

10011 00111

01110

1110011001

01010 10100

10100

01001

00101

01011 01011

01101

1101010101

01111

11110

1110111011

10111

00000 11111

When x1x2 6= 0, we have Q(x) = F(x). On the remaining 1
4 of the inputs,

shown in red in the diagram, Q(x) and F(x) differ by (0, 0, 0, 1). This
means some of the cycles of F are joined up to make Q.

Exercise: show that Q has cycles of lengths 1, 5, 5, each equal to a cycle
of F, and one cycle of length 21, obtained by joining up the remaining
five cycles of F.

Define the Q-state stream for key (k0, k1, k2, k3, k4) by

qs = Qs(k0, k1, k2, k3, k4)0 for s ∈N0

For example, since 00011 is in the cycle 00011 → 00110 → 01100 →
11001 → . . . → 11100 → 110000 → 10001 → 00011 of Q of length 21, its
Q-state stream is

qs 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0

of period 21.

Since Q is invertible, any 5 consecutive bits in the Q-state stream deter-
mine the internal state and hence the key. For example, if (q7, q8, q9, q10, q11)
= (1, 1, 0, 1, 1) then working back through the state stream above shows
that the key is (0, 1, 1, 1, 0).

We avoid this weakness by taking the bits in even-numbered positions in
the state stream to define the Q-keystream u0, u1, u2, For example, the
Q-keystreams for keys (0, 0, 0, 1, 1) and (1, 1, 1, 0, 1) are

us 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 1
u′s 1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0
0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0

where the bottom row shows the positions in the state stream. [Correc-
tion: use us not ks for Q-keystream, since u0, u1, u2, . . . = k0, k2, k4,]

Exercise 7.6.
(a) Check the Q-keystream for (1, 1, 1, 0, 1) is as claimed. [Hint: you

Lecture 22 can use the Q-state stream for (0, 0, 0, 1, 1).]

35

(b) Why is the period of both keystreams 21?
(c) Show by example that 5 consecutive bits in the Q-keystream do

not, in general, determine the key.

There is an obvious way to generalize Q to arbitrary widths.

Exercise 7.7. Suppose we take ` = 12 and, since the first few bits in the Q-
keystream are noticeably less random, drop the first 200 bits. For 200 ≤
s ≤ 1000, the maximum correlation between a bit qs of the Q-state stream
and one of the bits k j of the key is 1012

212 = 253
210 ≈ 1

4 ; with equality when
(s, j) ∈ {(751, 0), (752, 1), . . . , (762, 11)}. Note that q752 = u376, and so on,
up to q762 = u381. [Correction: use us, not ks for Q-keystream.]

You know (u376, u377, u377, u378, u379, u380, u381) and have to guess the key.
How should the search be organized?

A naive search going through all 212 keys in lexicographic order re-
quires on average 2018.8 guesses. (The code is online at https://repl.
it/NE32/3.) Ordering the keys so that the 64 keys of the form

(?, u376, ?, u377, ?, u378, ?, u379, ?, u380, ?, u381)

are tried first, then the 64 × 6 keys differing in a single odd numbered
position, and so on, reduces the mean number of guesses to 1425.0. The
histograms below show the distribution of the number of guesses for the
naive search (left) versus the organized search (right).

1000 2000 3000 4000

50

100

150

200

250

300

350

1000 2000 3000 4000

200

400

600

800

1000

1200

The distribution is not uniform for the naive search because some ‘weak
keys’ generate the zero keystream, and so are (wrongly, but very quickly)
identified as the zero key.

Remark 7.8. This improvement can be predicted theoretically. The corre-
lation between q752 and k1 is P[q752 = k1]− P[q752 6= k1], or equivalently,
2P[q752 = k1]− 1. Therefore P[q752 = k1] ≈ 1

2(1 + 1
4) ≈ 5

8 , and similarly,
for P[q754 = k3], and so on. Therefore the entropy in the key is

6× f (1
2) + 6× f (5

8) ≈ 6× 1 + 6× 0.9544 = 11.7266

where f (p) = −p log2 p− (1− p) log2 p, as in Example 4.2(1), gives the
entropy for each bit. Since on average we find the key halfway through

36

the search, this predicts that 211.7266−1 ≈ 1694.45 guesses (or ‘questions
about the key’) will be required, versus 212−1 = 2048 for a naive search.
In practice the attack is better than this argument predicts.

An attack such as Attack 7.3 or the correlation attack on the Q-cipher
is said to be sub-exhaustive because it finds the key using fewer guesses
than brute-force exhaustive search through the keyspace.

Lecture 23 We end by looking at a modern stream cipher which, like the Q-cipher,
is defined by mixing addition and multiplication, and like the Geffe ci-
pher, uses multiple shift registers. This combination gives a cipher with
no known sub-exhaustive attacks.

Example 7.9 (TRIVIUM). Take three LFSRs of widths 93, 84 and 101, tap-
ping positions {0, 27}, {0, 15} and {0, 45}, with internal states x ∈ F93

2 ,
x′ ∈ F84

2 , x′′ ∈ F101
2 . The keystream is defined by

ks = x0 + x27 + x′0 + x′15 + x′′0 + x′′45.

The feedback functions are

f
(
(x0, . . . , x92)

)
= x0 + x27 + x1x2 + x′6

f ′
(
(x′0, . . . , x′84)

)
= x′0 + x15 + x′1x′2 + x′′24

f ′′
(
(x′′0 , . . . , x′′101

)
= x′′0 + x′′14 + x′′1 x′′2 + x24

In each case the final summand introduces a bit from a different shift
register.

