
MT362/462/5462 Cipher Systems: Preliminary Problem Sheet

Attempt every question. Binary forms, Bayes’ Theorem and conditional
probability will be used a lot in this course. This sheet gives you a chance
to revise them.

This sheet need not be handed in. You are welcome to discuss the questions
with the lecturer after lectures or in office hours: Tuesday 3pm, Wednesday
10am, Thursday 11am, or by appointment.

Binary Form. Given x ∈ N0 and n ∈ N0 such that 2n > x, there exist unique
bits x0, x1, . . . , xn−1 ∈ {0, 1} such that x = 2n−1xn−1 + · · · + 2x1 + x0. We say x has
binary form xn−1 . . . x1x0. For example 19 has binary form 10011; in symbols we write
19 = 100112 = 0100112 = . . ..

1. (a) What is the binary form of 43?

(b) What number has binary form 01010101?

(c) If x has binary form xn−1 . . . x1x0 with xn−1 = 1 then we say x has length n.
Which natural numbers have

(i) length 3?

(ii) length at most 3?

(iii) length n, for a general n ∈ N0?

2. (a) A friend knows a number between 0 and 15 (inclusive). How many yes/no
questions do you need to guess it? What is the maximum length of the
number in binary? Explain why the answers are the same.

(b) How would your answers to (a) change if instead the number is between 0
and 26 (inclusive)?

(c) Now suppose the number is between 0 and 15 (inclusive) but your friend is
permitted to lie in the answer to at most one question.

(i) Show that no strategy can guarantee to find the number by asking exactly
six questions. [Hint: as well as learning four bits of information about
the number, you learn about the lie.]

(ii) (Optional, but instructive.) Suggest a good strategy.

3. Let x ∈ N have binary form xn−1 . . . x1x0.

(a) What is the binary form of 2x?

(b) Explain how to obtain the binary form of x + 1 from xn−1 . . . x1x0.

(c) What is the binary form of x mod 8? (Assume that n ≥ 3.)

(d) What is the binary form of 2n − 1− x? Introduce bit flip notation here

(e) Explain how to obtain the binary form of −x mod 2n from xn−1 . . . x1x0.
Check your answer works when x = 43 and n = 7, so −43 mod 128 is 85.



Probability reminder. Let Ω be a probability space. Recall that events A,B ⊆ Ω are
independent if P[A ∩ B] = P[A]P[B]. If P[B] > 0 we define the conditional probability
of A given B by P[A|B] = P[A∩B]/P[B]. A random variable is a function X : Ω→ R.
The expectation of X is defined by E[X] =

∑
x xP[X = x]. See the revision notes on

probability on Moodle for more background. You can look up Bayes’ Theorem on the
web if necessary.

4. Let Ω = {1, 2, 3, 4, 5, 6} where pi = 1
6

for each i ∈ Ω be the probability space for
rolls of a fair die.

(a) Let A = {2, 4, 6} be the event an even number if rolled. Let B = {3, 6} be
the event that a multiple of 3 is rolled.

Find P[A], P[B], P[A ∪B], P[A ∩B]. Are A and B independent?

(b) Given an example of events C, D ⊆ Ω such that P[C], P[D] > 0 and
P[C|D] 6= P[D|C].

5. People may have illness F . In its early stages, F has no symptoms. A certain test
satisfies P[test positive|F ] = 1 and P[test positive|not F ] = p.

In words: the test always works on people that have F , but has a false-positive
probability of p.

Suppose that one in a thousand people have F .

(a) You have an envelope with the test results in your hands. Which probability
is more important to you: P[test positive|F ] or P[F |test positive]?

(b) Using Bayes’ Theorem (or, equivalently, the definition of conditional proba-
bility) calculate P[F |test positive].

(c) Comment on your answer to (b) in the cases p = 0.002 and p = 0.0001. When
would you recommend the test be widely used?

6. Let Ω = {HHH,HHT,HTH, . . . ,TTT} be the probability space for flips of three
independent coins, each biased to land heads with probability p. Let S : Ω → R
be the total number of heads, so S(HHH) = 3, S(HHT) = 2, and so on.

(a) What is the probability of the outcome HTH ∈ Ω?

(b) Find P[S = 2] in terms of p.

(c) Write down E[S].

(d) Find E[S2] and Var[S].



MT362/462/5462 Cipher Systems: Sheet 1

Attempt at least questions 1 to 4. Question 5 is compulsory for Msc
students. Please staple your answers together and put your name and student
number on this sheet.

The lecturer will be happy to discuss any of the questions in drop-in sessions:
Tuesday 3.30pm, Wednesday 10am, Thursday 11am, or by appointment.

To be handed in by noon on Wednesday 11th October, or at the
Monday lecture.

Tick this box if you do not want written feedback on your solutions.

Your feedback to the lecturer: what question, if any, do you most want
solved in lectures? What was easy, hard, interesting this week?

The Mathematica notebook AlphabeticCiphers on Moodle can be used
to find frequencies and compute the Index of Coincidence. Please use it!

