
MT362/462/5462 CIPHER SYSTEMS

MARK WILDON

These notes are intended to give the logical structure of the course; proofs
and further examples and remarks will be given in lectures. Further in-
stallments will be issued as they are ready. All handouts and problem
sheets will be put on Moodle.

These notes are based in part on notes written by Dr Siaw-Lynn Ng. I
would very much appreciate being told of any corrections or possible
improvements.

You are warmly encouraged to ask questions in lectures, and to talk to
me after lectures and in my office hours. I am also happy to answer ques-
tions about the lectures or problem sheets by email. My email address is
mark.wildon@rhul.ac.uk.

Lectures: Monday 4pm (MFLEC), Friday 11am (MC219), Friday 4pm
(MC219).

Extra lecture for MSc students doing MT5462: Thursday 1pm (MC336).

Office hours in McCrea 240: Tuesday 3.30pm, Wednesday 10am, Thurs-
day noon or by appointment.

Date: First Term 2018/19.

2

CIPHER SYSTEMS

We will study symmetric and public key ciphers, understand how they
promise confidential communication, and see how they have been at-
tacked, and in many cases defeated, using mathematical ideas from lin-
ear algebra, elementary number theory, probability theory, and statistics.

Outline.
(A) Introduction: alphabetic ciphers including the Vigenère cipher and

one-time-pad. Statistical tests and applications of entropy. Secu-
rity models and Kerckhoff’s Principle.

(B) Stream ciphers: linear feedback shift registers and pseudo-random
number generation.

(C) Block ciphers: design principles, Feistel networks, DES and AES.
(D) Public key ciphers and digital signatures: one-way functions, Diffie–

Hellman, RSA and ElGamal. Factoring and discrete logs. Hash
functions and certificates. Extra (and non-examinable): the Bit-
coin blockchain.

The MT5462 course has additional material on boolean functions, the
Berlekamp–Massey algorithm and linear cryptanalysis of block ciphers.
Separate lecture notes will be issued.

Recommended Reading. All these books are in the library. If you find
there are not enough copies, email me.

[1] Cryptography, theory and practice, D. Stinson, Chapman & Hall /
CRC (2006). Concise and usually very clear, covers all the course
(and more), 001.5436 STI (multiple copies, some on short loan).

[2] Introduction to cryptography with coding theory, W. Trappe and L. C.
Washington, Pearson / Prentice Hall (2006), 001.5436 TRA. Simi-
lar to [1], but a bit more relaxed with more motivation.

[3] Cryptography: a very short introduction, F. C. Piper and S. Murphy,
Oxford University Press (2002). A nice non-technical overview of
cryptography: you can read it online via the library website.

[4] Codes and cryptography, D. Welsh, Oxford University Press (1988),
001.5436 WEL. Goes into more detail on some of the MSc topics.

Also you will find a link on Moodle to Dr. Siaw-Lynn Ng’s notes. These
will give you a different view of the course material. Highly recom-
mended.

Problem sheets. There will be 8 marked problem sheets; the first is due
in on Monday 15th October. Answers to the preliminary problem sheet
will be posted on Moodle on Monday 8th October.

3

Moodle. All handouts, problem sheets and answers will be posted on
Moodle. Once you are registered for the course you should find a link
under ‘My courses’. If not please go to moodle.royalholloway.ac.uk/

course/view.php?id=380. This is the Moodle page for 462 (the M.Sci.
course) and 5462 (the M.Sc. course) as well as 362: everyone has access!

Exercises in these notes. Exercises set in these notes are mostly simple
tests that you are following the material. Some will be used for quizzes
in lectures. Doing the others will help you to review your notes.

Optional questions and extras. Any optional questions on problem sheets,
and any ‘extras’ in these notes are included for interest only, and to show
you some mathematical ideas beyond the scope of this course. You should
not worry if you find them difficult.

If you can do the compulsory questions on problem sheets, know the
definitions and main results from lectures, and can prove the results
whose proofs are marked as examinable in these notes, then you should
do very well in the examination.

4

(A) Introduction: alphabetic ciphers and the language of cryptography

1. INTRODUCTION: SECURITY AND KERCKHOFF’S PRINCIPLE

Lecture 1 This course is about the mathematics underlying cryptography. But it
is only sensible to have some idea of the overall goal!

As a basic model, Alice wants to send Bob a plaintext message. This
message may be intercepted in the channel by the eavesdropper Eve, or
even modified by Malcolm, the Man-in-the-Middle. So Alice first en-
crypts the plaintext using some secret key known to her and Bob. At the
other end Bob decrypts the ciphertext.

- - -

plaintext
message Alice

encrypts
ciphertext Bob

decrypts

decrypted
ciphertext

channel

6

Eve eavesdrops
@
@@R

key
�

��	

key

Alice and Bob may have any of the following security requirements.

• Confidentiality: Eve cannot read the message.
• Data integrity: any change made by Malcolm to the ciphertext is

detectable
• Authentication: Alice and/or Bob are who they claim to be
• Non-repudiation: Alice cannot plausibly deny she sent the mes-

sage

Example 1.1.

(0) By default email is unencrypted. Each email will typically be re-
ceived and sent on by multiple computers on the internet before it
reaches its destination. Unless you arrange your own encryption,
any rogue system-administrator can easily read your email.

(1) If you encrypt a file using a password on your computer, you care
most about confidentiality and data integrity. In this case, you are
Alice, and Bob is you a week later. The channel is the hard-disk
(or SSD) in your computer.

(2) Using online banking to make a payment, the bank’s main se-
curity requirements are authentication and non-repudiation. It
is good practice to use two-factor authentication, so the key is a
code sent to your mobile phone, or generated by a ‘PIN-sentry’
device, in addition to a password. The channel is the internet.

5

Kerckhoff’s Principle. It is obviously important in cryptography to be very
clear about what is public information and what is private. Kerckhoff’s
Principle is that

‘all the security in a cryptosystem lies in the key’.
Thus the attacker is assumed to know everything about the method that
Alice uses to encrypt and Bob uses to decrypt. The only thing the attacker
does not know is which specific key is used. (We will make this more
precise later.)

Example 1.2. On Friday, Alice will learn Bob’s final year exam result.
This is a plaintext x ∈ {0, 1, . . . , 99}. The two trust their friend Trevor.

• On Monday, Trevor chooses a key k ∈ {0, 1, . . . , 99} and gives it
to Alice and Bob in person.
• On Tuesday, Bob leaves for his planned trip to Botswana. He can

read email. Bob cannot send email or communicate in any other
way.
• On Friday, Alice will email Bob the ciphertext (x + k) mod 100.

By Kerckhoff’s Principle, all this, except for the value of k, is known to
the whole world.

(a) Can Eve, the eavesdropper, learn anything from Alice’s email?
(b) Despite the good news in (a), the scheme has its flaws. Find some

problems with it.
(c) Suppose that next year Alice sends Bob her own exam result x′ ∈
{0, 1, . . . , 99} using the same key. What can Eve learn now?

The big picture. The extended diagram below shows how cryptography
fits into the broader setting of communication theory. You can learn about
source encoding (for compression) in MT341/441/5441 Channels and
channel encoding (for error correction) in MT361/461/5461 Error Cor-
recting Codes. But there is no need to do these courses to understand
this one.

- - - -

?

����

source
encoding cryptography channel

encoding

compress encrypt pad

decompress decrypt correct
errors

noise
Eve

6

2. ALPHABETIC CIPHERS

We begin with some ciphers that operate directly on English letters and
words. It is a useful convention in this section to write plaintexts in lower
case and ciphertexts in upper case.

Caesar and substitution ciphers.

Example 2.1. The Caesar cipher with key s ∈ {0, 1, . . . , 25} encrypts a
word (of any length) by shifting each letter s positions forward in the
alphabet, wrapping round at the end. For example if the key is 3 then
’hello’ becomes KHOOR and ’zany’ becomes CDQB. The table below shows
all 26 possible shifts.

0 ABCDEFGHIJKLMNOPQRSTUVWXYZ 13 NOPQRSTUVWXYZABCDEFGHIJKLM

1 BCDEFGHIJKLMNOPQRSTUVWXYZA 14 OPQRSTUVWXYZABCDEFGHIJKLMN

2 CDEFGHIJKLMNOPQRSTUVWXYZAB 15 PQRSTUVWXYZABCDEFGHIJKLMNO

3 DEFGHIJKLMNOPQRSTUVWXYZABC 16 QRSTUVWXYZABCDEFGHIJKLMNOP

4 EFGHIJKLMNOPQRSTUVWXYZABCD 17 RSTUVWXYZABCDEFGHIJKLMNOPQ

5 FGHIJKLMNOPQRSTUVWXYZABCDE 18 STUVWXYZABCDEFGHIJKLMNOPQR

6 GHIJKLMNOPQRSTUVWXYZABCDEF 19 TUVWXYZABCDEFGHIJKLMNOPQRS

7 HIJKLMNOPQRSTUVWXYZABCDEFG 20 UVWXYZABCDEFGHIJKLMNOPQRST

8 IJKLMNOPQRSTUVWXYZABCDEFGH 21 VWXYZABCDEFGHIJKLMNOPQRSTU

9 JKLMNOPQRSTUVWXYZABCDEFGHI 22 WXYZABCDEFGHIJKLMNOPQRSTUV

10 KLMNOPQRSTUVWXYZABCDEFGHIJ 23 XYZABCDEFGHIJKLMNOPQRSTUVW

11 LMNOPQRSTUVWXYZABCDEFGHIJK 24 YZABCDEFGHIJKLMNOPQRSTUVWX

12 MNOPQRSTUVWXYZABCDEFGHIJKL 25 ZABCDEFGHIJKLMNOPQRSTUVWXY

Exercise 2.2.
(a) Mark (the mole) knows that the plaintext is ‘apple’ and the ci-

phertext is CRRNG. Show that Mark can deduce the key.

(b) Eve (the eavesdropper) has observed the ciphertext ACCB. What is
the key and what is the plaintext?

(c) Suppose instead Eve observes GVTJPO. What can she deduce? Sup-
pose Eve later observes BUPN. What does she conclude?

Barring the (very exceptional behaviour) in (c), the key can typically
be deduced from a single ciphertext; (a) shows that the Caesar cipher is
always broken by knowledge of a plaintext/ciphertext pair.

Example 2.3. Let π : {a, . . . , z} → {A, . . . , Z} be a bijection. The substitu-
tion cipher eπ applies π to each letter of a plaintext in turn. For example,
if

π(a) = Z, π(b) = Y, . . . , π(z) = A

7

then eπ(hello there) = SVOOL GSVIV. (In practice spaces were deleted
before encryption, but we will keep them to simplify the cryptanalysis.)
The Caesar cipher with key s is the special case where π shifts each letter
forward s times.

Exercise 2.4. How many substitution ciphers are there?

Lecture 2A sufficient long ciphertext can be decrypted by using frequency anal-
ysis to deduce π(e), π(t), . . ., and then guessing likely words. Even the
10 character message above has ’e’ as its most common character. Some
common digraphs and trigraphs are ’th’, ’he’, ’in’, ’er’, ’the’, ’ing’, ’and’.

The table below (taken from Stinson’s book) shows the frequency dis-
tribution of English, most frequent letters first. Probabilities are given as
percentages.

e t a o i n s h r d l u c

12.7 9.1 8.2 7.5 7.0 6.7 6.3 6.1 6.0 4.3 4.0 2.8 2.8

m w f g y p b v k j x q z

2.4 2.3 2.2 2.0 2.0 1.9 1.5 1.0 0.8 0.2 0.1 0.1 0.1

Example 2.5. Eve intercepts the ciphertext

KQX WJZRUHXZKUY GTOXSKPIX GW SMBFKGVMUFQB PL KG XZUTYX KDG

FXGFYX JLJUYYB MXWXMMXR KG UL UYPSX UZR TGT KG SGHHJZPSUKX

GIXM UZ PZLXSJMX SQUZZXY PZ LJSQ U DUB KQUK UZ GFFGZXZK

XIX SUZZGK JZRXMLKUZR DQUK PL TXPZV LUPR KQX SQUZZXY SGJYR

TX U KXYXFQGZX YPZX GM KQX PZKXMZXK WGM XCUHFYX

The relative frequencies, again expressed as percentages, of all the letters
are shown below. (All the donkey work in this example can be done using
the MATHEMATICA notebook AlphabeticCiphers available on Moodle.)