Rather than use a 288-bit key, TRIVIUM uses a (secret) 80-bit key, and a
(non-secret) 80-bit initialization vector, setting the other positions in the
internal state to 0.15 The first 1152 bits of the keystream are unusually
biased, and so are discarded.

15See http://www.ecrypt.eu.org/stream/p3ciphers/trivium/trivium_p3.

pdf for details: for consistency, the right-shifting registers in the formal specifi-
cation have been converted to (equivalent) left-shifting registers.

37

(C) Block ciphers

8. INTRODUCTION TO BLOCK CIPHERS AND FEISTEL NETWORKS

Lecture 24In stream ciphers a binary plaintext of arbitrary length n is encrypted
by adding the first n bits of the keystream for the chosen key. In a block
cipher of block size n, we also have P = C = Fn

2 , and K = F`
2, for some

` ∈ N, called the key length. But typically the plaintext is mixed up with
the key in more complicated ways.

Since P = C, each encryption function ek for k ∈ K is bijective, and the
cryptoscheme is determined by the encryption functions.

Example 8.1. The binary one-time pad of length n is the block cipher of
block size n and keyspace Fn

2 in which ek(x) = x + k for all k ∈ Fn
2 .

The one-time pad has perfect secrecy (see Question 3 on Sheet 3). But it
is not a good block cipher because the key can be deduced from a known
plaintext/ciphertext pair (x, y) by adding x and y, to get x + (x + k) = k.

Modern block ciphers aim to be secure even against a chosen plaintext
attack allowing arbitrarily many plaintexts. That is, even given all pairs
(x, ek(x)) for x ∈ Fn

2 , there should be no faster way to find the key k then
exhausting over all possible keys in the keyspace F`

2.

Feistel networks.

Definition 8.2. Let m ∈ N and let f : Fm
2 → Fm

2 be a function. Given v,
w ∈ Fm

2 , let (v, w) denote (v0, . . . , vm−1, w0, . . . , wm−1) ∈ F2m
2 . The Feistel

network for f is the function F : F2m
2 → F2m

2 defined by

F
(
(v, w)

)
= (w, v + f (w)).

This can be compared with an LFSR: we shift left by m positions to
move w to the start. The feedback function is (v, w) 7→ v + f (w). It is
linear in v, like an LFSR, but typically non-linear in w.

The circuit diagrams below show two equivalent definitions of the
Feistel network: the right-hand diagram makes the analogy with LFSRs
more obvious.

v w

f

f(w)

v+f(w)

w v + f(w)

f

v w
w

w

f(w)

v+f(w)

v

38

Exercise 8.3. Show that, for any function f : Fm
2 → Fm

2 , the Feistel net-
work F for f is invertible. Give a formula for its inverse in terms of f .

See Question 3 on Problem Sheet 7 for an extension of this exercise,
showing that decryption can be performed by the same circuitry as en-
cryption.

A block cipher of Feistel type is defined by iterating a Feistel network
for a fixed number of rounds. The function f for each round depends on
a round key, constructed using the key k ∈ F`

2.

Example 8.4 (Q-block cipher). Take m = 4 and let

S
(
(x0, x1, x2, x3)

)
= (x2, x3, x0 + x1x2, x1 + x2x3).

(This is two iterations of the Q-cipher from Example 7.5, defined with
width 4.) We define a block cipher with block size 8 and key length 12
composed of three Feistel functions. If the key is k ∈ F12

2 we define the
three round keys by

k(1) = (k0, k1, k2, k3), k(2) = (k4, k5, k6, k7), k(3) = (k8, k9, k10, k11).

The Feistel function in round i is x 7→ S(x + k(i)).

Since in each round the contents of the right register shift to the left,
we can consistently denote the output of round i by (v(i), v(i+1)). Thus
the plaintext (v, w) ∈ F16

2 is encrypted to the cipher text ek
(
(v, w)

)
=

(v(3), v(4)) in three rounds:

(v, w) = (v(0), v(1)) 7→
(
v(1), v(0) + S(v(1) + k(1))

)
= (v(1), v(2))

7→
(
v(2), v(1) + S(v(2) + k(2))

)
= (v(2), v(3))

7→
(
v(3), v(2) + S(v(3) + k(3))

)
= (v(3), v(4)).

Exercise 8.5.

(a) Suppose that k = 0001 0011 0000, shown split into the three round
keys. Show that

ek
(
(0, 0, 0, 0, 0, 0, 0, 0)

)
= (1, 1, 1, 0, 1, 1, 0, 1)

(b) Find dk
(
(0, 0, 0, 0, 0, 0, 0, 0)

)
if the key is as in (a).

(c) Suppose Eve observes the ciphertext (v(3), v(4)) from the Q-block
cipher. What does she need to know to determine v(2)?

39

Lecture 25 Data Encryption Standard (DES). DES is a Feistel block cipher of block size
64. The key length is 56, so the keyspace is F56

2 . Each round key is in F48
2 .

There are 16 rounds. (Details of how the 16 round keys are derived from
the key are omitted.)

The Feistel function f : F32
2 → F32

2 is defined in three steps using eight
functions S1, . . . , S8 : F6

2 → F4
2. Start with x ∈ F32

2 and a round key
k(i) ∈ F48

2 . Then

(a) Expand x by a linear function (details omitted) to x′ ∈ F48
2 .

(b) Add the 48-bit round key to get x′ + k(i).
(c) Let x′ + k(i) = (y(1), . . . , y(8)) where y(j) ∈ F6

2 for each j. Let

z =
(
S1(y(1)), . . . , S8(y(8))

)
∈ F32

2 .