1. Decrypt BYIKVXRYVVYGKI, assuming it is the ciphertext output by a Caesar cipher.
What is the key?

2. You know that Alice and Bob are communicating using a substitution cipher. As
Eve you intercept the following ciphertext

XNKWBMOW KWH JKXKRJKRZJ RA KWRJ ZWXCKHI XIH IHNRXYNH EBI THZRCWHIRAO

DHJJXOHJ JHAK RA HAONRJW KWH IHXTHI JWBMNT ABK EBIOHK KWXK KWH JKXKRJKRZJ

EBI XABKWHI NXAOMXOH XIH GMRKH NRLHNU KB YH TREEHIHAK WBQHPHI HGMRPXNHAK

JKXKRJKRZJ XIH XPXRNXYNH EBI BKWHI NXAOMXOHJ RE KWH ZIUCKXAXNUJK TBHJ ABK

LABQ KWH NXAOMXOH RA QWRZW KWH DHJJXOH QXJ QIRKKHA KWHA BAH BE WRJ ERIJK

CIBYNHDJ RJ KB KIU KB THKHIDRAH RK KWRJ RJ X TREERZMNK CIBYNHD

The table below shows the frequencies of the most common letters, as percentages.

H K R X J I

13.2 12.1 8.7 7.9 7.9 6.4

(a) Find the plaintext, explaining your method.

(b) Do you now know the key? Will you have any difficulty decrypting further
ciphertexts sent from Alice to Bob using the same cipher?

3. In a chosen plaintext attack, the attacker chooses a plaintext x, and is given the
corresponding ciphertext ek(x) for the key k.

Explain how to recover the key by a chosen plaintext account when the cipher
is (a) a substitution cipher eπ; (b) the Vigenère cipher ek where k has length at
most 10.



4. The ciphertext below is the output of a Vigenère cipher. Each line has length 50.

12345678901234567890123456789012345678901234567890

WKMSDBPZPQYBGLLSDBTHCBLDNBAHLECQNBOTEOCRWOCOAXRDZT

MQZFLSDBAHLECQPBVSPEGREPMEPBLCQBRNPTMDMRYKSLPCOFLS

DBNKWFLSAURHJMMREQGNJPBHBCCQEKEAUXKTHQGOHBMEPECKAK

ESDLDSDBIDUFRHOHLNSKYRGXQHOHGRPBQS

(a) Find all positions in which SDB appear in the ciphertext.

(b) Compute the Index of Coincidence on the samples of size 20 obtained by
taking every m-th position in the ciphertext starting with the W in position 1,
for each m ∈ {2, 3, 4}.

(c) What do (a) and (b) suggest about the key length?

(d) Determine the key: start by guessing the plaintext corresponding to each SDB.

(e) Why is the Index of Coincidence least for m = 3 and in the middle for m = 2?

5. Let R be defined on plaintexts by R(x)i = xi + i mod 26. For example R(bead) =
CGDH since bead ←→ (1, 4, 0, 3), R

(
(1, 4, 0, 3)

)
= (2, 6, 3, 7) and (2, 6, 3, 7) ←→

CGDH. Similarly R2(aaaa) = CEGI.

Let eπ denote the substitution cipher with key π.

Propose known ciphertext attacks on the two ciphers (a) x 7→ Rj
(
eπ(x)

)
and (b)

x 7→ eπ
(
R(x)

)
. In (a) the key is (π, j) for some j ∈ {0, . . . , 25}; in (b) the key is

simply π. Assume the plaintext is a lengthy English message.

Which cipher has more possible keys? Which appears harder to break?

6. Let y be every m-th position in a ciphertext output by the Vigenère cipher. What
statistic would you compute to perform a χ2-test with null hypothesis that the
letters in y are distributed uniformly? How is this statistic related to the Index of
Coincidence?

7. Let k be a key of length `. For q ∈ {1, . . . , `}, let y(q) be every `-th position,
starting at position q, in a ciphertext output by the Vigenère cipher with key k.
Let x be a plaintext chosen to have the frequency distribution of typical English
and roughly the same length as each y(q).

(a) Let cs denote the Caesar cipher with shift s. Let x : cs(y) denote the con-
catenation of x and cs(y).

Explain why I
(
x : cs(y

(i))
)

should be maximized when s = 26− k1.
(b) Using (a) we can hope to find x(1), the plaintext corresponding to y(1). Which

statistic would you expect to work best for decrypting the rest of the cipher-
text: I

(
x : cs(y

(i))
)

or I
(
x(1) : cs(y

(i))
)
?

8. Which of the ciphertexts XXXXX and VWXYZ could be the output of (a) a substitution
cipher, (b) a Vigenère cipher with key of length 3? Assume that the plaintext is a
single English word. (The Vigenère key need not be an English word.)
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Attempt at least questions 1 to 4. Question 5 is compulsory for Msc
students. Please staple your answers together and put your name and student
number on this sheet.

The lecturer will be happy to discuss any of the questions in drop-in sessions:
Tuesday 3.30pm, Wednesday 10am, Thursday 11am, or by appointment.

To be handed in by noon on Wednesday 18th October, or at the
Monday lecture.

Tick this box if you do not want written feedback on your solutions.

Your feedback to the lecturer: what question, if any, do you most want
solved in lectures? What was easy, hard, interesting this week?

Throughout we use the notation of §3, so K is the keyspace, P the plaintexts
and C the ciphertexts in a cryptosystem, with encryption functions ek : P →
C and decryption functions dk : C → P indexed by keys k ∈ K.

1. The cryptosystem shown below uses three keys from the affine cipher on Z3, each
with probability 1

3
. Suppose that plaintext 1 is sent with probability p and plain-

text 2 is sent with probability 1− p.

0
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(a) Recall that e(a,c)(x) = ax+c. Which keys (a, c) are used in this cryptosystem?

(b) Express P[Y = 1|X = 1], P[Y = 1], P[X = 1|Y = 1] in terms of p.

(c) When does the cryptosystem have perfect secrecy?