X Z U K G Y S P M Q L J F

14.7 10.3 9.5 8.6 7.7 5.2 4.7 4.7 4.7 4.3 3.4 3.4 3.4

R T W H B I D V O C N E A

3.0 2.6 1.7 1.7 1.7 1.3 1.3 0.9 0.4 0.4 0 0 0

The first word is KQX; this also appears in the final line, and X is comfort-
ably the most common letter. We guess that KQX is ’the’ and that ZUKG are
most probably four of the letters ‘taoin’. Since U appears on its own, it is
probably ‘a’ or ‘i’, and from KQUK in line 3 it seems U is ‘a’. Since UZ cannot
be ‘at’, it is probably ‘an’. Substituting for KQXUZ gives

8

the WJnRaHentaY GTOeStPIe GW SMBFtGVMaFhB PL tG enaTYe tDG

FeGFYe JLJaYYB MeWeMMeR tG aL aYPSe anR TGT tG SGHHJnPSate

GIeM an PnLeSJMe ShanneY Pn LJSh a DaB that an GFFGnent

eIe SannGt JnReMLtanR Dhat PL TePnV LaPR the ShanneY SGJYR

Te a teYeFhGne YPne GM the PnteMnet WGM eCaHFYe

From here it should not be too hard to decrypt the ciphertext. Good
words to guess are ‘teYeFhGne’ and ‘PnteMnet’ in the bottom line and
‘ShanneY’ in two lines above.

Lecture 3

Exercise 2.6.

(a) After deciphering in Example 2.5, Eve knows that π(a) = U, π(b) =
T, and so on. Does she know the key π?

(b) Will Eve have any difficulty in decrypting further messages en-
crypted using the same substitution cipher?

(c) Suppose Mark can encrypt a plaintext of his choice using eπ. This
is a ‘chosen plaintext account’: see §3. What is the simplest way
for him to learn π?

The substitution cipher is weak mainly because it is possible to start
with a guess for the key, say τ, that is partially correct, and then improve
it step-by-step by looking at the decrypt e−1

τ (y) implied by this key.

Example 2.7. To make this process automatic, we need a quantitative way
to measure how ‘close to English’ e−1

τ (y) is. A good scoring function is
∑q log pq where the sum is over all quadgrams in e−1

τ (y) and pq is the
probability of the quadgram q. (This is motivated by maximum likeli-
hood estimation.) For example, the most common quadgram is ‘tion’,
with ption = 0.00312, followed by ‘nthe’ and ‘ther’. Note the score is
always negative, since log pq < 0 for each quadgram q.

As usual we start with the guess for the key given by frequency analysis.
In each step we swap the encryptions of two plaintext letters. Since you
can sort a deck of cards by repeatedly swapping two chosen cards, this
means all 26! (see Exercise 2.4) possible keys can be reached, by taking
enough steps. For instance in Example 2.5 we start with the guess

τ(a) = U, τ(b) = V, τ(c) = F,τ(d) = L, τ(e) = X, . . . ,

. . . , τ(p) = B, . . . , τ(y) = D, τ(z) = A

implying the plaintext is

ile gutmafetiah owkenirve og nspciobsaclp rd io etawhe iyo
ceoche uduahhp segessem io ad ahrne atm wow io noffutr-
naie oves at rtdenuse nlatteh rt dunl a pay ilai at occoteti . . .

9

The first step is chosen to maximize the increase in the score. It turns
out to be optimal to swap the encryptions of ‘p’ and ‘y’. The new guess
for the key is τ′ where τ′(p) = D and τ(y) = B; otherwise τ′ agrees
with τ. (Minor correction: I forgot the convention that ciphertext letters
are written in upper case in the guess for τ on the previous page.)

After 16 steps the implied plaintext is

rle gutfametrah owvecrike og csyprobsaply id ro etawhe rno
peophe uduahhy segessef ro ad ahice atf wow ro commuti-
care okes at itdecuse clatteh it ducl a nay rlar at oppotetr . . .

and after 31 steps the implied plaintext is correct in every character! Try
it online at repl.it/@mwildon/SubstitutionHillClimbWeb.

Exercise 2.8. The strategy in Example 2.7 is called ‘hill-climbing’. Why
this name? (This, and the associated weakness of the substitution cipher,
is all you need to remember from Example 2.7.)

Another reason why the substitution cipher is weak is because the
same bijection is applied to every position in the plaintext. Choosing a
different bijection for some positions, even using only Caesar shifts, gives
a stronger cipher.

Vigenère cipher. We need some more mathematical notation. Define a bi-
jection between the alphabet and {0, 1, . . . , 25} by

a←→ 0, b←→ 1, . . . , z←→ 25.

Using this bijection we identify a word of length ` with an element of
{0, 1, . . . , 25}`. For example, ‘hello′ ←→ (7, 4, 11, 11, 14) ∈ {0, 1, . . . , 25}5.

After converting letters to numbers, the Caesar cipher with shift s be-
comes the function c 7→ c + s mod 26.

Definition 2.9. The key k for the Vigenère cipher is a word. Suppose that k
has length `. Given a plaintext x with its spaces deleted, we define its
encryption by

ek(x) = (x1 + k1, x2 + k2, . . . , x` + k`, x`+1 + k1, . . .)

where xi + ki is computed by converting xi and ki to numbers and adding
them mod 26.

Example 2.10. Take k = emu, so k has length 3. Under the bijection
between letters and numbers, emu ←→ (4, 12, 20). The table overleaf
shows that

eemu(meetatmidnightnear) = QQYXMNQUXRUALFHIML.

10

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

xi
m e e t a t m i d n i g h t n e a r
12 4 4 19 0 19 12 8 3 13 8 6 7 19 13 4 0 17

ki
e m u e m u e m u e m u e m u e m u
4 12 20 4 12 20 4 12 20 4 12 20 4 12 20 4 12 20

xi + ki
16 16 24 23 12 13 16 20 23 17 20 0 11 5 7 8 12 11
Q Q Y X M N Q U X R U A L F H I M L

Lecture 4
Exercise 2.11.

(a) If you had to guess, which of the following would you say was
more likely to be the ciphertext from a substitution cipher?

KDDLVFUDLNELUHLYJAWLWGLWUJDULF

KYBDRDDFCLVCVEDFLDUVYDKKLZCNPO

KYEYAXBICDMBRFXDLCDPKFXLCILLMO

These come from taking every 9th, every 3rd and every position
in a ciphertext in Example 2.16 below; it is encrypted using a Vi-
genère cipher with key length 9.

(b) Why should we expect the split ciphertext from a Vigenère cipher
to have the most ‘spiky’ frequency distribution at the length of
the keyword?

This gives some motivation for the following statistic.

Definition 2.12. The Index of Coincidence of a ciphertext y, denoted I(y),
is the probability that two entries of y, chosen at random from different
positions, are equal.

Exercise 2.13. Explain why I(QXNURA) = I(QNRFLX) = 0 and check that
I(QMUUFM) = 2

15 . What is I(AAABBC)?

There is a simple formula for I(y). (An examinable proof.)

Lemma 2.14. If the ciphertext y of length n has exactly fi letters corresponding
to i, for each i ∈ {0, 1, . . . , 25} then

I(y) =
25

∑
i=0

fi(fi − 1)
n(n− 1)

.

We now have a strategy for decrypting a Vigenère ciphertext.

11

Attack 2.15. Given a Vigenère ciphertext, split it into groups by taking every
`-th letter for all small `, as in Exercise 2.11. If the ciphertext is long enough,
the Index of Coincidence will be greatest at the key length. Each ciphertext split
at the key length is the output of a Caesar cipher; assuming the most common
letter is the encryption of ‘e’ determines the shift.

Example 2.16. The final 554 words (or 2534 characters) of Chapter 1 of
Persuasion by Jane Austen begin

Such were Elizabeth Elliot’s sentiments and sensations; such the
cares to alloy, the agitations to vary, the sameness and the ele-
gance, the prosperity and the nothingness of her scene of life;
such the feelings to give interest to a long, uneventful residence
in one country circle, to fill the vacancies which there were no
habits of utility abroad,

After deleting spaces and punctuation and encrypting using the Vigenère
cipher with key ‘secretkey’, the ciphertext is

KYEYAXBICDMBRFXDLCDPKFXLCILLMOVRMCEL

The graph below shows the mean Index of Coincidence when the ci-
phertext is split by taking every `-th position, for ` ∈ {1, 2, . . . , 15}. We
correctly guess that the length of the key is 9. Taking every 9-th letter of
the ciphertext we get ‘KDDLVFUDLNELUHLYJA . . . ’. The frequency table (as
in Example 2.5) begins

W L S K

11.0 10.6 7.4 7.1

+ +

+

+ +

+

+ +

+

+ +

+

+ +

+

0 2 4 6 8 10 12 14

0.045

0.050

0.055

0.060

0.065

0.070

Assuming ′W′ ←→ 22 is the encryption of ′e′ ←→ 4, the shift in the
Caesar cipher is 18←→ ′s′, so we guess the first letter of the key is ’s’. The
MATHEMATICA notebook on Moodle shows this simple strategy works in
all 9 key positions to reveal the key.

12

Exercise 2.17. Explain why there are smaller peaks at 3, 6, 12 and 15 in
the plot of Indices of Coincidence above.

Statistical methods. The f 2
i in the numerator of the formula in Lemma 2.14

may remind you slightly of the χ2-test: the connection is explored in the
optional Question 7 on Sheet 1.

Statistics can appear a dry subject. I hope this example has shown you
that it can be both useful and interesting. For further examples, one only
has to look at the many triumphs of machine learning (the buzzword for
statistical inference), from ‘Intelligent personal assistants’ such as Siri to
the shocking defeat of the world Go champion by AlphaGo.

3. CRYPTOSYSTEMS, ATTACK MODELS AND PERFECT SECRECY

Lecture 5 Cryptosystems. The three different encryption functions for the Caesar ci-
pher with ‘alphabet’ {0, 1, 2} are shown in the diagram below.

0

1

2

0

1

2

key 0
0

1

2

0

1

2

key 1
0

1

2

0

1

2

key 2

Definition 3.1. Let K,P , C be finite sets. A cryptosystem is a family of
encryption functions ek : P → C and decryption functions dk : C → P , one
for each k ∈ K, such that for each k ∈ K,

(?) dk
(
ek(x)

)
= x

for all x ∈ P . We call K the keyspace, P the set of plaintexts, and C the set
of ciphertexts.

Exercise 3.2. Each diagram (i)–(vi) below each show two functions. Which
illustrate the encryption functions in a cryptosystem with two keys (one
black, one red)? In each case P is on the left-hand side and C = {0, 1, 2}
is on the right-hand side.

(i)

0

1

2

0

1

2

0

1

2

0

1

2

(ii)

0

1

2

0

1

2

0

1

2

0

1

2

13

(iii)

0

1

0

1

2

0

1

0

1

2

(iv)

0

1

0

1

2

0

1

0

1

2

(v)

0

1

2

0

1

2

0

1

2

0

1

2

(vi)

0

1

2

0

1

2

0

1

2

0

1

2

Please make sure you understand what is wrong with (v) and the two
things wrong with (vi).

It may seem strange that (iv) is a cryptosystem: in practice it would be
unusual for two keys to define the same encryption function. However
checking that this is definitely not the case would be non-trivial for some
practical ciphers, so we do not rule it out in the definition.

Exercise 3.3.

(i) Show that ek is injective for each k ∈ K.
(ii) Show that if |P| = |C| then the encryption functions are bijections

and dk = e−1
k for each k ∈ K.

Recall that Zn denotes the set {0, 1, . . . , n− 1} with addition and mul-
tiplication defined modulo n. (If you prefer the definition as a quotient
ring, please feel free to use it instead.) For example 7+ 8 ≡ 4 mod 11 and
7× 8 ≡ 1 mod 11. We say that 8 is the inverse of 7, modulo 11.

Example 3.4 (Affine cipher). Let p be prime. The affine cipher on Zp has
P = C = Zp and

K = {(a, c) : a ∈ Zp, c ∈ Zp, a 6= 0}.
The encryption functions are defined by e(a,c)(x) = ax + c mod p. The
decryption functions are defined by d(a,c)(x) = b(x− c) mod p, where b ∈
Zp is the unique element such that ab = 1 mod p. With these definitions,
the affine cipher is a cryptosystem.