(d) Apply a permutation (details omitted) of the positions of z.
Note that (a) and (d) are linear, and (b) is a conventional key addition

in F48
2 . So the S-boxes in (c) are the only source of non-linearity. (Here ‘S’

stands for ‘substitution’.)
• The aim of (c) is ‘confusion’: to make the relationship between

plaintext and ciphertext complicated and non-linear.
• The aim of (d) is ‘diffusion’: to turn confusion between nearby

bits into long range confusion.

No sub-exhaustive attacks on DES are known. But the relatively small
keyspace F56

2 means that exhaustive attacks are practical. Therefore DES
cannot be considered secure. Some timings:

• 1997: 140 days, distributed search on internet
• 1998: 9 days ‘DES cracker’ (special purpose) $250000
• 2017: 6 days ‘COPACOBONA’ (35 FPGA’s) $10000

Exercise 8.6. Suppose we apply DES twice, first with key k ∈ F56
2 then

with k′ ∈ F56
2 . So the keyspace is F56

2 ×F56
2 and for (k, k′) ∈ F56

2 ×F56
2 ,

e(k,k′)(x) = e′k
(
ek(x)

)
.

(a) How long would a brute force exhaustive search over F56
2 × F56

2
take?

(b) Does this mean 2DES is secure?

See Question 4 on Problem Sheet 7 for 3DES: it has keyspace F56
2 ×

F56
2 ×F56

2 and encryption functions defined by

e(k,k′,k′′)(x) = e′′k
(
d′k
(
ek(x)

))
.

The DES model, of combining a non-linear S-box with linear maps and
key additions in Fn

2 , is typical of block ciphers.

40

Lecture 26AES (Advanced Encryption Standard). AES is the winner of an open com-
petition to design a successor to DES. It has block size 128 and keyspace
F128

2 . It is not a Feistel cipher, but it is still built out of multiple rounds,
like DES. The non-linearity comes from a function defined using the finite
field F28 .

Example 8.7. Let α be an indeterminate. Define

F28 = {x0 + x1α + · · ·+ x7α7 : x0, x1, . . . , x7 ∈ F2}.
Elements of F8

2 are added and multiplied like polynomials in α, but when-
ever you see a power αd where d ≥ 8, eliminate it16 using the rule

1 + α + α3 + α4 + α8 = 0.

For example (1 + α) + (α + α5) = 1 + α5 and

α9 = α× α8

= α(1 + α + α3 + α4)

= α2 + α3 + α4 + α5.

Multiplying the defining rule for α by α−1, we get α−1 + 1 + α2 + α3 +
α7 = 0 so α−1 = 1 + α2 + α3 + α7

Definition 8.8. Let F28 be the finite field of size 28 as in Example 8.7.
Define p : F28 → F28 by

p(β) =

{
β−1 if β 6= 0
0 if β = 0.

.

Let P : F8
2 → F8

2 be the corresponding function defined by identifying F8
2

with F2(α) by (x0, x1, . . . , x7)←→ x0 + x1α + x2α2 + · · ·+ x7α7.

For example, writing elements of F8
2 as words of length 8 (with a small

space for readability):

(1) 1000 0000←→ 1 ∈ F28 and 1−1 = 1, so P(1000 0000) = 10000000
(2) 0100 0000 ←→ α ∈ F28 and α−1 = 1 + α2 + α3 + α7 was found in

Example 8.7, so P(0100 0000) = 10110001.

Exercise: Show that P(0010 0000) = 1101 0011.

There are 10 rounds in AES. In each round, the input x ∈ F128
2 is split

into 16 subblocks each in F8
2.

16An equivalent definition using some ring theory is F28 = F2[X]/〈1 + X +
X3 + X4 + X8〉; now α is the coset X + 〈1 + X + X3 + X4 + X8〉 in the quotient
ring. The polynomial 1 + X + X3 + X4 + X8 was chosen by the designers of AES:
it is irreducible (this is essential) but not primitive.

41

• The pseudo inverse function P : F8
2 → F8

2 is applied to each sub-
block, followed by an affine transformation F8

2 → F8
2, of the type

in Question 5 on Problem Sheet 7. This gives confusion.

• Diffusion comes from a row permutation of the 16 subblocks, or-
ganized into a 4× 4 grid:

q(0) q(4) q(8) q(12)
q(1) q(5) q(9) q(13)
q(2) q(6) q(10) q(14)
q(3) q(7) q(11) q(15)

−→
q(0) q(4) q(8) q(12)

q(13) q(1) q(5) q(9)
q(10) q(14) q(2) q(6)
q(7) q(11) q(15) q(3)

The columns are then mixed by a linear map, giving further dif-
fusion.

• The round key in F128
2 is added after these two steps.

There are no known sub-exhaustive attacks on AES. It is the most com-
monly used block cipher. Since 2010 Intel and AMD microprocessors
have supported AES as a primitive operation. AES was defined to be ef-
ficient in hardware: for example, the subblocks fit exactly into 8-bit bytes.

There are also versions of AES defined with keyspace F192
2 and F256

2 ,
using 12 or 14 rounds, respectively.

Modes of operation. A block cipher of block size n encrypts plaintexts in
Fn

2 to ciphertexts in Fn
2 . If x is longer than n bits, it must be split into

blocks x(1), . . . , x(m) ∈ Fn
2 :

x = (x(1), . . . , x(m)).

Fix a key k ∈ K: this is only key used.