2. Let q be prime. Suppose that Alice and Bob communicate using the affine cipher
on Zq, and that Alice sends plaintext x ∈ Zq with probability px.

(a) What is the size |K| of the key space?

(b) Show that for each x, y ∈ Zq there are exactly q−1 keys k such that ek(x) = y.

(c) Show that if each key is used with equal probability then the cryptosystem
has perfect secrecy.

(d) Show that the key can be determined by a chosen plaintext attack using
two plaintexts. Does this contradict perfect secrecy? Does a single plaintext
suffice?



3. One of the encryption functions in the affine cipher on Z103 is e(23,39), defined by
x 7→ 23x + 39. What is d(23,29)(1)?

4. (a) Is there a cryptosystem such that |C| < |P|?
(b) Is there a cryptosystem with perfect secrecy such that |K| < |C|? [typo ≤]

5. (MSc.) Work with the Shamir secret sharing scheme over F11 with 5 people and
threshold 3 using evaluation points ci = i for i ∈ {1, 2, 3, 4, 5}.

(a) Find the shares for the secret 5 ∈ F11, choosing an appropriate polynomial at
random.

(b) Alice (Person 1), Bob (Person 2) and Charlie (Person 3) have the shares 7,
5, 3 respectively. The three agree to meet, simultaneously reveal their shares,
and together compute the secret.

(i) What is the secret?

(ii) Show, by giving an explicit example, that if Alice lies about her share to
Bob and Charlie, then she can both learn the secret and leave Bob and
Charlie knowing an incorrect secret.

(iii) Suggest a way to avoid some of the problems in (ii).

6. This question proves the converse of Corollary 3.13. Suppose that |K| = |C| and
plaintext x ∈ P is sent with probability px > 0 for all x ∈ P . Show that if each
key is used with equal probability and, for all x ∈ P and y ∈ C there is a unique
key k such ek(x) = y, then

(a) P[Y = y] > 0 for all y ∈ C;
(b) the cryptosystem has perfect secrecy.

7. Let X : Ω→ X be a random variable taking values in a finite set X . Let f : X → X
be a function.

(a) Show that if f is bijective then H(f(X)) = H(X). [Hint: the entropy of a
random variable depends only on its probability distribution.]

(b) Show that H(f(X)) ≤ H(X). [Hint: use the chaining rule.]

8. Let p1, . . . , pn and q1, . . . , qn be probability distributions with qi > 0 for all i.
Gibbs’ inequality states that

n∑

i=1

pi log2

1

pi
≤

n∑

i=1

pi log2

1

qi
.

(a) Deduce from Gibbs’ inequality that H(X|Y ) ≤ H(X) [typo: H(X) was
wrongly H(Y )] for any two random variables X and Y . (The quantity
H(X)−H(X|Y ) is known as the mutual information of X and Y .)

(b) Prove Gibbs’ inequality. [Hint: the inequality log(1 + x) ≤ x can be used.
Another proof uses the concavity of the logarithm function.]



MT362/462/5462 Cipher Systems: Sheet 3

Attempt at least questions 1 to 4. Question 5 is compulsory for Msc
students. Please staple your answers together and put your name and student
number on this sheet.

The lecturer will be happy to discuss any of the questions in drop-in sessions:
Wednesday 10am, Thursday 11am, or by appointment.

To be handed in by noon on Wednesday 25th October, or at the
Monday lecture.

Tick this box if you do not want written feedback on your solutions.

Your feedback to the lecturer: what question, if any, do you most want
solved in lectures? What was easy, hard, interesting this week?

1. Prove that if K and X are independent random variables, taking values in sets K
and P , respectively, then H(K,X) = H(K) +H(X).

2. Eve intercepts the three ciphertexts cqhk, wqvj, bqsq [typo: was bpsq] encrypted
using the same one-time pad. Find all three plaintexts and the key.

[Hint: the code used in the lecture is online at https://repl.it/M78M/3. If you
do it by hand, it will be helpful to know that the plaintexts are four letter words
related to cryptography.]

3. Alice and Bob communicate using the one-time pad cryptosystem of length n, in
which K = P = C = {a, . . . , z}n. Each key k ∈ K is chosen with equal probability.
Let px be the probability that x ∈ P is Alice’s message.

(a) Show that if x ∈ P and px > 0 then P[Yn = y|Xn = x] = 1
26n

for all y ∈ C.
(b) Find P[Yn = y] for each y ∈ C.
(c) Hence show that P[Xn = x|Yn = y] = px for all x ∈ P with px > 0.

(d) Deduce that the one-time pad has perfect secrecy.

(e) Is there a contradiction with the results of Question 2?

4. Let A = {a, . . . , z}

(a) Estimate the unicity distance (see Definition 4.13) of the Vigenère cipher
using keys of length 10, chosen with equal probability from A10.



(b) Given bijections π, σ : A → A define e(π,σ) : {a, . . . , z}n → {a, . . . , z}n by

e(π,σ)(x)i =

{
π(xi) if i is odd

σ(xi) if i is even.

For example, if n = 3 then e(π,σ)(x1, x2, x3) = (π(x1), σ(x2), π(x3)).

(i) Estimate the unicity distance of the cryptosystem with keys all e(π,σ),
supposing that keys are chosen with equal probability.

(ii) Propose a chosen plaintext attack on this cryptosystem. [Hint: please
read the definition on page 13 of the printed lecture notes.]

5. TTTT (Totally Trusted Transmission Technologies) decides to use the affine cipher
over Z26 as part of a cryptosystem with P = C = Z26.