For example, in the affine cipher on Z11, e(7,2)(5) = 4 since 7× 5 + 2 ≡ 4
mod 11 and, as expected, d(7,2)(4) = 5 since 8× (4− 2) ≡ 5 mod 11.

To find b, the inverse of a in Zp, you can either do an exhaustive search, or
run Euclid’s algorithm to find b and r such that ab + rp = 1; then ab ≡ 1
mod p.

14

It is no real restriction that the plaintext in the affine cipher have to be
numbers in {0, 1, . . . , p − 1}: there are arbitrarily large primes, and it is
easy to convert an English plaintext into a number. (The ASCII encoding
will be seen on a later problem sheet.)

Lecture 6

Exercise 3.5. Consider the affine cipher on Z5.

(i) Suppose that Eve observes the ciphertext 2. Does she learn any-
thing about the plaintext?

(iii) Suppose that Mark knows that e(a,c)(1) = 2. What does he learn
about the key? What happens if he later learns e(a,c)(0)?

Attack models. In each of the attack models below, we suppose that Alice
is sending ciphertexts to Bob encrypted using the key k ∈ K. The aim of
the adversary (Eve or Mark) is to determine all or part of k.

• Known ciphertext. Eve knows ek(x) ∈ C.
• Known plaintext and ciphertext. Mark knows x ∈ P and ek(x) ∈ C.
• Chosen plaintext. Mark may choose any x ∈ P and is given the

encryption y = ek(x).
• Chosen ciphertext. Mark may choose any y ∈ C and is given the

decryption x = dk(y).
Each attack model has a generalization where the adversary observes
multiple plaintexts and/or ciphertexts.

Remark 3.6.
(1) In Example 2.5 we saw that (almost all) of the key in a substitution

cipher can be deduced from a sufficiently long ciphertext. So the
substitution cipher is broken by a known ciphertext attack.

(2) All the cryptosystems so far are broken by a chosen plaintext attack.
By the general version of Example 3.5, the affine cipher requires
two choices of plaintext, and by Question 4 on Sheet 1, the substi-
tution cipher and the Vigenère cipher just one.

(3) Later in the course we will see modern block ciphers where it is
believed to be computationally hard to find the key even allowing
unlimited choices of plaintexts in a chosen plaintext attack.

Probability model. We agreed in Exercise 3.5 that the affine cipher seemed
secure against a (single) known ciphertext attack. One way to make this
intuitive idea mathematically precise uses probabilities. There are notes
on Moodle reviewing basic probability theory.

Fix a cryptosystem in our usual notation. To define a probability space
on K×P × C we assume that the plaintext x ∈ P is chosen independently

15

of the key k ∈ K; the ciphertext is then ek(x). Thus if px is the probabil-
ity the message is x ∈ P and rk is the probability the key is k then the
probability measure is defined by

p(k,x,y) =

{
rk px if y = ek(x)
0 otherwise.

.

Let K, X, Y be the random variables standing for the plaintext, ciphertext
and key, respectively.1

Exercise 3.7. Is the assumption that the key and plaintext are indepen-
dent reasonable?

Example 3.8.

(a) The cryptosystem below uses three keys from the affine cipher on
Z3. We will use it for a quiz in lectures.

0

1

2

0

1

2

0

1

2

0

1

2

0

1

2

0

1

2

Note the basic calculation using conditional probability (or Bayes’
Theorem if you prefer):

P[X = x|Y = y] =
P[Y = y|X = x]

P[Y = y]
.

Note that P[Y = y|X = x] = ∑k∈K : ek(x)=y P[K = k] is a sum of
key probabilities.

Lecture 7(b) In the Caesar cipher on {0, 1, 2}, shown before Definition 3.1, there
are three keys. Suppose keys are chosen with equal probabil-
ity 1

3 and, as usual, the probability distribution on plaintexts is
p0, p1, p2. We will check that P[X = x|Y = y] = px for all x,
y ∈ {0, 1, 2}. Knowing the ciphertext tells Eve nothing new about
the plaintext.

(c) In Exercise 3.2(i), P = C = {0, 1, 2}. Suppose the two keys are
used with equal probability 1

2 . We have P[Y = 1] = p0+p1
2 and

P[X = 0|Y = 1] =
p0

p0 + p1
,

P[X = 1|Y = 1] =
p1

p0 + p1

P[X = 2|Y = 1] = 0.

1To be very formal, X, Y and K are the functions defined on the probability
space K×P × C by K(k, x, y) = k, X(k, x, y) = x and Y(k, x, y) = y.

16

These probabilities are usually not the same as p0, p1, p2. (Just
take p2 6= 0.) An Eve eavesdropping on ciphertext 1 learns the
plaintext is either 0 or 1 (and not 2), and has an idea of how prob-
able each plaintext is.2

To summarise: (b) is safe against a known ciphertext attack but (a) and (c)
are broken by a known cipher ciphertext attack. Follow up: show how to
break (b) by a (single) known plaintext attack.

Shannon’s Perfect Secrecy Theorem.

Definition 3.9.
(i) Let px for x ∈ X be a probability distribution on the plaintexts. A

cryptosystem has perfect secrecy for px if

P[X = x|Y = y] = px

for all x ∈ P and all y ∈ C such that P[Y = y] > 0.
(ii) A cryptosystem has perfect secrecy if it has perfect secrecy for every

probability distribution on the plaintexts.

By Example 3.8(b), the Caesar cipher on {0, 1, 2} has perfect secrecy
when keys are used with equal probability. If instead P[K = 0] = P[K =
1] = 1

2 and P[K = 2] = 0 we can ignore the blue key 2 and get the
cryptosystem in Exercise 3.2(i), which we saw in Example 3.8(c) does not
have perfect secrecy.

The aim of the remainder of this section is to prove a theorem describ-
ing cryptosystems with perfect secrecy.

Theorem 3.10 (Shannon 1949). Suppose a cryptosystem (in our usual nota-
tion) has perfect secrecy, that P[K = k] > 0 for each k ∈ K [correction!], and
that for all y ∈ C there exists x ∈ P and k ∈ K such that ek(x) = y.

(a) For all x ∈ P and all y ∈ C there exists a key k such that ek(x) = y.
(b) |K| ≥ |C|.
(c) Suppose |P| = |C| = |K|. For all x ∈ P and all y ∈ C there exists a

unique key k ∈ K such that ek(x) = y. Moreover each key is used with
equal probability.

Some good questions to ask about a theorem are ‘What examples of
it have I seen?’, ‘Can the hypotheses be weakened?’, ‘Does the converse
hold?’. These are explored on Problem Sheet 2. In particular, Question 6
asks you to show a converse result: if (c) holds then the cryptosystem has
perfect secrecy.

2In the language of Bayesian statistics, Eve’s posterior probabilities are different
to her prior probabilities.

17

Proof of Theorem 3.10. Let px = 1/|P|, so px > 0 for each x ∈ P . For
x ∈ P and y ∈ C, let

Kxy = {k ∈ K : ek(x) = y}.

For each y ∈ C there exists x? ∈ P and k? ∈ K such that k? ∈ Kx?y. Hence
P[Y = y] ≥ P[X = x?, K = k?] = P[X = x?]P[K = k?] > 0 for all y ∈ C.

Since P[Y = y] > 0 for each y ∈ C, the conditional probabilities
P[X = x|Y = y] are defined. By perfect secrecy followed by the usual
calculation,

px = P[X = x|Y = y] =
P[Y = y|X = x]P[X = x]

P[Y = y]

=
P[Y = y|X = x]

P[Y = y]
px =

P[k ∈ Kxy]

P[Y = y]
px

for all x ∈ P and y ∈ C. Since px > 0 we deduce

(†) P[k ∈ Kxy] = P[Y = y] > 0.

Therefore Kxy is non-empty for each x ∈ P and y ∈ C, as required for (a).
Let x ∈ P . Observe that K =

⋃
y∈C Kxy where the union is disjoint.

By (a) each Kxy is non-empty. Therefore

(‡) |K| ≥ ∑
y∈C
|Kxy| ≥ ∑

y∈C
1 = |C|

giving (b).
Lecture 8In (c) we have |K| = |C|. Hence each inequality in (‡) is an equality,

and so |Kxy| = 1 for all x ∈ P and y ∈ C. Equivalently, for all x ∈ P and
y ∈ C, there exists a unique key (it is the unique key in Kxy) such that
ek(x) = y. Fix y? ∈ C and, for each x ∈ P , let kx be the unique key such
that ekx(x) = y?. If kx = kx′ = k then

ek(x) = ekx(x) = y? = ekx′ (x′) = ek(x′).

But ek is injective, hence x = x′. Therefore the keys kx for x ∈ P are
distinct, and since |P| = |K|, these are all the keys. By (†), P[k = kx] =
P[k ∈ Kxy?] = P[Y = y?] is independent of x ∈ P . Therefore each key is
used with equal probability. �

Latin squares. Consider a cryptosystem with perfect secrecy in whichP =
C = K = {0, 1, . . . , n− 1}. [Correction: C and K not |C| and |K|.] By (c)
in Theorem 3.10, for all x, y ∈ {0, 1, . . . , n − 1}, there exists a unique
k ∈ {0, 1, . . . , n− 1} such that ek(x) = y. Therefore the cryptosystem is
determined by the n× n matrix M where

Mxy = k⇐⇒ ek(x) = y.

18

The Caesar cipher on {0, 1, 2} seen at the start of this section has matrix

0 1 2
2 0 1
1 2 0

 .

Note rows and columns are numbered from 0 rather than the usual 1.
Conversely, given a n× n matrix in which every row and column has en-
tries {0, 1, . . . , n− 1} there is a corresponding cryptosystem with perfect
secrecy. Such matrices are called Latin squares and often arise in cryptog-
raphy and coding theory.

4. ENTROPY AND KEY UNCERTAINTY

Lecture 9 Motivation for Entropy. Suppose Bob picks x ∈ {0, 1, . . . , 15}. How many
yes/no questions does Alice need to guess x? Question 2 on the Pre-
liminary Problem Sheet gives one simple strategy: ask Bob to write x in
binary as x3x2x1x0; then Alice asks about each bit in turn: ‘Is x0 = 1?’, ‘Is
x1 = 1?’, ‘Is x2 = 1?’, ‘Is x3 = 1?’.

Exercise 4.1. Explain why no questioning strategy can guarantee to use
fewer than four questions.

Example 4.2. We consider the simpler game where Bob’s number is in
{0, 1, 2, 3}. Let px be the probability that Bob chooses x. (Alice knows
Bob very well, so she knows these probabilities.) For each case below,
how many questions does Alice need on average, if she chooses the best
possible strategy?

(a) p0 = p1 = p2 = p3 = 1
4 .

(b) p0 = 1
2 , p1 = 1

4 , p2 = 1
4 , p3 = 0.

(c) p0 = 1
2 , p1 = 1

4 , p2 = 1
8 , p3 = 1

8 .

Alice is most uncertain about Bob’s number in (a), and least uncertain
in (b). Remarkably, there is a mathematical way to make precise this
‘degree of uncertainty’, found by Shannon in 1948.3

Definition 4.3. Let X be a finite set.
(i) The entropy of a probability distribution px on X is

H(p) = − ∑
x∈X

px log2 px.

3The story goes that Shannon asked von Neumann what he should call his mea-
sure of uncertainty, and von Neumann replied, ‘You should call it entropy, for two
reasons. In the first place your uncertainty function has been used in statistical mechanics
under that name, so it already has a name. In the second place, and more important, no one
really knows what entropy really is, so in a debate you will always have the advantage.’
While this may still be true, there is now a well-developed mathematical theory of
entropy.

19

(ii) The entropy of a random variable X taking values in X is the en-
tropy of the probability distribution px = P[X = x].

Note that log2 means logarithm to the base 2, so log2
1
2 = −1, log2 1 =

0, log2 2 = 1, log2 4 = 2, and generally, log2 2n = n for each n ∈ Z. If
px = 0 then −0 log2 0 should be interpreted as limp→0−p log2 p = 0.

Exercise 4.4.