• In Electronic Codebook Mode, the encryption function ek is ap-
plied to each block in turn:

x(1) 7→ ek(x(1))

x(2) 7→ ek(x(2))
...

x(m) 7→ ek(x(m))

• Cipher Block Chaining:

x(1) 7→ ek(x(1)) = y(1)

x(2) 7→ ek(y(1) + x(2)) = y(2)

...

x(m) 7→ ek(y(m−1) + x(m)) = y(m)

If x(i) = x(j) then, in Electronic Codebook Mode, the ciphertext blocks
ek(x(i)) and ek(x(j)) are equal. This leads to frequency attacks, as seen in
Example 2.4 for the substitution cipher. This is a weakness of the mode

42

of operation, not of the underlying block cipher. Cipher Block Chaining
avoids this problem.

9. DIFFERENTIAL CRYPTANALYSIS

Differential cryptanalysis was known to the designers of DES in 1974
and was considered when designing the DES S-boxes. They kept it secret,
at the request of the NSA. It was rediscovered in the late 1980s.

One important idea is seen in the attack on the reused one-time pad in
Question 2 on Problem Sheet 3. We have unknown plaintexts x, x∆ ∈ Fn

2 ,
an unknown key kotp ∈ Fn

2 , and known ciphertexts x+ kotp and x∆ + kotp.
Adding the known ciphertexts gives x + x∆, independent of kotp.

Put another way, if two plaintexts x, x∆ differ by a difference ∆, so x +
x∆ = ∆, then so do their encryptions: (x + kotp) + (x∆ + kotp) = ∆.

Attack 9.1. Let ek : Fn
2 → Fn

2 for k ∈ F`
2 be the encryption functions for a

block cipher of block size n and key length `. For (kotp, k) ∈ Fn
2 × F`

2, define
E(kotp,k) : Fn

2 → Fn
2 by

E(kotp,k)(x) = ek(x + k).

Let ∆ ∈ Fn
2 . In a chosen plaintext attack on the cryptosystem E, we choose

x ∈ Fn
2 and a difference ∆ ∈ Fn

2 and obtain the ciphertexts

z = E(kotp,k)(x)

z∆ = E(kotp,k)(x + ∆)

Set Γ = z + z∆. Then e−1
k (z) + e−1

k (z∆) = ∆. Moreover, for kguess ∈ F`
2, either

Lecture 27
e−1

kguess
(z) + e−1

kguess
(z∆) 6= ∆

and we deduce kguess 6= k, or

e−1
kguess

(z) + e−1
kguess

(z∆) = ∆

and then kguess ∈ Kz where

Kz =
{

kguess ∈ Fn
2 : e−1

kguess
(z) + e−1

kguess
(z + Γ) = ∆

}
.

Exercise: Show that kguess ∈ Kz if and only if kguess + Γ ∈ Kz. Hence there
are always evenly many possible keys.

Intuitively: for the correct key k, undoing the second cipher we get
back the difference ∆; for wrong keys, we get ∆ only if kguess has the
special property that kguess ∈ Kz, where z = E(kotp,k)(x).

If the block cipher is good then Kz is small. Therefore false keys, where
we do not immediately see that our guess is wrong, are rare. Note that
we guess k, but not kotp.

43

Attack on the AES S-box. We apply Attack 9.1 to a cryptosystem based on
the pseudo-inverse function P : F8

2 → F8
2 used in AES.

Example 9.2. Let n = 8, ` = 8. For k ∈ F8
2, define

ek(y) = P(y) + k

Note that e−1
k (z) = P(z + k) and so

e−1
kguess

(z) + e−1
kguess

(z∆) = P(z + kguess) + P(z∆ + kguess).

By definition z∆ = z + Γ. Hence the set Kz in Attack 9.1 is

Kz = {kguess ∈ F8
2 : P(z + kguess) + P(z + kguess + Γ) = ∆}.

Running the attack: Take ∆ = 1000 0000; this corresponds to 1 ∈ F28 . For
each kguess ∈ F8

2, we compute P(z+ kguess)+ P(z∆ + kguess). If the answer
is ∆ then kguess ∈ Kz and kguess is either k or a false key. Otherwise we
reject kguess.

By Exercise 9.5 below, there are usually exactly two different kguess ∈ F8
2

such that P(z + kguess) + P(z + kguess + Γ) = ∆. One must be k.

Exercise 9.3. Show that k + Γ ∈ Kz

So usually Kz = {k, k + Γ} and the attack in Attack 9.1 finds the key and
the false key k + Γ; very rarely, when ∆ = Γ−1, there are three false keys.

In the following examples we take kotp = 0000 0000.
(1) If k = 0000 0000 and x = 0100 0000 then, since P(0100 0000) =

1011 0001 and P(1100 0000) = 0110 1111, z + z∆ = 1101 1110.
There are exactly 2 keys kguess such that k ∈ Kz, namely

0000 0000, 1101 1110.

(2) If k = 0000 0000 and x = 0000 0000 then z + z∆ = 1000 0000 and
there are exactly 4 keys kguess such that k ∈ Kz, namely

0000 0000, 1000 0000, 0011 1101, 1011 1101.

(To check this you will need to know P(0011 1101) = 1011 1101
and so, since P(P(x)) = x for all x ∈ F8

2, P(1011 1101) = 0011 1101.)
This is the exceptional case when ∆−1 = Γ.

(3) Exercise: let k = 1111 1111. What are the guesses kguess if x =
0100 0000? What if x = 0000 0000? [Hint: use (1) and (2).]

Exercise 9.4.
(a) Show that the attack typically finds k and the false key k+ Γ using

at most 2× 28 decryptions to calculate e−1
kguess

(z) and e−1
kguess

(z∆).
(b) How many encryptions are needed to test all the pairs (kotp, k)

and (kotp, k + Γ) for kotp ∈ F8
2?

44

(c) Deduce that the attack finds the key (kotp, k) using at most 210

decryptions/encryptions. Why is this sub-exhaustive?