(a) To maximize the size of the keyspace, they take K = {(a, c) : a ∈ Z26, a 6=
0, c ∈ Z26}. What goes wrong?

(b) In the revised version, only those keys (a, c) such that hcf(a, 26) = 1 are
used. How many keys are there? Supposing that each key is used with equal
probability, does the cryptosystem have perfect secrecy?

6. A computer is programmed to guess English plaintexts. It is told as soon as it
guesses a character correctly, and then moves on to the next. For example if the
plaintext is ‘information’, the computer might guess

• e, t, a, i (correct, plaintext starts i),

• t, s, n (correct, plaintext starts in),

• t, f (correct, plaintext starts inf)

and then get every subsequent character right immediately, except for a misguess
of (space) rather than a on character 7.

(a) Explain why given the sequence (4, 3, 2, 1, 1, 1, 2, 1, 1, 1, 1) and access to the
computer, you can reconstruct the plaintext.

(b) Calculate the entropy of the sequence above. Why is this entropy an upper
bound on the entropy of the plaintext?

(c) Play the game online at https://repl.it/LX00/2 and hence estimate the
redundancy of English.

This game is one of Shannon’s many brilliant discoveries.

7. Eve intercepts the ciphertexts jaekbwwoswoppljoeow and eszxzagrhaofvquwkhj

encrypted using the same one-time pad. Decrypt and find the key.

[Remark: During the Second World War, the NSA decrypted many highly sensi-
tive messages encrypted by Soviet Intelligence by re-used one-time pads. Project
Venona helped expose the double agent Klaus Fuchs at Los Alamos.]
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Attempt at least questions 1 to 4. Question 5 is compulsory for Msc
students. Please staple your answers together and put your name and student
number on this sheet.

The lecturer will be happy to discuss any of the questions in drop-in sessions:
Tuesday 3.30pm, Wednesday 10am, Thursday 10am, or by appointment.

To be handed in by noon on Wednesday 1st November, or at the
Monday lecture.

Tick this box if you do not want written feedback on your solutions.

Your feedback to the lecturer: what question, if any, do you most want
solved in lectures? What was easy, hard, interesting this week?

You are welcome to use the code from lectures at https://repl.it/NE32.
The comments at the top show how to use it for Question 1.

1. Define the period of a keystream to be its length until first repeat. For instance
001100110 . . . has period 4. Let G be the LFSR of width 5 with taps {0, 1}.

(a) (i) Let k = 00001. Calculate the keystream k0, k1, k2, . . . , defined by G for k.
What is the period of this keystream?

(ii) Find s such that (ks, ks+1, . . . , ks+4) = 10001.

(iii) How would your answer to (i) change if the key was 10001?

(b) Find a key k′ such that the keystream defined by G for k′ has period 7.

(c) Find all the possible periods of keystreams for G.

(d) What is the period of G?

2. Let F be an LFSR of width `. Let k ∈ F`
2 and let k0, k1, . . . be the keystream.

Show that, as claimed after Definition 5.6,

F s(k) = (ks, ks+1, . . . , ks+`−1).

[Hint: the case s = 0 was Exercise 5.5.]

3. Let F be the LFSR of width 4 with taps {0, 2}, as shown in the circuit diagram
below.

⊕



(a) Solve the equation F
(
(x0, x1, x2, x3)

)
= (y0, y1, y2, y3) and hence find a for-

mula for F−1.

(b) Draw a circuit diagram for F−1. Is F−1 an LFSR?

(c) Draw a picture for F , as in Example 4.2′ from lectures, showing every cycle
made by iterating F .

4. Let F be an LFSR of width ` with taps T , so by definition

F
(
(x0, x1, . . . , x`−2, x`−1)

)
= (x1, x2, . . . , x`−1,

∑

t∈T
xt).

(a) Show that if F is invertible then 0 ∈ T . [Hint: use the contrapositive.]

(b) Show conversely that if 0 ∈ T then F is invertible. Give a formula for F−1.

5. (MSc.) Recall from the Preliminary Problem Sheet that x`−1 . . . x1x0 is the binary
form of 2`−1x`−1 + · · ·+ 2x1 + x0.

For j ∈ {0, 1, 2, 3}, let fj : F4
2 → F2 be the Boolean function defined so that

f(x3, x2, x1, x0) is the bit in position j of x3x2x1x0 + 5 mod 16.

For example, since 0110 is the binary form of 6, 6 + 5 = 11 and 11 has binary
form 1011, we have f3

(
(0, 1, 1, 0)

)
= 1, f2

(
(0, 1, 1, 0)

)
= 0, f1

(
(0, 1, 1, 0)

)
= 1 and

f0
(
(0, 1, 1, 0)

)
= 1.

Express each fj as a polynomial in x3, x2, x1, x0.

6. Show that if F is an invertible LFSR with an odd number of taps then F has at
least three cycles (counting fixed points as cycles of length 1).

7. Let F be an invertible LFSR of width ` and let k = (0, . . . , 0, 1) ∈ F`
2. Let M be

the matrix representing F as in Proposition 5.9.

(a) Show that the vectors k, kM, . . . , kM `−1 form a basis for F`
2.

(b) Deduce that the keystream for k has period equal to the period of F .

8. A de Bruijn sequence of order ` is a circular sequence containing every element of
F`
2 exactly once. Thus 00010111 is a de Bruijn sequence of order 3; for instance,

to find 110, take the final two 1s and the initial 0.

(a) Use the LFSR in Example 5.1 to construct a de Bruijn sequence of order 4.