(i) Show that H(p) = ∑x∈X px log2
1
px

, where if px = 0 then 0 log2
1
0

is interpreted as 0.

(ii) Show that if p is the probability distribution in Exercise 4.2(b) then

H(p) = 1
2 log2 2 + 1

4 log2 4 + 1
4 log2 4 + 0 = 3

2 .

Show that in all three cases, H(p) is the average number of ques-
tions, using the strategy found in this exercise.4

Informally. A random variable has entropy h if and only if you can
learn its value by asking about h well-chosen yes/no questions.

For this reason, entropy is often thought of as measured in bits. For
example, the entropy of Bob’s number in Example 4.2(a) is 2 bits.

Example 4.5.

(1) Suppose the random variable X takes two different values, with
probabilities p and 1− p. Then H(X) = p log2

1
p +(1− p) log2

1
1−p ,

as shown in the graph below.

p

p log2
1
p + (1− p) log2

1
1−p

0

1
2

1
2

1

1

4In general the entropy is only a lower bound for the average number of ques-
tions. For example, if p0 = 1

2 , p1 = p2 = p3 = 1
6 then H(p) = 1

2 log2 2+ 3 1
6 log2 6 =

1 + 1
2 log2 3 ≈ 1.7925. The best questioning strategy uses the Huffman code 1, 01,

000, 001 with average codeword length 1
2 1 + 1

6 2 + 1
6 3 + 1

6 3 = 11
6 ≈ 1.8333. Huff-

man codes are part of MT341/441/5441 Channels.

20

Thus the entropy of a single ‘yes/no’ random variable takes val-
ues between 0 and 1, with a maximum at 1 when the outcomes
are equally probable.

(2) Suppose a cryptographic key K is equally likely to be any ele-
ment of the keyspace K. If |K| = n then H(K) = 1

n log2 n + · · ·+
1
n log2 n = log2 n. This is often useful.

(3) Consider the cryptosystem in Exercise 3.2(iii). Suppose that P[X =
0] = p, and so P[X = 1] = 1− p, and that P[K = red] = r, and so
P[K = black] = 1− r. As in (1) we have

H(X) = p log2
1
p
+ (1− p) log2

1
1− p

.

Exercise: show that P[Y = 1] = pr + (1 − p)(1 − r) and hence
find H(Y) when r = 0, 1

4 , 1
2 . Is it surprising that usually H(Y) >

H(X)?

Lecture 10 Conditional entropy and key uncertainty.

Definition 4.6. Let K and Y be random variables taking values in finite
sets K and C, respectively. The joint entropy of K and Y is defined by

H(K, Y) = − ∑
k∈K

∑
y∈C

P[K = k and Y = y] log2 P[K = k and Y = y].

The conditional entropy of K given that Y = y is defined by

H(K|Y = y) = − ∑
k∈K

P[K = k|Y = y] log2 P[X = k|Y = y].

The conditional entropy of K given Y is defined by

H(K|Y) = ∑
y∈C

P[Y = y]H(K|Y = y).

Note that H(K, Y) is the entropy, as already defined, of the random
variable (K, Y) taking values in K× C. It may also be helpful to note that
H(K|Y) is the expected value of H(K|Y = y), as y varies over C.

Example 4.7. Consider the Caesar cryptosystem in which all 26 keys are
equally likely. What is H(K)? Find H(K|Y = ACCB) and H(K|Y = NCYP),
assuming Alice’s message is a random English word.

The most important property of conditional entropy is stated in the
lemma below. Intuitively ‘the uncertainty of K and Y is the uncertainty
of K given Y plus the uncertainty of Y’. (Now try reading this replacing
‘uncertainty of’ with ‘information in’.)

Lemma 4.8 (Chaining Rule). Let K and Y be random variables. Then

H(K|Y) + H(Y) = H(K, Y).

21

Lecture 11 We need two further results to prove the main theorem of this section.

Lemma 4.9. Let K and X be random variables. If K and X are independent then
H(K, X) = H(K) + H(X).

For a proof see Question 1 on Sheet 3.

Lemma 4.10. Let Z be a random variable taking values in a set Z . Let f : Z →
W be a function. If f is injective then H

(
f (Z)

)
= H(Z).

A proof is given below. You may prefer this intuitive version: since f is
injective, the non-zero probabilities in the probability distribution of f (Z)
are the same as for Z. Since the entropy of a random variable depends
only on its probability distribution, the entropies of Z and f (Z) are the
same.

Proof. Since f is injective, P[Z = z] = P[f (Z) = f (z)] for each z ∈ Z . If
w ∈ W and w 6= f (z) for any z ∈ Z then P[f (Z) = w] = 0. Therefore the
contribution of w to H(f (Z)) is −0 log2 0 = 0. Hence

H(f (Z)) = − ∑
w∈W

P[f (Z) = w] log2 P[f (Z) = w]

= − ∑
z∈Z

P[f (Z) = f (z)] log2 P[f (Z) = f (z)]

= − ∑
z∈Z

P[Z = z] log2 P[Z = z]

= H(Z).

as required. �

Theorem 4.11 (Shannon, 1949). Take a cryptosystem in our usual notation.
Then

H(K|Y) = H(K) + H(X)− H(Y).

We end with two applications of Shannon’s Theorem.

English entropy and the one-time pad. LetA = {a, b, . . . , z} be the alphabet.
We take P = C = An: you can think of this as the set of all strings of
length n. To indicate that plaintexts and ciphertexts have length n, we
write Xn and Yn rather than X and Y.

We suppose only those strings that make good sense in English have
non-zero probability. So if n = 8 then ‘abcdefgh′, ‘goodwork′ ∈ P but
P[X8 = ‘abcdefgh′] = 0 whereas P[X8 = ‘goodwork′] > 0.

Shannon estimated that the per-character redundancy of English plain-
texts, with spaces, is about 3.200. (See the optional extras for this part.)
We shall suppose his estimate is also good for plaintexts in An.

22

Let R = 3.200. If English plaintexts of length n had no redundancy,
their per-character entropy would be log2 26 ≈ 4.700. Therefore the per-
character entropy of English is about log2 26− R ≈ 1.500, and

H(Xn) ≈ (log2 26− R)n ≈ 1.500n.

Lecture 12 Example 4.12 (One-time pad). Fix n ∈ N. The one-time pad is a cryp-
tosystem with plaintexts, ciphertexts and keyspace An. The encryption
functions are defined by

ek(x) = (x1 + k1, x2 + k2, . . . , xn + kn)

where, as in the Vigenère cipher (see Example 2.10), xi + ki is computed
by converting xi and ki to numbers and adding modulo 26. Thus the one-
time pad is the Vigenère cipher when the key has the same length as the
plaintext. For example, when n = 8,

ezyxwvuts(goodwork) = fmlzrikc

as shown in the table below

i 1 2 3 4 5 6 7 8

xi
g o o d w o r k
6 14 14 3 22 14 17 10

ki
z y x v w u t s

25 24 23 22 21 20 19 18

xi + ki
5 12 11 25 17 8 10 2
f m l z r i k c

Suppose that all keys in An are equally likely. Then all ciphertexts are
equally likely, and by Example 4.5(2)

H(K) = (log2 26)n

H(Yn) = (log2 26)n.

We saw above that H(Xn) ≈ (log2 26 − R)n. Therefore by Shannon’s
formula,

H(K|Yn) = H(K) + H(Xn)− H(Yn) = (log2 26− R)n = H(Xn).

Thus when Eve observes the ciphertext Yn, she is as uncertain about the
key as she is about the plaintext.

It is intended that the one-time-pad is used only once. If the same key
is used for multiple encryptions, Eve can learn much more.

Example 4.13. The spy-master Alice and her agent Bob have agreed to
use the one-time pad, with a randomly chosen key, for emergency mes-
sages. Following Kerckhoff’s assumption, all this is known to Eve. Eve
does not know that their key is k = atcldqezyomuua.

23

• Alice sends ek(leaveinstantly) = lxcghyrrroznfy to Bob.
Bob calculates lxcghyrrroznfy− atcldqezyomuua = leaveinstantly. So
far Eve has learned nothing, except that Alice has sent Bob the ciphertext
y = lxcghyrrroznfy. Eve cannot guess Alice’s message x: for example

x = gototheairport ⇐⇒ k = y− gototheairport = fjjsornrjxkzof

x = meetmeonbridge ⇐⇒ k = y− meetmeonbridge = ztynvudeqxrkzu

and so on. Clearly for every guessed plaintext, there is a possible key.
Bob now makes a fatal mistake, and re-uses the key k in his reply.

• Bob sends ek(goingeasttrain) = ghkyjuerrhducn to Alice.
Eve now has ciphertexts k + leaveinstantly = lxcghyrrroznfy and k +
goingeasttrain = ghkyjuerrhducn. She subtracts them to obtain ∆ =
fqsiyenaahwtdl. Note that ∆ does not depend on k.
The string ∆ has the unusual property that there is an English message
x′ (Bob’s reply) such that ∆ + x′ is another English message (Alice’s mes-
sage). This property is so rare that Eve and her computer5 can fairly easily
deduce x′ and ∆ + x′, and, from either of these, the key k.

Unicity distance. In Example 4.13 we proved that for the one-time-pad
H(K|Yn) = (log2 26− R)n and that H(K) = (log2 26)n. Therefore

(??) H(K|Yn) = H(K)− Rn.

In the non-examinable extras for this part we give Shannon’s argument
that (??) should be a good approximation for H(K|Yn) in any cryptosys-
tem where P = C = An and the messages are English texts.

Exercise 4.14. What is the largest length of ciphertext n for which (??)
could hold with equality?

The graph below shows the expected behaviour of H(K|Y).

en
tr

op
y

H(K|Y)
H(K)− nR

n

5The code used in lectures is here: https://repl.it/@mwildon/OneTimePad2.

24

Definition 4.15. The quantity H(K)/R is the unicity distance of the cryp-
tosystem.

If H(K|Yn) < 1 then on average it takes less than one yes/no question
to guess the key K. Therefore (??) predicts that most of the key is known
when n is about the unicity distance of the cryptosystem.

Exercise 4.16. In the substitution cipher attack in Example 2.5 we saw
that the ciphertext y of length 280 determined the key π except for π(k),
π(q), π(z). We saw in Exercise 2.6(a) that π(k), π(q), π(z) are the three
letters, namely A, E, N, which never appear in the ciphertext. Assuming
equally likely keys, what is H(K|Y280 = y)? What is H(K)?

Shannon’s equation (??) predicts that the unicity distance for the sub-
stitution cipher is

log2 |K|
R

=
log2(26!)

R
≈ 88.382

3.200
= 27.619.

So 28 characters of ciphertext should, in theory, determine most of the
key.

Example 4.17. The first 28 characters of the ciphertext in Example 2.5
are KQX WJZRUHXZKUY GTOXSKPIX GW. A computer search using a dictio-
nary of about 70000 words gives 6 possible decryptions of the first 24
letters. These include ‘imo purgatorial hedonics’, ‘iwo purgatorial

hedonism’ and ‘the fundamental objectiv’. Taking 25 letters,
‘the fundamental objective’

is the only decryption consistent with the dictionary. This is in excellent
agreement with Shannon’s argument.

Since 10 characters do not appear in the first 28 letters of ciphertext, the
argument in Exercise 4.16 shows that H(K|Y = y28) = log2 10! = 21.791.
Nothing new about the key is learned after letter 25, so this is the value
of the final 4 points in the graph of H(K|Yn) for 1 ≤ n ≤ 28 below.

Ê Ê Ê Ê Ê Ê Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê Ê Ê Ê

Ê Ê
Ê
Ê
Ê

Ê
Ê Ê Ê Ê

t h e f u n
d
a
m

e
n

t
a

l o b
j e

c t
i
v e o f

0 5 10 15 20 25

20

40

60

80

25

Extra: one idea in Shannon’s argument for unicity distance. The following
exercise appears on the Preliminary Problem Sheet.

Exercise 4.18. Suppose you ask each person in a large lecture room to
state their number of siblings (for instance, an only child will reply 0),
take the mean, and then add 1. Will the answer be a good estimator for
the mean number of children in a family?

The answer is no! Because we always sample children, rather than
families, we do not count any of the childless families. Worse, families
with large numbers of children are disproportionately likely to have a
child in the room. This ‘selection bias’ appears in Lemma 4.19 below.