Exercise 9.5. Let Γ ∈ F8
2 be non-zero. Show that for each non-zero ∆ ∈ F8

2,
{

w ∈ F8
2 : P(w) + P(w + Γ) = ∆

}

has size 0 or 2, except when ∆−1 = Γ, when it has size 4. [Hint: quadratic
equations over any field have at most two roots.]

Example 9.2 should be compared with the meet-in-the-middle attack
on 2DES: both show that composing two block ciphers may not give a
significantly stronger cipher.

Lecture 28 Attack on the Q-block cipher. Recall that we write elements as F8
2 as pairs

(v, w) where v ∈ F4
2 and w ∈ F4

2. In round 1 of the Q-block cipher (see Ex-
ample 8.4), the Feistel network sends (v, w) to

(
w, v + S(w + k(1))

)
where

S
(
(x0, x1, x2, x3)

)
= (x2, x3, x0 + x1x2, x1 + x2x3).

Lemma 9.6.
(i) For any x ∈ F4

2 we have S(x + 1000) = S(x) + 0010.
(ii) For any (v, w) ∈ F8

2 and any round key k(1) ∈ F4
2 we have

(
w, v + S(w + k(1))

)
+
(
w + 1000, v + S(w + 1000+ k(1))

)
= (1000, 0010).

By (ii) the first round of the Q-block cipher has a similar weakness
to the one-time pad: plaintexts (v, w) differing by (0000, 1000) are en-
crypted to vectors differing by (1000, 0010). Thus the first round of the Q-
block cipher behaves like a one-time pad, provided we take ∆ = (0000, 1000).

Example 9.7. We run Attack 9.1 on the Q-block cipher by taking ∆ =
(0000, 1000) and guessing the final 8 bits of the key k to undo the final
two rounds.

Take k = 0000 0000 0000 and x = 0000 0001. There are 16 keys kguess ∈ F8
2

such that kguess ∈ Kz, namely all binary words of the form ?0?0 ?0?0.
These are the possibilities for

(k(2)guess, k(3)guess) ∈ F8
2.

Trying each guess together with all 16 possibilities for k(1)guess ∈ F4
2 we get

k ∈ {0000 0000 0000, 1000 0010 1000, 1110 1000 0010, 0110 1010 1010}.
All these keys encrypt 0000 0001 to the same ciphertext, namely 0000 0100.
Repeating the attack with a different plaintext shows that k is one of the
first two keys.

That we are left with two keys is explained by Question 2 on Sheet 8:
it follows from Lemma 9.6(i) that, in the Q-block cipher, the encryption
functions ek and ek+1000 0010 1000 are the same.

45

(D) Public key ciphers and digital signatures

10. INTRODUCTION TO PUBLIC KEY CRYPTOGRAPHY

We begin with a way that Alice and Bob can establish a shared secret
key, communicating only over the insecure channel on page 4.

Everything in red is private. Everything not in red is known to the
whole world— this includes the eavesdropper Eve. (This is not a stan-
dard convention, and you are welcome to ignore it if you prefer.)

Example 10.1. Alice and Bob need a 128-bit key for use in AES. They
agree a prime p such that p > 2128. Then

(1) Alice chooses a secret a ∈N with 1 ≤ a < p. Bob chooses a secret
b ∈N with 1 ≤ b < p.

(2) Alice sends Bob 2a mod p. Bob sends Alice 2b mod p. (Note that
a is secret, but 2a is sent publically.)

(3) Alice computes (2b)a mod p and Bob computes (2a)b mod p.
(4) Now Alice and Bob both know 2ab mod p. They each write

2ab mod p in binary and take the final 128 bits to get an AES key.

After (2), the eavesdropper Eve knows p, 2a mod p and 2b mod p. It is
believed that it is hard for her to use this information to find 2ab mod p.
The difficulty can be seen even in small examples.

After (4) Alice and Bob can communicate using the AES cryptosys-
tems, which has no known sub-exhaustive attacks.

So remarkably, Alice and Bob can communicate securely without ex-
changing any private key material.

Exercise 10.2. Let p = 11. As Eve you know that Alice has sent Bob 6.
Do you have any better way to find a such that 2a = 6 than trying each
possibility?

n 0 1 2 3 4 5 6 7 8 9

2n mod 11 1 2 4 8 5 10 9 7 3 6

To compute this table it is not necessary to calculate, for instance, 28 =
256, and then reduce it modulo 11. Instead, just double the previous
entry. Thus from 27 ≡ 7 mod 11 we get 28 ≡ 7× 2 = 14 ≡ 3 mod 11.

This exercise shows two number-theoretic facts that will be needed be-
low. (See also Fact 10.5 below.)

• Fermat’s Little Theorem: cp−1 ≡ 1 mod c for any c not divisible
by p.

46

• If cm 6≡ 1 mod p when 1 ≤ m < p− 1 then c is said to be a primitive
root modulo p. If c is a primitive root then, working modulo p, we
have

{1, c, c2, . . . , cp−2} = {1, 2, . . . , p− 1}
Primitive roots always exist17: in Exercise 10.2 we took c = 2.

Note that 2 is not always a primitive root: for example if p = 127 then
we have 27 = 128 ≡ 1 mod 127, so the powers of 2 are {1, 2, 4, 8, 16, 32, 64},
giving only 7 of the 126 non-zero elements.

Diffie–Hellman Key Exchange. This is nothing more than Example 10.1,
modified to avoid some potential weaknesses, and implemented effi-
ciently.

• The prime p is chosen so that p − 1 has at least one large prime
factor. (This is true of most primes. There are fast ways to decide
if a number is prime.)

• Rather than use 2, Alice and Bob use a primitive root modulo p,
so every element of {1, . . . , p − 1} is congruent to a power of g.
(The base is public.)