(b) Prove that there exist de Bruijn sequences of every order. (The proof using
LFSRs needs some finite field theory.)

9. Let M be the matrix, as in Proposition 5.9, representing an LFSR of width `
with taps T . Show that the characteristic polynomial of M is X` +

∑
t∈T X t.

[Hint: use the Cayley–Hamilton Theorem and Lemma 5.10. Alternatively, expand
det(M + XI) on the final column as a sum of ` determinants of minor matrices.]
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Attempt at least questions 1 to 4. Question 5 is compulsory for Msc
students. Please staple your answers together and put your name and student
number on this sheet.

The lecturer will be happy to discuss any of the questions in drop-in sessions:
Tuesday 3.30pm, Wednesday 10am, Thursday 11am, or by appointment.

To be handed in by noon on Wednesday 8th November, or at the
Monday lecture.

Tick this box if you do not want written feedback on your solutions.

Your feedback to the lecturer: what question, if any, do you most want
solved in lectures? What was easy, hard, interesting this week?

A Mathematica notebook for generating keystreams and solving the matrix
equation in Question 1 is available from Moodle.

1. Show that the keystream (k0, k1, . . . , kn−1) is the output of a LFSR of width ` if
and only if the (n− `)× ` system of equations




k0 k1 . . . k`−1
k1 k2 . . . k`
k2 k3 . . . k`+1
...

...
. . .

...
kn−`−1 kn−` . . . kn−2







b0
b1
...

b`−1


 =




k`
k`+1

k`+2
...

kn−1




has a solution. [Hint: this is the general version of Example 5.13. Remember that
‘if and only if’ means you have to prove two implications.]

2. (a) Find an LFSR of minimal possible width that generates the keystream

(0, 0, 1, 0, 0, 0, 1, 0, 1, . . .)
k0 k1 k2 k3 k4 k5 k6 k7 k8 ...

making clear its width and taps. Does your answer change if the LFSR is
required to be invertible?

(b) Find with proof a keystream that is generated by an invertible LFSR of
width 6 but not by any invertible LFSR of smaller width.

[Hint: the proof can be as short as one line. The final question in the quiz at
the end of Lecture 15 has a relevant idea. Slides are on Moodle.]

3. Let B0, B1, . . . , Bn−1 be a sequence of bits, each 0 or 1 independently with proba-
bility 1

2
. For b, b′ ∈ {0, 1}, let Mbb′ be the number of i ∈ {0, . . . , n − 2} such that

(Bi, Bi+1) = (b, b′).



(a) Find the statistics M00, M01, M10, M11 when the sequence is

(0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0)
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2

(b) What, in general, is M00 +M01 +M10 +M11?

(c) For i ∈ {0, 1, . . . , n− 2}, let

Xi =

{
1 if Bi = Bi+1 = 0

0 otherwise.

(i) Fix i. Find P[Xi = 1] and hence write down E[Xi].

(ii) Explain why M00 = X0 +X1 + · · ·+Xn−2.

(iii) Hence show that E[M00] = (n− 1)/4.

(d) What are E[M01],E[M10],E[M11]?

(e) Use a χ2-test on M00,M01,M10,M11 to test the sequence in (a) for random-
ness. [Hint: use (b) to determine the degrees of freedom.]

(f) Does the sequence in (a) pass the monobit test in Exercise 6.4?

4. In 7-bit ASCII, ‘a’ is encoded as the binary form of 97, namely 1100001, ‘b’ as the
binary form of 98, namely 1100010, and so on.

Fix n ∈ N and consider the cryptosystem with plaintexts {a, . . . , z}n and cipher-
texts F7n

2 , in which a message of n characters is first converted to 7-bit ASCII, and
then encrypted by the LFSR cryptosystem of width 4 with taps {0, 1}, as defined
in Definition 5.6(b).

(a) Convert ‘bob’ to a sequence of 21 bits using 7-bit ASCII.

(b) Hence encrypt ‘bob’ using the key 0101.

(c) Show that from a known ciphertext y0y1 . . . an attacker can deduce
k0, k7, k14, . . .. How long a ciphertext does the attacker need to learn the
key (k0, k1, k2, k3)?

5. (M.Sc.) Define a boolean function f : F5
2 → F by

f(x1, x2, x3, x4, x5) =

{
1 if at least 3 of the xi are 1

0 otherwise.

Express f in (i) algebraic normal form; (ii) disjunctive normal form; (iii) conjunc-
tive normal form.

Prove a generalization of at least one of (i), (ii), (iii) in which 3 and 5 are replaced
with arbitrary t and n. What is the connection with secret sharing schemes?
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Tuesday 3.30pm, Wednesday 10am, Thursday 11am, or by appointment.

To be handed in by noon on Wednesday 15th November, or at the
Monday lecture.

Tick this box if you do not want written feedback on your solutions.
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1. Consider the cryptoscheme in which English plaintexts are converted to 7-bit
ASCII (‘a’ ↔ 1100001, ‘b’ ↔ 1100010, and so on) and then encrypted by adding
a keystream from the LFSR of width 7 with taps {0, 3}.

Suppose Malcolm observes the ciphertext

(0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0).

He knows that the second letter in the plaintext was ‘e’. Find the plaintext.

2. Let (k0, k1, k2, . . .) be a keystream of the LFSR F of width 2 with taps {0, 1}.
Let (k′0, k

′
1, k
′
2, . . .) be a keystream of an LFSR G of width 3. The keystreams

are multiplied to give (k0k
′
0, k1k

′
1, k2k

′
2, . . .). Suppose you know the product is

101100000101

(a) Explain why the keystreams of F and G have the form 1?11?????1?1, where
? denotes an unknown bit. By considering the possible keystreams produced
by F , deduce the key for F .