Extra: Shannon’s argument for unicity distance. Shannon’s Noisy Coding
Theorem states that given a binary channel of capacity C, one can com-
municate at any chosen rate R < C with an asymptotically negligible
probability of error. Shannon’s amazing insight was that a good way to
do this is to choose a binary code of rate R at random.

Shannon introduced the analogous idea of the random cryptosystem, in
Communication theory of secrecy systems, Bell Systems Technical Journal 28
(1949) 656–715. Fix a set P of plaintexts, and a keyspace K. The encryp-
tion functions are random permutations. Thus for each k ∈ K, we have a
random bijection ek : P → P .

As a simple model for English plaintexts, suppose that P = Pcommon ∪
Prare where the union is disjoint. Let |Pcommon|/|P| = c. We suppose
that each common plaintext is sent with equal probability 1/|Pcommon|,
so rare plaintexts are never sent.

Suppose a plaintext is chosen at random and encrypted to the cipher-
text y by a key, chosen equiprobably from K. Define

g(y) =
∣∣{k ∈ K : ek(x) = y for some common plaintext x}

∣∣.

Equivalently, g(y) is the number of keys k such that the decryption e−1
k (y)

is common. Since y is the encryption of a common plaintext, we know
that g(y) ≥ 1.

Lemma 4.19. g(y) ∼ 1 + Bin(c, |K| − 1).

Proof. Suppose y was obtained by choosing x? ∈ Pcommon and k? ∈ K,
so y = ek?(x?). Since the encryption functions were chosen at random,
for each k ∈ K, with k 6= k?, the probability is c that e−1

k (y) is a common
plaintext. Hence the number of such k is distributed as Bin(c, |K| − 1).
Now add 1 to count k?. �

Since the keys are equiprobable, when Eve observes y ∈ C, her uncer-
tainty in the key is log2 g(y). That is, H(K|Y = y) = log2 g(y). By the

26

formula for conditional expectation,

H(K|Y) = ∑
y∈C

H(K|Y = y)P[Y = y]

= ∑
m≥1

(|K| − 1
m− 1

)
cm−1(1− c)|K|−m log2 m

=
1

c|K| ∑
m≥0

(|K|
m

)
cm(1− c)|K|−mm log2 m.

where we used (|K|−1
m−1) = (|Km) m

|K| . The sum on the right-hand side is
E[Z log2 Z], where Z ∼ Bin(c, |K|). When |K| is large compared to |P|, Z
is likely to be near its mean c|K|, so E[Z log2 Z] ≈ c|K| log2(c|K|). Hence

H(K|Y) ≈ 1
c|K| c|K| log2(c|K|) = log2 |K|+ log2 c.

For English plaintexts of length n, we saw before Example 4.12 that
H(Xn) ≈ (log2 26− R)n. Therefore a reasonable guess for |Pcommon| is
2(log2 26−R)n. With this value, log2 c = log2 |Pcommon| − log2 26n = −Rn
and H(K|Y) ≈ log2 |K| − Rn, as in (??).

Extra: Shannon’s game. Shannon’s estimate of 1.5 bits for the per-character
entropy of English comes from his paper, Prediction and entropy of printed
English, Bell System Technical Journal, 30 (1951) 50–64. In it he invented,
and got human subjects to play, the following ingenious game.

Imagine a computer is programmed to guess English plaintexts. It is
told as soon as it guesses a character correctly, and then moves on to the
next. For example if the plaintext is ‘information’, the computer might
guess

• e, t, a, i (wrong, wrong, wrong, correct: plaintext starts i),
• t, s, n (wrong, wrong, correct: plaintext starts in),
• t, f (wrong, correct: plaintext starts inf)

and then get every subsequent character right immediately, except for a
misguess of (space) rather than a on character 7. The algorithm the com-
puter uses is unknown, but could be very complicated, perhaps using a
huge library of stored texts. It is deterministic: given the same plaintext,
the computer always makes the same guess.

Exercise 4.20.
(a) Explain why given the sequence (4, 3, 2, 1, 1, 1, 2, 1, 1, 1, 1) and ac-

cess to the computer, you can reconstruct the plaintext.
(b) Suppose you sample a random variable G and get the sequence

of values in (a). Estimate the entropy of G. Why is H(G) an upper
bound on the entropy of the plaintext?

See the answer to Question 6 on Sheet 3 for a solution. You can play
the game online at repl.it/@mwildon/ShannonGuess2py.

23

(B) Stream ciphers

5. LINEAR FEEDBACK SHIFT REGISTERS

Lecture 13Computers are deterministic: given the same inputs, you always get
the same answer. In this part we will see how to get sequences that ‘look
random’ out of deterministic algorithms. We will use these sequences to
define cryptosystems, and see how they may be attacked. We will also
see some ways to define randomness more precisely.

Reminder of binary. Recall that F2 is the finite field of size 2 with elements
the bits (short for binary digits) 0, 1. Addition and multiplication are de-
fined modulo 2, so

+ 0 1

0 0 1
1 1 0

× 0 1

0 0 0
1 0 1

By definition, Fn
2 is the set of n-tuples (x0, x1, . . . , xn−1) where each xi

is a bit 0 or 1. For brevity we may write this tuple as x0x1 . . . xn−1. As
seen here, we number positions from 0 up to n− 1. It is usual to refer to
elements of Fn

2 as binary words of length n.

Definition of LFSRs.

Definition 5.1.
(i) Let ` ∈ N. A linear feedback shift register of width ` with taps T ⊆
{0, 1, . . . , `− 1} is a function F : F`

2 → F`
2 of the form

F
(
(x0, x1, . . . , x`−2, x`−1)

)
= (x1, . . . , x`−1, ∑

t∈T
xt).

(ii) The function f : F`
2 → F2 defined by f (x) = ∑t∈T xt is called the

feedback function.
(iii) The keystream for k ∈ F`

2 is the sequence k0, k1, . . . , k`−1, k`, k`+1, . . . ,
where for each s ≥ ` we define

ks = f
(
(ks−`, ks−`+1, . . . , ks−1)

)
.

Equivalently, ks = ∑t∈T ks−`+t. Thus an LFSR shifts the bits in posi-
tions 1 to `− 1 left, and puts a new bit, defined by its feedback function,
into the rightmost position ` − 1. Taking all these rightmost positions
gives the keystream. This very useful property is expressed by

(?) Fs((k0, k1, . . . , k`−1)
)
= (ks, ks+1, . . . , ks+`−1).

Here Fs is the function defined by applying F a total of s times.

Example 5.2. The LFSR F of width 4 with taps {0, 1} is defined by

F
(
(x0, x1, x2, x3)

)
= (x1, x2, x3, x0 + x1).

24

(i) Solving the equation F
(
(x0, x1, x2, x3)

)
= (y0, y1, y2, y3) shows

that F has inverse

F−1((y0, y1, y2, y3)
)
= (y0 + y3, y0, y1, y2).

(ii) The keystream for the key k = 0111 [Typo of 01111 corrected] is

(0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1 . . .)
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

repeating from position 15 onwards: ks = ks+15 for all s ∈N0.

(iii) Exercise: observe that k′ = 0001 appears in positions 5, 6, 7, 8 of
the keystream above. Find the keystream for k′.

(iv) Starting with k = 0111, the sequence k, F(k), F2(k), F3(k), . . .,
F14(k), F15(k) is

0111, 1111, 1110, 1100, 1000,0001, 0010, 0100, 1001, 0011,

0110, 1101, 1010, 0101, 1011, 0111, . . .

with F15(k) = k. Observe that, as expected from (?), the right-
most bits 1, 1, 0, 0, 0, 1, . . . are the keystream for 0111, starting from
k3 = 1.

(v) Exercise: Is every keystream generated by F a cyclic shift of the
keystream for 0111? (For example, x = 001101 and x′ = 110100
are equal up to cyclic shifts, since x′ = x2x3x4x5x0x1.)

Lecture 14 In the cryptographic literature it is conventional to represent LFSRs by
circuit diagrams, such as the one below showing F. By convention

⊕

denotes addition modulo 2, implemented in electronics by the XOR gate.

⊕

The word ‘register’ in LFSR refers to the boxed memory units storing the
bits.

Cryptosystem defined by an LFSR.

Definition 5.3. Let F be an LFSR of width ` and let n ∈N. The cryptosys-
tem defined by F has P = C = Fn

2 and keyspace K = F`
2. The encryption

functions are defined by

ek(x) = (k0, k1, . . . , kn−1) + (x0, x1, . . . , xn−1)

for each k ∈ K and x ∈ P .

25

Thus, like the one-time pad, the ciphertext is obtained by addition
to the plaintext. But unlike the one-time pad, the key is usually much
shorter than the plaintext.

Exercise 5.4. Define the decryption function dk : Fn
2 → Fn

2 .

Problem Sheet 5 shows how to encrypt an English message of length n
by using the ASCII encoding to convert it to a word in F8n

2 .

Lecture 15Invertible LFSRs and periods.

Exercise 5.5. Let H be the LFSR of width 4 with taps {1, 2}. Show that H
is not invertible.

This exercise and Example 5.2(i) suggest the general result: an LFSR
is invertible if and only if 0 is one of the taps. The steps in a proof are
indicated in Question 3 of Sheet 4.

Exercise 5.6. Let G be the LFSR of width 4 with taps {0, 2}.
(a) Find the keystreams for the keys 0001 and 0011.
(b) Which words of length 4 do not appear in either keystream?
(c) Find all keystreams generated by this LFSR.

We saw in Example 5.2(v) a case where there was a unique keystream,
up to cyclic shifts. The previous exercise shows that in general, there may
be several different keystreams.

For cryptographic purposes, we want the keystream to be as long as
possible before it repeats. The best possible, for an LFSR of width `, is
a single keystream that repeats only after 2` − 1 positions. As in Exam-
ple 5.2(v), this keystream is then the unique non-zero keystream up to
cyclic shifts.

Lemma 5.7. Let F be an invertible LFSR of width `.
(i) Let k ∈ F`

2. There exists m ≤ 2` − 1 such that Fm(k) = k.
(ii) There exists m ∈N such that Fm = id, the identity function.

By this lemma the following definitions are well-defined.

Definition 5.8.
(i) We define the period of a keystream k0, k1, . . . generated by an in-

vertible LFSR to be the least m such that ks+m = ks for all s ∈N0.
(ii) We define the period of an invertible LFSR F to be the least p such

that Fp = id, the identity function.

For example, the LFSRs F and G in Example 5.2 and Exercise 5.6 have
periods 15 and 6, respectively. By Lemma 5.7, the period of a keystream
of an LFSR of width ` is at most 2` − 1.

Lecture 16

26

The matrix representation of an LFSR. LFSRs are linear functions: if F is an
LFSR of width ` then F(x + x′) = F(x) + F(x′) for all x, x′ ∈ F`

2. We can
therefore represent each LFSR by a matrix.

Here it is most convenient to use row vectors: we say that an ` × `
matrix M represents an LFSR F of width ` if xM = F(x) for all x ∈ F`

2.
Here xM is the product of a row vector in F`

2 and the matrix M.

Proposition 5.9. Let F be an LFSR of width ` and taps T ⊆ {0, 1, . . . , `− 1}.
The matrix (acting on row vectors) representing F is

0 0 0 . . . 0 [0 ∈ T]
1 0 0 . . . 0 [1 ∈ T]
0 1 0 . . . 0 [2 ∈ T]
...

...
...

0 0 0 . . . 0 [`− 2 ∈ T]
0 0 0 . . . 1 [`− 1 ∈ T]

where

[t ∈ T] =

{
1 if t ∈ T
0 otherwise.

As a guide to the structure of this important matrix, some zero entries
are printed in grey: this is just notation, and not of any mathematical
significance.

The matrix in Proposition 5.9 is invertible if and only if 0 ∈ T. So, as
claimed earlier, an LFSR is invertible if and only if 0 is one of its taps.

Recall that the minimal polynomial of a matrix M with coefficients in
F2 is the non-zero polynomial g(X) ∈ F2[X] of least degree such that
g(M) = 0.

In the following lemma we work with column vectors of length `. For
i ∈ {0, 1, . . . , `− 1}, let v(i) denote the column vector with 1 in position i
(numbering positions from 0 as usual), and 0 in all other positions. The
vectors v(0), v(1), . . . , v(`− 1) are shown in the margin.