• Alice and Bob compute ga mod p and gb mod p by repeated squar-
ing: see Question 3 on Sheet 8. This method is faster than the re-
peated doubling seen in Exercise 10.2. Either method shows that
ga can be computed using only numbers of size about p.

• The shared key is gab mod p.

Diffie–Hellman can be turned into the ElGamal cryptosystem: see Ques-
tion 2 on Sheet 9. But it is faster to use it, as defined above, to establish a
shared key, and then use this key with a fast block cipher such as AES.

One-way functions. A one-way function is a bijective function that is fast to
compute, but whose inverse is hard to compute. It is beyond the scope of
this course to make this more precise.

It is not known whether one-way functions exist. Their existence im-
plies P 6= NP: very roughly, if P = NP then any problem whose solution
is quick to check, such as Sudoku, is also quick to solve.

17Let Z×p = {1, . . . , p− 1} be the multiplicative group of Zp. Claim: Z×p is cyclic
of order p− 1. Proof: if an abelian group A has elements of order t and t′ then it has
an element of order lcm(t, t′). Hence if t is greatest such that Z×p has an element
of order t then xt = 1 for all x ∈ Z×p . But a polynomial of degree t has at most t
roots, hence t ≥ p− 1. 2

47

Diffie–Hellman key exchange is secure only if, given g and gx it is hard
to find x. (This is called the Discrete Log Problem.) Equivalently, the
function

f : {0, . . . , p− 2} → {1, . . . , p− 1}
defined by f (x) = gx mod p, is one-way. This is widely believed to be the
case. But it more likely that the Discrete Log Problem is easy than that
AES has a sub-exhaustive attack.

Exercise 10.3. Why do we exclude p− 1 from the domain of f ?

Inverting modular exponentiation. In the RSA cryptosystem, we use mod-
ular exponentiation as the encryption map. We therefore need to know
when it is invertible.

Lemma 10.4. If p is prime and hcf(a, p− 1) = 1 then the inverse of x 7→ xa

mod p is y 7→ yr mod p, where ar ≡ 1 mod p− 1.

For example, x 7→ x3 mod 29 is invertible, with inverse y 7→ y19 mod
29. This works, since after applying both functions, in either order, we
send x to x57; by Fermat’s Little Theorem, x57 = x28×2+1 = (x28)2x ≡ x
mod 29. On the other hand x 7→ x7 mod 29 is not invertible: working
mod 29 the image is {1, 27, 214, 221} = {1, 12, 28, 17}.

Given p and a with hcf(a, p− 1) = 1, one can use Euclid’s algorithm to
find s, t ∈ Z such that as + (p− 1)t = 1. Then as = 1− pt so as ≡ 1 mod
p− 1, and we take r ≡ s mod p− 1. For example, if p = 29 and a = 5
then we have 28 = 9× 3 + 1 so

1 = 3× (−9) + 28× 1

and s = −9. Since −9 ≡ 19 mod 28, we take r = 19, as above.

This example shows all the ideas needed for the proof of Lemma 10.4,
and shows that it is fast to find r. Thus we cannot use x 7→ xa mod p as a
secure encryption function.

Fact 10.5. Let p and q be distinct primes. Let n = pq. If

hcf
(
a, (p− 1)(q− 1)

)
= 1

then x 7→ xa mod n is invertible with inverse y 7→ yr mod n, where ar ≡ 1 mod
(p− 1)(q− 1).

Example 10.6. Let p = 11, q = 17, so n = pq = 187 and (p− 1)(q− 1) =
160. Let a = 9. Adapting the proof for Lemma 10.4, we use Euclid’s
Algorithm to solve 9s + 160t = 1, getting s = −71 and t = 4. Since
−71 ≡ 89 mod 160, the inverse of x 7→ x9 mod 187 is y 7→ y89 mod 187.

48

Thus given a, p and q it is easy to find r as in Fact 10.5. But it is believed
to be hard to find r given only a and n. If so, x 7→ xa mod n is a one-way
function, suitable for use as the encryption function in a cryptosystem.

In this context the term trapdoor function is also used: knowing the trap-
door, here the factors p and q, makes it easy to compute the inverse.

By contrast, the function f : {0, . . . , p− 2} → {1, . . . , p− 1} defined by
f (x) = gx is not a suitable encryption function, since while it is believed
to be one-way, there is no known trapdoor that makes it fast to compute
the inverse.

RSA Cryptosystem. Let n = pq be the product of distinct primes p and q.
In the RSA Cryptosystem, with RSA modulus n,

P = C = {0, 1, . . . , n− 1}
and

K =
{
(a, p, q) : a ∈ {1, . . . , n− 1}, hcf

(
a, (p− 1)(q− 1)

)
= 1

}
.

The encryption functions are defined by

ea(x) = xa mod n.

Alice’s public key is the pair (a, n). In private Alice computes r such that
ar ≡ 1 mod (p − 1)(q − 1). As just seen, she can do this because she
knows the key, so she knows (p− 1)(q− 1). The decryption function is
then

da(y) = yr mod n.

Alice’s private key is the pair (r, n).

Example 10.7.

(1) For a small example, take p and q as in Example 10.6. If Alice’s
public key is (9, 187) then her private key is (89, 187). If Bob’s
message is 10 then he sends 109 to Alice, since 109 ≡ 109 mod
187. Alice decrypts to 10 by computing 10989 mod 187.

(2) The MATHEMATICA notebook PKCExamples.nb available from Moo-
dle can be used to give examples where p and q are large.