(b) By considering the keystream for F explain why the keystream of G is of the
form 1?11?00?01?1. Hence calculate the taps and the key for G.

3. (M.Sc.) The table below shows the first 14 steps in the Berlekamp–Massey algo-
rithm applied to the keystream [corrected, see below]

(u0, u1, . . . , u14) = (1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0)

As in Example 4.5 in the M.Sc. notes, m is shown only case (b) applies.

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

`n 1 1 2 2 3 3 3 3 3 7 7 7 7 7 7

T̃n ∅ ∅ {2} {1, 2} {1} {1} {1} {1} {1} ? {1, 5, 6, 7} ? ? ? ?
m 0 2 2 4 9 ?



(a) Verify that case (a) applies when n ∈ {5, 6, 7, 8} and perform case (b) when
n = 9 to obtain the entry marked ? in the column for n = 10.

(b) Find the five remaining entries marked ?.

(c) Will the LFSR change in further steps of the Berlekamp–Massey algorithm?
Justify your answer. [Omit please.]

Correction. As printed, the keystream was the generating cycle of the LFSR of width
7 with taps {0, 1, 5, 6} in Example 7.2(b):

(u0, u1, . . . , u20) = (1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0)

For this keystream the table should have been:

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

`n 1 1 2 2 3 3 3 5 5 5 6 6 7 7 7

T̃n ∅ ∅ {2} {2} ∅ ∅ ∅ {3, 5} {3, 5} {3,5} {5} {5} {2, 7} {1, 2, 6, 7} {1, 2, 6, 7}
m 0 2 4 7 10 12

If you prefer (as agreed on Monday), please instead verify these entries. Part (c) above
now can be answered, since the sequence is generated by a known LFSR.

4. A keystream k0, k1, k2, . . . can be encoded as a formal power series with coefficients
in F2, ∞∑

s=0

ksX
s = k0 + k1X + k2X

2 + · · · .

Given an LFSR F of width ` with taps T , define g̃F (X) = 1 +
∑

t∈T X`−t.

(a) Show that the keystream k0, k1, k2, . . . is the output of the LFSR F if and
only if

g̃F (X)
∞∑

s=0

ksX
s = a(X)

for some polynomial a(X) of degree at most `− 1.

(b) Let k0, k1, k2, . . . and k′0, k
′
1, k
′
2, . . . be keystreams of LFSRs F and F ′ of widths

` and `′ respectively. Show that k0 + k′0, k1 + k′1, k2 + k′2, · · · is the keystream
of an LFSR G of width ` + `′ with taps defined by

g̃G(X) = g̃F (x)g̃F ′(x).

(c) Let (u0, u1, u2, . . .) be the sym of the keystreams for the LFSRs of width 3
and 4 with taps {0, 1} and {0, 3} for keys k and k′, respectively.

(i) Show, as claimed in Example 7.1(b) that (u0, u1, u2, . . .) is a keystream
of the LFSR H of width 7 with taps {0, 1, 5, 6}.

(ii) Show that the map (k, k′)→ (u0, u1, u2, u3, u4, u5, u6) is injective. [Hint:
show that if (k, k′)→ (0, 0, 0, 0, 0, 0, 0) then (u0, u1, u2, . . .) is a keystream
of both the LFSRs F and G, and use (a).]

(iii) Suppose you know s and (us, us+1, . . . , us+6). Explain how to find the
keys k and k′.

(d) How is g̃F (X) related to the minimal polynomial gF (X) of F?
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1. Let F be the Feistel Network for the function f : Fm
2 → Fm

2 so, by definition,
F
(
(v, w)

)
= (w, v + f(w)) for (v, w) ∈ F2m

2 .

Let (v′, w′) = (w, v + f(w)). Noting the order w′, v′ carefully, express F
(
(w′, v′)

)

in terms of v and w.

2. Consider the Q-block cipher as defined in Example 8.4, consisting of three rounds
of the Feistel Network

F
(
(v, w)

)
= (w, v + S(w + k(i)))

where v, w ∈ F4
2 and S

(
x0, x1, x2, x3)

)
= (x2, x3, x0 +x1x2, x1 +x2x3). Given a key

k ∈ F12
2 , the three round keys are k(1) = (k0, k1, k2, k3), k

(2) = (k4, k5, k6, k7) and
k(3) = (k8, k9, k10, k11).

(a) Encrypt (0, 0, 0, 0, 0, 0, 0, 0) ∈ F8
2 using the key (0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1).

(b) Decrypt the ciphertext (0, 1, 1, 1, 0, 1, 1, 1) using the key in (a).

(c) Find a key k ∈ F12
2 such that ek

(
(0, 0, 0, 1, 0, 0, 0, 1)

)
= (0, 0, 0, 0, 0, 0, 0, 0).

(d) Show that given (v, w) ∈ F8
2 and w′ ∈ F8

2 there is a unique round key kround ∈
F4
2 such that (w, v + S(w + kround)) = (w,w′).

(e) How many keys k ∈ F12
2 have the property in (c)?

(f) Would your answer to (e) change if (0, 0, 0, 1, 0, 0, 0, 1) and (0, 0, 0, 0, 0, 0, 0, 0)
were replaced with different plaintexts and ciphertexts?