1
0
...
0

0
1
...
0

 . . .

0
0
...
1

Lemma 5.10. Let F be an LFSR of width ` with taps T representing by the
matrix M. Define g(X) = X` + ∑t∈T Xt.

(a) If t < ` then Mtv(0) = v(t);
(b) ∑t∈T Mtv(0) = M`v(0),
(c) g(M)v = 0 for all column vectors v,
(d) g(X) is the minimal polynomial of M.

27

Here g(M) is obtained by substituting M for X, so g(M) = M` +

∑t∈T Mt. Recall that the minimal polynomial of a matrix M is the monic
polynomial h of least degree such that h(M) = 0. Over F2, the only coef-
ficients are 0 and 1, so the ‘monic’ condition always holds.

The following proof will be illustrated by an example in lectures. It is
included for interest and logical completeness and is non-examinable.

Proof of Lemma 5.10. When t = 0 we have Mtv(0) = Iv(0) = v(0). Sup-
pose inductively that Mt−1v(0) = v(t− 1). Then

Mtv(0) = M
(

Mt−1v(0)
)
= Mv(t− 1)

is column t− 1 of M; if t < ` this is v(t), as required for (a).
Note that, by (a), M`−1v(0) = v(`− 1). Hence M`v(0) = Mv(`− 1) is

the rightmost column of M, namely ∑t∈T v(t). By (a) this is ∑t∈T Mtv(0),
hence (b). By (b),

g(M)v(0) = (M` + ∑
t∈T

Mt)v(0) = ∑
t∈T

Mtv(0) + ∑
t∈T

Mtv(0) = 0.

More generally, if s < ` then, by (a) and this calculation,

g(M)v(t) = g(M)Mtv(0) = Mtg(M)v(0) = Mt0 = 0.

Hence g(M)v(t) = 0 for 0 ≤ t < `. Now let v be an arbitrary column
vector with entries b0, . . . , b`−1. We have

g(M)v = g(M)
`−1

∑
i=0

biv(i) =
`−1

∑
i=0

big(M)v(i) =
`−1

∑
i=0

bi0 = 0

proving (c).
Finally, by (c), g(M) = 0, the ` × ` zero matrix. Suppose f (M) = 0

where f (X) = f0 + f1X + · · ·+ fdXd. If d < ` then f (M)v(0) = f0v(0) +
· · ·+ fdv(d) 6= 0. Therefore g has the minimum possible degree ` and so
is the minimal polynomial of M. �

Motivated by the lemma we define the minimal polynomial of an LFSR F
of width ` with taps T to be gF(X) = X` + ∑t∈T Xt.

We now show the minimal polynomial determines the period. We
need the following fact: if M is a matrix with entries in F2 and h(X) ∈
F2[X] is a polynomial such that h(M) = 0 then h(X) is divisible by the
minimal polynomial of M.10

10Proof: let g(X) be the minimal polynomial of M. By polynomial division we
have h(X) = q(X)g(X) + r(X) where either r(X) = 0 or deg r(X) < deg g(X).
Then 0 = h(M) = q(M)g(M) + r(M) = q(M)0 + r(M) = r(M) so r(M) = 0.
But g(X) has the least degree of non-zero polynomials such that g(M) = 0, so
r(X) = 0, i.e. g(X) divides h(X).

28

Corollary 5.11. The period of an invertible LFSR F is the least m such that
gF(X) divides Xm + 1.

Proof. We first prove that

gF(X) divides Xd + 1 ⇐⇒ Fd = id.

Suppose that gF(X) divides Xd + 1. Then gF(X)h(X) = Xd + 1 for some
polynomial h(X) and so 0 = gF(M)h(M) = Md + I. Hence Md = I
and so Fd = id. Conversely, if Fd = id then Md = I and so by the fact
above, Xd + 1 is divisible by gF(X). The corollary now follows from the
definition of period. �

It is a useful fact that every LFSR has a cycle of length equal to its
period. (For a proof, non-examinable, see the optional Question 5 on
Sheet 4.) Since there are 2` − 1 non-zero elements of F`

2, this implies that
the period of an LFSR of width ` is at most 2` − 1.

To work with Corollary 5.11, the following lemma is useful. Let hcf(d, e)
denote the highest common factor of d, e ∈N.

Lemma 5.12. If a polynomial g(X) divides Xd + 1 and Xe + 1 then it divides
Xhcf(d,e) + 1.

Example 5.13. The number 213 − 1 = 8191 is a prime. The MATHEMAT-
ICA command Factor[X^8191 + 1, Modulus -> 2] returns

(1 + X)(1 + X + X3 + X4 + X13)(1 + X + X2 + X5 + X13)

(Here . . . stands for 630 omitted factors all of degree 13.) The taps of
the LFSR of width 13 with minimal polynomial 1 + X + X3 + X4 + X13

are {0, 1, 3, 4}. By Corollary 5.11, its period is the least m such that 1 +
X + X3 + X4 + X13 divides Xm + 1. If 1 + X + X3 + X4 + X13 divides
Xe + 1 with e < 8191 then, by Lemma 5.12, 1+X +X3 +X4 +X13 divides
Xhcf(e,8191) + 1 = X + 1, a contradiction. Therefore11 the period is 8191.

Primes such as 213 − 1 are known as Mersenne primes. The largest
known prime number is the Mersenne prime 2277 232 917 − 1 found by the
Great Internet Mersenne Prime Search.

6. PSEUDO-RANDOM NUMBER GENERATION

Lecture 17 The keystream generated by an invertible LFSR can be used as a source
of random numbers. In this section we look at its statistical properties.

11Using some field theory one can see this in another way. If g(X) ∈ F2[X] is
an irreducible polynomial of degree 13 then g splits in the finite field F213 . Since
|F×213 | = 8191, and 8191 is prime, all the roots of g have order 8191. Therefore g is a
primitive polynomial and the corresponding LFSR has maximum possible period
8191. Moreover, all (8191− 1)/13 = 630 irreducible polynomials of degree 13 are
obtained by factorizing X8191 + 1, as seen in the MATHEMATICA calculation.

29

By Lemma 5.7(i), that the maximum possible period of a keystream of
an LFSR of width ` is 2` − 1. Such an LFSR has period 2` − 1. Given any
non-zero k ∈ F`

2, the first 2` − 1 positions of the keystream for k are the
generating cycle for k. (The term ‘m-sequence’ is also used.)

Exercise 6.1. Let F be the LFSR of width 4 with taps {0, 1} and period
15 = 24 − 1 seen in Example 5.1. It has the maximum possible period for
its width. The keystream for k = (1, 1, 0, 0) is

(1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0 . . .).

Correspondingly, by the Very Useful Property,

F(1, 1, 0, 0) = (1, 0, 0, 0), F2(1, 1, 0, 0) = (0, 0, 0, 1), . . . , F14(1, 1, 0, 0) = (1, 1, 1, 0)

and F15(1, 1, 0, 0) = (1, 1, 0, 0). By taking the first 15 positions we get the
generating cycle

(1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1)
k0 k1 k2 k3 k4 k5 k6 k7 k8 k9 k10k11k12k13k14

(a) Find all the positions t such that

(kt, kt+1, kt+2, kt+3) = (0, 1, 1, 1).

(b) What is the only element of F4
2 not appearing in the keystream for

(0, 0, 0, 1)?
(c) Why is the generating cycle for (0, 1, 1, 1) a cyclic shift of the gen-

erating cycle for (1, 1, 0, 0)?
(d) Find all the positions t such that (kt, kt+1, kt+2) = (0, 1, 1). How

many are there?
(e) Repeat (d) changing (0, 1, 1) to (0, 0, 1), (0, 0, 0), (0, 1), (1, 1), (1, 0)

and (0, 0). Explain the pattern.

Proposition 6.2. Let F be an invertible LFSR of width ` and period 2` − 1.
Let k ∈ F`

2 be non-zero and let (k0, k1, . . . , k2`−2) be its generating cycle. We
consider positions t within this cycle, so 0 ≤ t < 2` − 1.

(a) For each non-zero x ∈ F`
2 there exists a unique t such that

(kt, . . . , kt+`−1) = x.

(b) Given any non-zero y ∈ Fm
2 where m ≤ `, there are precisely 2`−m

positions t such that (kt, . . . , tt+m−1) = y.
(c) There are precisely 2`−m − 1 positions t such that (kt, . . . , kt+m−1) =

(0, 0, . . . , 0) ∈ Fm
2 .

Lecture 18In particular, (b) and (c) imply that, in a generating cycle of an invert-
ible LFSR of width ` and maximal possible period, there are 2`−1 ones
and 2`−1 − 1 zeros. How many times do 00, 01, 10 and 11 appear?

30

Exercise 6.3. Write down a sequence of 33 bits, fairly quickly, but trying
to make it seem random. Count the number of zeros and the number of
ones. Now count the number of adjacent pairs 00, 01, 10, 11. Does your
sequence still seem random?

Random sequences of length 33 will have, on average, 8 of each pair
00, 01, 10, 11. But because they are random, some will have more, and
some less. At what point should we suspect that the sequence is not truly
random?

Here we answer this question for the first test in Exercise 6.3, counting
the number of zeros and ones. This is the monobit test.

Exercise 6.4. Let M0 be the number of zeros and let M1 be the number
of ones in a binary sequence B0, B1, . . . , Bn−1 of length n.

(a) Explain why if the bits are random we would expect that M0 and
M1 both have the Bin(n, 1

2) distribution.

(b) Show that the χ2 statistic with (a) as null hypothesis is (M0 −
M1)

2/n.
(c) A sequence with n = 100 has 60 zeros. Does this suggest it is not

truly random? [Hint: if Z ∼ N(0, 1) then P[Z2 ≥ 3.841] ≈ 0.05
and P[Z2 ≥ 6.635] ≈ 0.01. The probability density functions for
Z (solid) and Z2 (dashed) are shown in the margin.]

-2 2 4 6 8

0.1

0.2

0.3

0.4

0.5

See Question 4 on Problem Sheet 5 for the analogous test looking at
pairs.

Another interesting measure of randomness is the degree to which a
sequence is correlated with a shift of itself.

Lecture 19

Definition 6.5. Given (x0, x1, . . . , xn−1) and (y0, y1, . . . , yn−1) ∈ Fn
2 define

csame =
∣∣{i : xi = yi}

∣∣

cdiff =
∣∣{i : xi 6= yi}

∣∣.
The correlation between x and y is (csame − cdiff)/n.

Exercise 6.6. Find the correlation between a generating cycle for the LFSR
of width 3 with taps {0, 1} and each cyclic shift of itself. Does your an-
swer depend on the key?

More generally we shall prove the following proposition.

Proposition 6.7. Let (k0, k1, . . . , k2`−2) be a generating cycle of a maximal
period LFSR of width `. The correlation between (k0, k1, . . . , k2`−2) and any
proper cyclic shift of (k0, k1, . . . , k2`−2) is −1/(2` − 1).

31

Again this shows that a generating cycle of an LFSR of maximum pos-
sible period for its width has a strong randomness property.

7. NON-LINEAR STREAM CIPHERS

Lecture 20A general stream cipher takes a key k ∈ F`
2, for some fixed `, and

outputs a sequence u0, u1, u2, . . . of bits. For each n ∈ N there is a corre-
sponding cryptosystem where, as in Definition 5.3, the encryption func-
tions ek : Fn

2 → Fn
2 are defined by

ek(x) = (u0, u1, . . . , un−1) + (x0, x1, . . . , xn−1).

Exercise 7.1. In the LFSR cryptosystem of Definition 5.3, the sequence
u0, u1, u2, . . . is simply the keystream k0, k1, k2, Show how to find the
key (k0, . . . , k`−1) using a chosen plaintext attack.

One reason why this cryptosystem is weak is because every bit of in-
ternal state appears, unmodified, in the keystream.

Example 7.2. One way to avoid this weakness is to use two or more LFSR
keystreams as the internal state of the stream cipher, adding them to cre-
ate the output keystream. Some care is needed.