Typically p and q are chosen so that the standard exponent a =
216 + 1 = 65537 is coprime to (p − 1)(q − 1). Since 216 + 1 is
prime, this can be checked just by dividing it into p− 1 and q− 1.
Then xa mod n can be computed quickly by repeated squaring.

The demonstration in the lecture went wrong for an interesting
reason: by mistake the message x was more than n, so x was not
a permitted plaintext. After decrypting the received message was
xar ≡ x mod n, not x itself.

49

Question 3 on Sheet 9 shows that knowing (p − 1)(q − 1) and n is
equivalent to knowing p and q; this makes it unlikely that there is an
attack on RSA other than by factorizing n. (At least no-one has found
such an attack.)

The best known factoring algorithm is the Number Field Sieve. It was
used to factorize a 768 bit n in 2010. This took about 1500 computer years,
in 2010 technology.

NIST (the US standard body) now recommend that n should have 2048
bits.

Historical note. Diffie–Hellman Key Exchange was published18 in 1976.
The RSA Cryptosystem, named after Rivest, Shamir and Adleman was
published19 in 1977. Both papers are clearly written and worth reading—
as here, the original account is often one of the best.

It emerged in 1997 that the RSA cryptoscheme had been discovered
in GCHQ in 1973 by Cocks, building on work of another GCHQ-insider,
Ellis, who had suggested in 1969 that ‘non-secret’ encryption might be
possible. Later in 1973 Williamson discovered Diffie–Hellman Key Ex-
change. See www.wired.com/1999/04/crypto/ for a good account.

11. DIGITAL SIGNATURES AND HASH FUNCTIONS

In this section we suppose the possible messages are elements of N0.
Using the ASCII encoding (see Question 4 on Sheet 5), any English mes-
sage can be put in this form.

Digital signatures. Suppose Alice and Bob have RSA keys:

public private

Alice (a, m) (r, m)
Bob (b, m) (s, n)

Suppose Bob wants to tell Alice his bank details in a message x. He
looks up her public key (a, m) and sends her xa mod m. (Assume that
x < m.)

Malcolm cannot decrypt xa mod m, because he does not know r. But if
he has control of the channel, he can replace xa mod m with another x′a

mod m, of his choice.

18Diffie, Whitfield; Hellman, Martin E., New directions in cryptography, IEEE
Trans. Information Theory 22 (1976) 644–654.

19Rivest, R. L.; Shamir, A.; Adleman, L., A method for obtaining digital signatures
and public-key cryptosystems, Comm. ACM 21 (1978) 120–126.

50

To do this, Malcolm must know Alice’s public key. So the attack is
specific to public key cryptosystems such as RSA. If there is no public
key then only Alice and Bob know the encryption function ek.

How can Alice be confident that a message signed ‘Bob’ is from Bob,
and not from Malcolm pretending to Bob?

Example 11.1. Alice is expecting a message from Bob. She receives z,
and computes da(z) = zr mod m, but gets garbage. Thinking that Bob
has somehow confused the keys, she computes zb mod n, and gets the
ASCII encoding of

‘Bob here, my account number is 40081234’.

(a) How did Bob compute z?
(b) Should Alice believe z was sent by Bob?
(c) Can Malcolm read z?
(d) How can Bob avoid the problem in (c)?

Let x ∈ N0 be Bob’s message. If Bob’s RSA number n is about 22048

then the message x is a legitimate ciphertext only if x < 22048. This may
seem big, but, using the 7-bit ASCII coding, it means only 2048/7 ≈ 290
characters can be sent. Bob can get round this by splitting the message
into blocks, but computing db(x(i)) for each block x(i) ∈ {1, . . . , n− 1} is
slow. It is better to send x, and then append db(v) where v is a hash of x.

Hash functions and the birthday paradox.

Definition 11.2.
(a) A hash function of length r is a function h : N0 → Fr

2. The value
h(x) is the hash of the message x ∈N0.

(b) Let (b, n) be Bob’s public key. The pair
(

x, db(h(x))
)

is a signed
message from Bob.

Alice verifies that a pair (x, s) is a valid signed message from Bob by
checking that h(x) = eb(s).

A cryptographically useful hash function has the following properties:

(a) It is fast to compute h(x).
(b) Given a message x ∈ N0, and its hash h(x), it is hard to find

x′ ∈N such that x′ 6= x and h(x′) = h(x). (Preimage resistance.)
(c) It is hard to find a pair (x, x′) with x 6= x′ such that h(x) = h(x′).

(Collision resistance.)

When Alice receives the signed message (x, s) from Bob, she verifies
that h(x) = eb(s), and so s = db(h(x)). She now knows that Bob has
decrypted (that is signed), the hash value h(x). Only Bob can do this.
So an attacker who wants to change x has to replace x with some x′ with

51

h(x′) = h(x). By preimage resistance, it is hard for the attacker to find any
such x′. Therefore Alice can be confident that x really is Bob’s message.

A good hash function of length r behaves like a random function from
N to Fr

2. Given a hash value v = h(x), a brute-force search for x′ such
that h(x′) = v will succeed on each x′ with probability 1

2r . Hence the
number of trials until first success is distributed geometrically with pa-
rameter 1

2r , so on average 2r trials are needed. Thus in (b) ‘hard to find’
means ‘requires at least 2r hashes’.

Exercise 11.3. Let h : N→ Fr
2 be a good hash function. On average, how

many hashes does an attacker need to calculate to find a pair (x, x′) with
h(x) = h(x′)?

The mathematics behind Exercise 11.3 is the well-known Birthday Para-
dox: in a room with 23 people, the probability is about 1

2 that two people
have the same birthday.

Lemma 11.4. If there are B possible birthdays then in a room of
√

2 ln 2
√

B
people, the probability is about 1

2 that two people have the same birthday.