3. You have a black box implementing a round of a Feistel block cipher with block
size 2m. Thus, given (v, w) ∈ F2m

2 and a round key kround, the box will output(
w, v + S(w + kround)

)
. You do not know S.

Explain how to use the box to decrypt a ciphertext (x, y) ∈ F2m
2 encrypted using

the key k. [Hint: Question 1 is relevant.]

4. 3DES is the block cipher of block size 64 and keyspace F56
2 × F56

2 × F56
2 with

encryption functions defined by

e(k,k′,k′′)(x) = ek′′
(
dk′

(
ek(x)

))

where ek and dk are the encryption and decryption functions for DES.

(a) Show that there is a meet-in-the-middle attack that finds the key using about
2112 operations. (You may use multiple chosen plaintexts.)

(b) Assume no attack better than (a) exists. Is 3DES secure?

(c) (Optional.) Why is the middle map decryption rather than encryption?

5. The affine block cipher of block size n has keyspace all pairs (A, b), where A is an
invertible n × n matrix with entries in F2 and b ∈ Fn

2 . The encryption functions
e(A,b) : Fn

2 → Fn
2 are defined by

e(A,b)(x) = xA + b.

(a) Define the decryption functions d(A,b) : Fn
2 → Fn

2 .

(b) How can the key be recovered in a chosen plaintext attack? How many
plaintext / ciphertext pairs are required?

(c) Does repeating the cipher (as in the example of 2DES, so two potentially
different keys are used) make this cipher any more secure?

(d) Does this cipher have the ‘confusion’ property?

(e) Does this cipher have the ‘diffusion’ property?

6. The University of Erewhon has, at fabulous expense, purchased an examination
database from TTTT (Totally Trusted Transmission Technologies) in which the
grades, which must be numbers between 0 and 100, are encrypted using AES with
a secret key k ∈ F128

2 . A typical table is a list of ordered pairs

(
Alice, ek(75)

)
,
(
Bob, ek(40)

)
,
(
Charlie, ek(65)

)
, . . . .

Criticize the security of this system. How could it be improved?
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1. Let S : F4
2 → F4

2 be the S-box in theQ-block cipher, defined by S
(
(x0, x1, x2, x3)

)
=

(x2, x3, x0 + x1x2, x1 + x2x3). Recall from Example 8.4 that the Feistel network in
round i of this cipher is

(v, w) 7→
(
w, v + S(w + k(i))

)

where k(i) ∈ F4
2 is the round key.

(a) Let ∆ ∈ F4
2. Show that if ∆2 = 0, i.e. ∆ is of the form (?, ?, 0, ?) then

S(x+ ∆) + S(x) =

{
(0,∆3,∆0,∆1) if x2 = 0

(0,∆3,∆0 + ∆1,∆1 + ∆3) if x2 = 1.

(b) Deduce Lemma 9.7(i), namely that S(x+ 1000) = S(x) + 0010 for all x ∈ F4
2.

(c) Find all possibilities for S(x+ 0010) + S(x) where x ∈ F4
2.

(d) Show that after two rounds of the Q-block cipher, the input difference
0000 1000 is sent to one of 0010 0000, 0010 0001, 0010 0010, 0010 0011, each
with equal probability.

2. Let ek for k ∈ F12
2 be the encryption maps in the Q-block cipher. Show using

Lemma 9.7(i) that ek(x) = ek+1000 0010 1000(x) for all x ∈ F8
2.

3. (a) Compute 2131 mod 3023. [Hint: if 2m ≡ y mod 3023 then 22m ≡ y2 mod
3023 and 2m+1 ≡ 2y mod 3023. You should not need more than a pocket
calculator or its computational equivalent.]

(b) Find x such that 2x ≡ 35 mod 37.



4. For k ∈ F8
2 define ek : F8

2 → F8
2 by ek(x) = P (x) + k where P : F8

2 → F8
2 is

the pseudo-inverse function defined by identifying F8
2 with the finite field F28 . In

Example 9.3 we attacked the cipher with key space F8
2 × F8

2 defined by

E(kotp,k)(x) = ek(x+ kotp).

By Exercise 9.6 (see optional Question 6 below), the attack typically finds k and
one false key k + Γ using 29 decryptions. You know x ∈ F8

2 and E(kotp,k)(x).

(a) Explain why computing E(kotpguess,k)(x) and E(kotpguess,k+Γ)(x) for all guesses
kotpguess will typically leave just two possibilities for the key (kotp, k).

(b) How many encryptions/decryptions are required in total? Is the attack subex-
haustive?

5. (M.Sc.) By Theorem 5.8(c) in the M.Sc. notes, if f : Fn
2 → F2 is a Boolean

function then
(−1)f =

∑

T⊆{1,...,n|
corr(f, LT )(−1)LT

where LT (x1, . . . , xn) =
∑

t∈T xt.

(a) Define ¬f : Fn
2 → F by (¬f)(x) = ¬f(x). Show that

corr(¬f, LT ) = − corr(f, LT ).

(b) Show that
∑

T⊆{1,...,n} corr(f, LT )2 = 1.

(c) Define g : F3
2 → F2 by g(x1, x2, x3) = x1x2x3. Compute the eight correlations

corr(g, LT ) for T ⊆ {1, 2, 3} and so check that part (b) and Theorem 5.8(c)
holds for g.

(d) (Optional: far longer than I realised.) What are the possible values for the
eight correlations corr(f, LT ) when T is a 3-variable Boolean function? [Hint:
Example 5.6 and (c) show two possibilities. Don’t forget the linear functions.]