• Let F be the LFSR of width 4 with taps {0, 3} of period 15.
The first 20 bits in the keystreams for F with keys k = (1, 0, 0, 0) and
k? = (0, 0, 0, 1) sum to the sequence (u0, u1, . . . , u19) below:

ki 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1
k?i 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1
ui 1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

Unfortunately, (u0, u1, u2, . . .) is also generated by F: it is the keystream
for (1, 0, 0, 1). Exercise:

(a) Explain why this should have been expected. [Hint: the same
linearity was used to prove Proposition 6.7.]

(b) Exercise: can the keys k and k? be recovered from (u0, u1, . . . , u19)?
If so, explain how; if not, is this a problem for the known plaintext
attack?
• Let F′ be the LFSR of width 3 with taps {0, 1} of period 7.

The first 20 bits in the keystreams for F and F′ with keys k = (1, 0, 0, 0)
and k′ = (0, 0, 1) and their sum (u0, u1, . . . , u19) are:

ki 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1
k′i 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1
ui 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

32

Exercise: what is the period of (u0, u1, u2, . . .)?

The exercise is encouraging: combining the LFSRs creates a keystream
with a much longer period than either individually.

The bad news is that the linear algebra method from Question 3 on Sheet 5
shows that the first 10 bits of (u0, u1, u2, . . .) are generated by the LFSR of
width 7 with taps {0, 1, 5, 6}. In fact this holds for the entire sequence.12

So as in (b) above, (u0, u1, u2, . . .) is the output of a single LFSR, and so
the cryptosystem is weak.

To avoid this problem, modern stream ciphers use non-linear func-
tions, such as multiplication. They also avoid using every bit of the inter-
nal state in the keystream.

Example 7.3. A Geffe generator is constructed using three LFSRs F, F′

and G of widths `, `′ and m, all with maximum possible period. Follow-
ing Kerckhoff’s Principle, the widths and taps of these LFSRs are public
knowledge.

• Let (k0, k1, k2, . . .) and (k′0, k′1, k′2, . . .) be keystreams for F and F′

• Let (g0, g1, g2, . . .) be a keystream for G.

The Geffe keystream (u0, u1, u2, . . .) is defined by

ui =

{
ki if gi = 0
k′i if gi = 1.

For example, if F is the LFSR of width 3 with taps {0, 1}, F′ is the LFSR
Lecture 21 of width 4 with taps {0, 3}, and G is the LFSR of width 4 with taps {0, 1}

and (g0, g1, g2, g3) = (0, 0, 0, 1) then [corrected after lecture: F and F′ got
swapped by mistake]

ki 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1
k′i 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1
gi 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0
ui 0, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

Exercise: give an upper bound on the period of (u0, u1, u2, . . .), for this
example, and in general.

The Geffe generator is much better than taking the sum of (k0, k1, k2, . . .)
and (k′0, k′1, k′2, . . .), or their product (see Question 1 on Sheet 6). But it is
vulnerable to a correlation attack.

12See the optional Question 4 on Sheet 6 for a proof this happens regardless of
the choice of the keys k and k′.

33

Exercise: Assume the keys (k0, k1, . . . , k`−1) and (k′0, k′1, . . . , k′`′−1) are cho-
sen with equal probability from F`

2 and F`′
2 , respectively. Find P[ks = us]

for each s ∈N0.13

Thus the correlation between (k0, k1, k2, . . .) and (u0, u1, u2, . . .) is 3
4 − 1

4 =
1
2 . Recall that 0 corresponds to no correlation, 1 to equality in every posi-
tion and −1 to inequality in every position.

Attack 7.4. Suppose that n bits of the Geffe keystream are known. The at-
tacker computes, for each candidate key (v0, v1, . . . , v`−1) ∈ F`

2, the correla-
tion between (v0, v1, . . . , vn−1) and (u0, u1, . . . , un−1). If the correlation is
not nearly 1

2 then the candidate key is rejected. Otherwise it is likely that
(k0, . . . , k`−1) = (v0, . . . , v`−1).

Exercise: is it better to guess the key for F or for F′?

One can repeat Attack 7.4 to learn (k′0, k′1, . . . , k′`′−1). Overall this re-
quires at most 2` + 2`

′
guesses. This is a huge improvement on the 2`+`′

guesses required by trying every possible pair of keys. (Question 1(b) on
Sheet 6 suggests some ways to speed up the second step for k′.)

An attack such as Attack 7.4 is said to be sub-exhaustive because it finds
the key using fewer guesses than brute-force exhaustive search through
the keyspace.

The Geffe cipher is weak because each keystream bit xy is a product
biased to 0. Adding up multiple bits reduces this effect.

Example 7.5. Let F be the LFSR of width 5 with taps {0, 2} and let F′

be the LFSR of width 6 with taps {0, 1, 3, 4}. These have the maximum
possible periods for their widths, namely 25 − 1 = 31 and 26 − 1 = 63.
Fix m ∈N and for each i ≥ m, define

us = ksk′s + ks−1k′s−1 + · · ·+ ks−(m−1)k
′
s−(m−1).

Note that there are m products in the sum. Define us = 0 if 0 ≤ s < m− 1.
[Corrected from s < m] The m-quadratic stream cipher is the cryptosystem
defined using the sequence u0, u1,. . . , u1023.

Taking m = 1 gives a cipher like the Geffe generator: since us = ksk′s we
have P[us = ks] =

3
4 , giving a correlation of 1

2 . Attack 7.4 is effective.

For general m, the expected correlation between keystream of the m-
quadratic stream cipher u0u1u2 . . . u1023 and the keystream k0k1k2 . . . k1023
of the LFSR of width 5 is about 1

2m . (If time permits this will be proved
in the M.Sc. course.) Taking m = 5, this makes the correlation attack in-
effective because the difference between 0 correlation and the correlation
of ± 1

25 from a correct key guess cannot be detected with 210 samples.

13Formally, this means P[Ks = Us], where Ks and Us are the random variables
for the first keystream and the Geffe keystream.

34

The graphs below show correlations for all 31 non-zero keys k when m =
1, m = 3 and m = 5. The correct key is (0, 0, 1, 1, 1), or 7 in binary.

++++++

+

++++++++
+++++++++++

+
++++

5 10 15 20 25 30

-0.1

0.1

0.2

0.3

0.4

0.5

+
++
++

+

+

+
+

+

++

+

++
+

+
+

+
+

+
+
+
+

+

++
++

+

+

5 10 15 20 25 30

-0.10

-0.05

0.05

0.10

0.15

+

+
+
+

+
+++
+
+
+
++

+

+

+
+

+
++

++
++

++

+

++
+
+

5 10 15 20 25 30

-0.10

-0.05

0.05

Exercise 7.6. Unfortunately the m-quadratic cipher is still vulnerable be-
cause taking the sum of two adjacent bits ui and ui−1 in the keystream
cancels out many of the quadratic terms. Use this to find a subexhaustive
attack.

We end by looking at a modern stream cipher which, like the quadratic
cipher mixes multiplication and addition on multiple LFSRs. This com-
bination gives a practical cipher with no known sub-exhaustive attacks.

Example 7.7 (TRIVIUM). Take three LFSRs of widths 93, 84 and 101, tap-
ping positions {0, 27}, {0, 15} and {0, 45}, with internal states x ∈ F93

2 ,
x′ ∈ F84

2 , x′′ ∈ F101
2 . The keystream is defined by

ks = x0 + x27 + x′0 + x′15 + x′′0 + x′′45.

The feedback functions are

f
(
(x0, . . . , x92)

)
= x0 + x27 + x1x2 + x′6

f ′
(
(x′0, . . . , x′84)

)
= x′0 + x15 + x′1x′2 + x′′24

f ′′
(
(x′′0 , . . . , x′′101

)
= x′′0 + x′′14 + x′′1 x′′2 + x24

In each case the final summand introduces a bit from a different shift
register.

Rather than use a 288-bit key, TRIVIUM uses a (secret) 80-bit key, and a
(non-secret) 80-bit initialization vector, setting the other positions in the
internal state to 0.14 The first 1152 bits of the keystream are unusually
biased, and so are discarded.

14See http://www.ecrypt.eu.org/stream/p3ciphers/trivium/trivium_p3.

pdf for details: for consistency, the right-shifting registers in the formal specifi-
cation have been converted to (equivalent) left-shifting registers.

35

(C) Block ciphers

8. INTRODUCTION TO BLOCK CIPHERS AND FEISTEL NETWORKS

Lecture 22In a block cipher of block size n and key length `, P = C = Fn
2 , and

K = F`
2. Since P = C, by Exercise 3.3(ii), each encryption function ek for

k ∈ K is bijective, and the cryptoscheme is determined by the encryption
functions.

In a typical modern block cipher, n = 128 and ` = 128. Since most
messages have more than 128 bits, they have to be split into multiple
blocks, each of n bits, before encryption.

Example 8.1. The binary one-time pad of length n is the block cipher of
block size n and key length n in which ek(x) = x + k for all k ∈ Fn

2 .

The one-time pad has perfect secrecy (see Question 3 on Sheet 3). But it
is not a good block cipher because the key can be deduced from a known
plaintext/ciphertext pair (x, y) by adding x and y, to get x + (x + k) = k.

Modern block ciphers aim to be secure even against a chosen plaintext
attack allowing arbitrarily many plaintexts. That is, even given all pairs(

x, ek(x)
)

for x ∈ Fn
2 , there should be no faster way to find the key k then

exhausting over all possible keys in the keyspace F`
2.

The following example aims to give some idea of the ‘needle in haystack’
effect of a strong block cipher, and why it is non-trivial to design one.

Example 8.2. Take n = 3 so P = C = F3
2. The toy block cipher has K = F8

2.
The encryption functions are 256 of the permutations ek : F3

2 → F3
2 for

k ∈ K, chosen according to a fairly arbitrary rule (details omitted). For
example, since 11111100 ∈ F8

2 is the binary form of 252, and 010 ∈ F3
2 is

the binary form of 2, diagram 252 shows that e11111100(010) = 000.

2402402402402402402402400 0
1 1
2 2
3 3
4 4
5 5
6 6
7 7

2412412412412412412412410 0
1 1
2 2
3 3
4 4
5 5
6 6
7 7

2422422422422422422422420 0
1 1
2 2
3 3
4 4
5 5
6 6
7 7

2432432432432432432432430 0
1 1
2 2
3 3
4 4
5 5
6 6
7 7

2442442442442442442442440 0
1 1
2 2
3 3
4 4
5 5
6 6
7 7

2452452452452452452452450 0
1 1
2 2
3 3
4 4
5 5
6 6
7 7

2462462462462462462462460 0
1 1
2 2
3 3
4 4
5 5
6 6
7 7

2472472472472472472472470 0
1 1
2 2
3 3
4 4
5 5
6 6
7 7

2482482482482482482482480 0
1 1
2 2
3 3
4 4
5 5
6 6
7 7

2492492492492492492492490 0
1 1
2 2
3 3
4 4
5 5
6 6
7 7

2502502502502502502502500 0
1 1
2 2
3 3
4 4
5 5
6 6
7 7

2512512512512512512512510 0
1 1
2 2
3 3
4 4
5 5
6 6
7 7

2522522522522522522522520 0
1 1
2 2
3 3
4 4
5 5
6 6
7 7

2532532532532532532532530 0
1 1
2 2
3 3
4 4
5 5
6 6
7 7

2542542542542542542542540 0
1 1
2 2
3 3
4 4
5 5
6 6
7 7

2552552552552552552552550 0
1 1
2 2
3 3
4 4
5 5
6 6
7 7

The other 240 permutations are posted on Moodle and will be available
in the lecture.

Suppose Alice and Bob used the toy block cipher with their shared secret
key k.

36

(i) By a chosen plaintext attack Mark learns that ek(000) = 101 and
ek(001) = 111. One possible key is 254. There are six others: find
at least one of them.

(ii) By choosing two further plaintexts Mark learns that ek(011) = 001
and ek(110) = 011. Determine k.

(iii) Later Mark’s boss Eve observes the ciphertext 100. What is dk(100)?
In this case since |F3

2| = 8, there are 8! = 40320 permutations of F3
2, of

which 256 were used.

A typical modern block cipher uses 2128 ≈ 3.40× 1030 [corrected af-
ter lecture] permutations of F128

2 . To store just one of these permutations
needs a list of 2128 pairs (x, ek(x)), one pair for each x ∈ F128

2 . Since 2128

bits is about 4.25× 1028GB, this is impractical. Instead each encryption
function ek must be computed as it is used. Experience shows that com-
posing sufficiently many simple operations gives encryption functions
that ‘look random’.