For instance, when B = 365, Lemma 11.4 says we need
√

2 log 2
√

365 ≈
22.49 people. In practice the constant

√
2 log 2 ≈ 1.1774 is often replaced

with 1.

In (c) the birthdays are hash values, so we have B = 2r. Since
√

2r =
2r/2 we interpret ‘hard to find’ as ‘requires at least 2r/2 hashes’.

Hash functions in practice. We have already seen one way to make a hash
function. Fix a block cipher of length r and a key k. Chop the message x
into blocks x(1), x(2), . . . , x(t), such that each x(i) < 2r. Let b(i) ∈ Fr

2 be the
binary form of x(i). Then apply the block cipher in cipher block chaining
mode (see page 41), to get

y(1) = ek(b(1))

y(2) = ek(y(1) + b(2)),
...

y(t) = ek(y(t−1) + b(t))

The final ciphertext y(t) ∈ Fr
2 depends on the entire message x in a com-

plicated way, so is a good choice for the hash value.

Example 11.5 (SHA-256). SHA-256 is the most commonly used hash func-
tion today. It has length 256. There is an internal state of 256 bits, divided
into 8 words of 32 bits. The message x is chopped into 512 bit blocks; each

52

block is then further divided into words, which are combined by multi-
plying bits in the same positions (this is ‘logical and’), addition in F32

2 ,
cyclic shifts (like an LFSR), and addition modulo 232, over 64 rounds. As
in Cipher Block Chaining, the output for block x(i) is used in the calcula-
tion for x(i+1). The best attack can break (b) when the number of rounds
is reduced to 57, and (c) when the number of rounds is reduced to 46.

When you create an account online, you typically choose a username,
let us say ‘Alice’ and a password, say ‘alicepassword’. A well run web-
site will not store your password. Instead, oversimplifying slightly, your
password is converted to a number x and the SHA-256 hash h(x) is stored.
By (b), it is hard for anyone to find another word whose hash is also h(x).

Provided your password is hard to guess, your account is secure, and
you have avoided telling the webmaster your password.

Exercise 11.6. As described, it will be obvious to a hacker who has ac-
cess to the password database when two users have the same password.
Moreover, if you use the same password on two different sites, the same
hash will be stored on both. How can this be avoided?

Example 11.7 (Bitcoin blockchain). The bitcoin blockchain is a distributed
record of all transactions involving bitcoins. When Alice transfers a bit-
coin b to Bob, she posts a public message x, saying ‘I Alice give Bob
the bitcoin b’, and signs this message20, by appending da(h(x)), to get(

x, da(h(x)
)
.

Signing the message ensures that only Alice can transfer Alice’s bit-
coins. But as described so far, Alice can double-spend: a few minutes
later she can make another

(
x′, da(h(x′))

)
where x′ says ‘I Alice give

Charlie the bitcoin b’.

To avoid this, transactions are validated. To validate a list of transac-
tions (

x(1), da(1)(h(x(1)))
)
,
(

x(2), da(2)(h(x(2)))
)
, . . .

a miner searches for c ∈ N such that, when this list is converted to a
number, its hash, by two iterations of SHA-256, has a large number of
initial zeros. Assuming that SHA-256 has property (b), preimage resis-
tance, there is no better way to do this then an exhaustive search for c.
The list of validated transactions becomes a block; making a new block is
called ‘growing the blockchain’.

When Bob receives
(

x′, da(h(x′))
)
, he looks to see if there is are blocks

already containing a transaction involving the bitcoin b mentioned in x′.
When Bob finds

(
x, da(h(x))

)
as part of a block with the laboriously com-

puted c, Bob knows Alice has cheated.

20Rather than use RSA, Bitcoin specifies the ECDSA signature algorithm: very
roughly this replaces the ring Zn with an elliptic curve. The hash function h is two
iterations of SHA-256.

53

Miners are incentivized to grow the block chain: the reward for grow-
ing the blockchain is given in bitcoins. Thus bitcoin, which really is noth-
ing more than the blockchain, depends on the computational difficulty of
finding preimages and collisions for hash functions. The prize for grow-
ing the block chain is only given for blocks that have a consistent transac-
tion history, so Alice’s double-spending transaction will not make it into
a block.21

On the day of writing (8th December 2017) the bitcoin is at a record
high22 of $13069.41 and the reward for growing the blockchain is 12.5 bit-
coins. (This gradually decreases; there will never be more than 21× 106

bitcoins in circulation.) Most transactions therefore involve small frac-
tions of a bitcoin. A typical block verifies about 2500 separate transac-
tions.

Miners are further incentivized by transaction fees, again paid in bit-
coins, attached to each transaction. These will become more important as
the per block reward gets smaller.

An excellent introductory visit on bitcoin is available here: www.youtube.
com/watch?v=bBC-nXj3Ng4&feature=youtu.be. The best summary account
of bitcoin is still the original paper: bitcoin.org/bitcoin.pdf by Satoshi
Nakamoto (2008).

21This is a oversimplification: it is possible for two inconsistent blocks to enter
the block chain, if they are mined at almost the same time. Then some miners
will work on growing the history from block A, and others from block B. The
prize for growing the blockchain is only paid for growing the longest (consistent)
chain. So after a few more verifications the network will agree on one consistent
history. In the Finney attack, which assumes Alice has considerable computational
power, she can (a) mine, but not release, a block verifying a transfer to Charlie;
(b) make another transaction transferring the same bitcoin to Bob; (c) release her
mined block, voiding the transfer to Bob. Bob can avoid being the victim of this
attack by waiting for at least one verification of the transfer. It is usual to wait for
six.

22Update one day later: it is now $16063.86