6. Let p : F28 → F28 be the pseudo-inversion function, defined by

p(β) =

{
0 if β = 0

β−1 otherwise.
.

Let γ ∈ F28 be non-zero. Show that for each non-zero δ ∈ F8
2

{β : β ∈ F8
2 : p(β) + p(β + γ) = δ}

has size 0 or 2, except when δ−1 = γ, when it has size 4. [Hint: quadratic equations
over any field have at most two roots.]
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1. Suppose that Bob’s RSA public key is (17, 2279). As Eve you observe the RSA
ciphertext 37 sent to Bob. Find Alice’s private key and hence find the plaintext.

2. In Diffie–Hellman Key Exchange, we saw that the eavesdropper Eve knows the
prime p, the base g and ga mod p. Only Alice knows her exponent a. (We write
ga mod p entirely in black because although a is private, ga mod p is public.)

Bob wants to send a message x ∈ {1, . . . , p− 1} to Alice.

(a) Suppose Bob sends xga mod p. Show that Eve can find x.

(b) Suppose Bob sends x(ga)r mod p for some private r of his choice. Can Alice
find x?

(c) Suppose Bob sends x(ga)r mod p and then sends r. Can Alice find x? Can
Eve find x?

(d) Suppose Bob sends x(ga)r mod p and then sends gr mod p. Can Alice find
x? Can Eve find x?

Remark: (d) is the ElGamal cryptoscheme: Alice publishes (g, ga, p) as her public
key, and keeps (g, a, p) as her private key.

3. Let (a, n) be Alice’s RSA public key. Suppose that n = pq. Let t = (p− 1)(q− 1).
Show that an attacker who knows n and t can easily find p and q. [Hint: find a
quadratic equation for p with coefficients expressed in terms of n and t.]

4. Alice’s RSA public key (apub, n) can be downloaded from her website. Alice’s
private key (apriv, n) is secure on Alice’s computer.

Any data entering or leaving Bob’s computer may be modified by Malcolm, the
man-in-the-middle. Bob goes to Alice’s website and reads what he thinks is her
RSA public key. He uses it to send her a message x using the RSA cryptoscheme.

(a) Show that Malcolm can read x, and if he wishes change x to another mes-
sage x′, without Alice or Bob noticing.

(b) Is the problem avoided if Alice signs her public key?

(c) Is the problem avoided if Trevor, a person trusted by Bob, signs Alice’s key?
Assume Trevor’s public key is already on Bob’s computer.

5. Consider the cryptoscheme in which English plaintexts are converted to 7-bit
ASCII (‘a’ ↔ 1100001, ‘b’ ↔ 1100010, and so on) and then encrypted using
RSA with the appropriate public key.



For example ‘hi’ becomes 1101000 1101001 which is the binary form of 13409. If
Alice’s public key is (a, n) then she is sent ea(13409) = 13409a mod n. Assume
that n ≈ 22048.

(a) Alice is expected an important message ‘yes’ or ‘no’ from Bob. Show that
Eve can decrypt Bob’s ciphertext without knowing Alice’s private key.

(b) Can the problem in (a) occur if Alice and Bob use a non-public key cipher
such as AES? How can it be avoided while still using the RSA cryptosystem?

6. (M.Sc.) Let ek : F8
2 → F8

2 be the encryption maps in the Q-block cipher. Find
corr(L{0} ◦ ek, L{2,5}) and corr(L{0} ◦ ek, L{2,6}). Assuming you have good esti-
mates for these statistics, and for corr(L{0} ◦ ek, L{2}) = 1

2
(−1)k0+k6 , how many

possibilities are there for k?

7. (M.Sc.) Let F : Fn
2 → Fn

2 . Suppose that corr(LU ◦ F,LT ) = c > 0. Let k ∈ Fn
2

and define G : Fn
2 → Fn

2 by G(x) = F (x + k).

(a) Show that corr(LU ◦G,LT ) = (−1)LT (k)c.

An attacker has a collection {(v(j), v′(j)) : 1 ≤ j ≤ q} of randomly chosen
plaintext/ciphertext pairs. She estimates the correlation in (a) by computing
Zj = (−1)LU (v′(j))+LT (v(j)) for each j, and taking the mean C = 1

q

∑q
j=1 Zj.

(b) Find P[Zj = 1] and P[Zj = −1].

(c) Show that if q is large then the distribution of C is approximately normal
with mean c and variance 1−c2

q
. [Hint: use the Central Limit Theorem.]

(d) How large must q be for the attacker to be confident of learning LT (k)?

8. (M.Sc.)

(a) Let G,F : Fn
2 → Fn

2 be functions. Show using the Discrete Fourier Inversion
Theorem that if V , T ⊆ {1, . . . , n} then

corr(LV ◦G ◦ F,LT ) =
∑

U⊆{1,...,n}
corr(LV ◦G,LU) corr(LU ◦ F,LT ).

(b) Let ek for k ∈ F`
2 be the encryption functions in a block cipher of blocksize n

and key length `, defined by iterating some number of rounds. Suppose, as
in Example 8.4 and the DES cipher,

(i) each round key is given by taking n specified bits from the key k,

(ii) each round is a function of the form x 7→ F (x + kround).

Let T , U ⊆ {1, . . . , n}. Show that there exist cV ∈ R for V ⊆ {1, . . . , n} such
that

corr(LU ◦ ek, LT ) =
∑

V⊆{1,...,`}
cV (−1)LV (k).

Remark: in practice, one cV is often much bigger in absolute value than the
rest; in this case the attack in Question 7 can be applied.