Feistel networks.

Definition 8.3. Let m ∈ N and let f : Fm
2 → Fm

2 be a function. Given v,
w ∈ Fm

2 , let (v, w) denote (v0, . . . , vm−1, w0, . . . , wm−1) ∈ F2m
2 . The Feistel

network for f is the function F : F2m
2 → F2m

2 defined by

F
(
(v, w)

)
= (w, v + f (w)).

This can be compared with an LFSR: we shift (v, w) left by m positions
to move w to the start. The analogue of the feedback function is (v, w) 7→
v + f (w). It is linear in v, like an LFSR, but typically non-linear in w.

The circuit diagrams below show two equivalent definitions of the
Feistel network: the right-hand diagram makes the analogy with LFSRs
more obvious.

v w

f

f(w)

v+f(w)

w v + f(w)

f

v w
w

w

f(w)

v+f(w)

v

Exercise 8.4. Show that, for any function f : Fm
2 → Fm

2 , the Feistel net-
work F for f is invertible. Give a formula for its inverse in terms of f .

See Question 3 on Problem Sheet 7 for an extension of this exercise,
showing that decryption can be performed by the same circuitry as en-
cryption.

37

A block cipher of Feistel type is defined by iterating a Feistel network
for a fixed number of rounds. The function f for each round depends on
a round key, constructed using the key k ∈ F`

2.

Example 8.5 (Q-block cipher). Take m = 4 and let

S
(
(x0, x1, x2, x3)

)
= (x2, x3, x0 + x1x2, x1 + x2x3).

We define a block cipher with block size 8 and key length 12 composed
of three Feistel functions. If the key is k ∈ F12

2 we define the three round
keys by

k(1) = (k0, k1, k2, k3), k(2) = (k4, k5, k6, k7), k(3) = (k8, k9, k10, k11).

The Feistel function in round i is x 7→ S(x + k(i)).

Since in each round the contents of the right register shift to the left,
we can consistently denote the output of round i by (v(i), v(i+1)). Thus
the plaintext (v, w) ∈ F16

2 is encrypted to the cipher text ek
(
(v, w)

)
=

(v(3), v(4)) in three rounds:

(v, w) = (v(0), v(1)) 7→
(
v(1), v(0) + S(v(1) + k(1))

)
= (v(1), v(2))

7→
(
v(2), v(1) + S(v(2) + k(2))

)
= (v(2), v(3))

7→
(
v(3), v(2) + S(v(3) + k(3))

)
= (v(3), v(4)).

Exercise 8.6.
Lecture 23(a) Suppose that k = 0001 0011 0000, shown split into the three round

keys. Show that

ek
(
(0, 0, 0, 0, 0, 0, 0, 0)

)
= (1, 1, 1, 0, 1, 1, 0, 1)

(b) Find dk
(
(0, 0, 0, 0, 0, 0, 0, 0)

)
if the key is as in (a).

(c) Suppose Eve observes the ciphertext (v(3), v(4)) from the Q-block
cipher. What does she need to know to determine v(2)?

Exercise 8.7. Suppose we change the Feistel function in round i to x 7→
S(x) + k(i). What is (v(1), v(2)) in terms of v, w and k(1)? Which cipher is
likely to be stronger?

DES (Data Encryption Standard 1975). DES is a Feistel block cipher of
block size 64. The key length is 56, so the keyspace is F56

2 . Each round
key is in F48

2 . There are 16 rounds. (Details of how the 16 round keys are
derived from the key are omitted.)

The Feistel function f : F32
2 → F32

2 is defined in three steps using eight
functions S1, . . . , S8 : F6

2 → F4
2. Start with x ∈ F32

2 and a round key
k(i) ∈ F48

2 . Then

38

(a) Expand x by a linear function (details omitted) to x′ ∈ F48
2 .

(b) Add the 48-bit round key to get x′ + k(i).
(c) Let x′ + k(i) = (y(1), . . . , y(8)) where y(j) ∈ F6

2 for each j. Let

z =
(
S1(y(1)), . . . , S8(y(8))

)
∈ F32

2 .

(d) Apply a permutation (details omitted) of the positions of z.

Note that (a) and (d) are linear, and (b) is a conventional key addition in
F48

2 . So the S-boxes in (c) are the only source of non-linearity. (Here ‘S’
stands for ‘substitution’.)

• The aim of (c) is ‘confusion’: to make the relationship between
nearby bits of the plaintext and ciphertext complicated and non-
linear.
• The aim of (d) is ‘diffusion’: to turn confusion between nearby

bits into long range confusion.

No sub-exhaustive attacks on DES are known. But the relatively small
keyspace F56

2 means that exhaustive attacks are practical. Therefore DES
cannot be considered secure. Some timings:

• 1997: 140 days, distributed search on internet
• 1998: 9 days ‘DES cracker’ (special purpose) $250000
• 2017: 6 days ‘COPACOBONA’ (35 FPGA’s) $10000

Lecture 24

Exercise 8.8. Suppose we apply DES twice, first with key k ∈ F56
2 then

with k′ ∈ F56
2 . So the keyspace is F56

2 ×F56
2 and for (k, k′) ∈ F56

2 ×F56
2 ,

e(k,k′)(x) = e′k
(
ek(x)

)
.

(a) How long would a brute force exhaustive search over F56
2 × F56

2
take?

(b) Does this mean 2DES is secure?

See Question 4 on Problem Sheet 7 for 3DES (Triple-DES): it has keyspace
F56

2 ×F56
2 ×F56

2 and encryption functions defined by

e(k,k′,k′′)(x) = e′′k
(
d′k
(
ek(x)

))
.

The DES model, of combining a non-linear S-box with linear maps and
key additions in Fn

2 , is typical of block ciphers.

AES (Advanced Encryption Standard 2002). AES is the winner of an open
competition to design a successor to DES. Its block size is 128 and its key
length is 128 (with variants allowing 192 and 256). It is not a Feistel ci-
pher, but it is still built out of multiple rounds, like DES. The non-linearity
comes from a function defined using the finite field F28 .

39

The next two examples show the two main building blocks of AES.

Example 8.9. The affine block cipher of block size n has keyspace all pairs
(A, b), where A is an invertible n×n matrix with entries in F2 and b ∈ Fn

2 .
The encryption functions e(A,b) : Fn

2 → Fn
2 are defined by

e(A,b)(x) = xA + b.

We will define the decryption functions in lectures and see that, used on
its own, the affine block cipher is vulnerable to a chosen plaintext attack.

Lecture 25
Example 8.10. Let α be an indeterminate. Define

F28 = {x0 + x1α + · · ·+ x7α7 : x0, x1, . . . , x7 ∈ F2}.
Elements of F8

2 are added and multiplied like polynomials in α, but when-
ever you see a power αd where d ≥ 8, eliminate it16 using the rule

1 + α + α3 + α4 + α8 = 0.

For example (1 + α) + (α + α5) = 1 + α5 and

α9 = α× α8 = α(1 + α + α3 + α4) = α2 + α3 + α4 + α5.

Multiplying the defining rule for α by α−1, we get α−1 + 1 + α2 + α3 +
α7 = 0 so α−1 = 1 + α2 + α3 + α7.

Definition 8.11. Let F28 be the finite field of size 28 as in Example 8.10.
Define p : F28 → F28 by

p(β) =

{
β−1 if β 6= 0
0 if β = 0.

.

Let P : F8
2 → F8

2 be the corresponding function defined by identifying F8
2

with F2(α) by (x0, x1, . . . , x7)←→ x0 + x1α + x2α2 + · · ·+ x7α7.

For example, writing elements of F8
2 as words of length 8 (with a small

space for readability):

(1) 1000 0000←→ 1 ∈ F28 and 1−1 = 1, so P(1000 0000) = 10000000
(2) 0100 0000 ←→ α ∈ F28 and α−1 = 1 + α2 + α3 + α7 was found in

Example 8.10, so P(0100 0000) = 10110001.

Exercise: Show that P(0010 0000) = 1101 0011.

There are 10 rounds in AES. In each round, the input x ∈ F128
2 is split

into 16 subblocks each in F8
2.

Lecture 26
16An equivalent definition using some ring theory is F28 = F2[X]/〈1 + X +

X3 + X4 + X8〉; now α is the coset X + 〈1 + X + X3 + X4 + X8〉 in the quotient
ring. The polynomial 1 + X + X3 + X4 + X8 was chosen by the designers of AES:
it is irreducible (this is essential) but not primitive.

40

• The pseudo inverse function P : F8
2 → F8

2 is applied to each sub-
block followed by an affine transformation F8

2 → F8
2, of the type

in Example 8.9. This gives confusion and diffusion within each
subblock. (SUBBYTES.)

• Diffusion across all 128 bits comes from a row permutation of the
16 subblocks, organized into a 4× 4 grid

q(0) q(4) q(8) q(12)
q(1) q(5) q(9) q(13)
q(2) q(6) q(10) q(14)
q(3) q(7) q(11) q(15)

−→
q(0) q(4) q(8) q(12)

q(13) q(1) q(5) q(9)
q(10) q(14) q(2) q(6)
q(7) q(11) q(15) q(3)

and a further mixing of each column by an invertible linear map
(SHIFTROWS and MIXCOLUMNS)

• The round key in F128
2 is added (ADDROUNDKEY).

There are no known sub-exhaustive attacks on AES. It is the most com-
monly used block cipher. Since 2010 Intel and AMD microprocessors
have supported AES as a primitive operation. AES was defined to be ef-
ficient in hardware: for example, the subblocks fit exactly into 8-bit bytes.

There are also versions of AES defined with keyspace F192
2 and F256

2 ,
using 12 or 14 rounds, respectively.

Modes of operation. A block cipher of block size n encrypts plaintexts in
Fn

2 to ciphertexts in Fn
2 . If x is longer than n bits, it must be split into

blocks x(1), . . . , x(m) ∈ Fn
2 :

x = (x(1), . . . , x(m)).

Fix a key k ∈ K: this is only key used.

• In Electronic Codebook Mode, the encryption function ek is ap-
plied to each block in turn:

x(1) 7→ ek(x(1)), x(2) 7→ ek(x(2)), . . . , x(m) 7→ ek(x(m))

• Cipher Block Chaining:

x(1) 7→ ek(x(1)) = y(1)

x(2) 7→ ek(y(1) + x(2)) = y(2)

...

x(m) 7→ ek(y(m−1) + x(m)) = y(m)

If x(i) = x(j) then, in Electronic Codebook Mode, the ciphertext blocks
ek(x(i)) and ek(x(j)) are equal. This leads to frequency attacks, as seen in
Example 2.5 for the substitution cipher. This is a weakness of the mode
of operation, not of the underlying block cipher. Cipher Block Chaining
avoids this problem.

41

9. DIFFERENTIAL CRYPTANALYSIS

Differential cryptanalysis was known to the designers of DES in 1974.
They kept it secret, at the request of the NSA. It was rediscovered in the
late 1980s.

One important idea is seen in the attack on the reused one-time pad in
Question 2 on Problem Sheet 3. We have unknown plaintexts x, x∆ ∈ Fn

2 ,
an unknown key kotp ∈ Fn

2 , and known ciphertexts x+ kotp and x∆ + kotp.
Adding the known ciphertexts gives x + x∆, independent of kotp.

Put another way, if two plaintexts x, x∆ differ by a difference ∆, so x +
x∆ = ∆, then so do their encryptions: (x + kotp) + (x∆ + kotp) = ∆.

The DES S-boxes and the pseudo-inverse function P : F8
2 → F8

2 in
AES are chosen to avoid this weakness. By the exercise below an output
difference of 1 to P can come from many different input differences.

Exercise 9.1. Let Γ ∈ F8
2 be non-zero. Show that

{
w ∈ F8

2 : P(w) + P(w + Γ) = 1
}

has size 0 or 2, except when Γ = 1, when it has size 4. [Hint: quadratic
equations over any field have at most two roots.]

A similar result holds replacing 1 with a general non-zero ∆ ∈ F8
2; the

exceptional case is then Γ = ∆−1. (See the optional question on Problem
Sheet 8.)

Exercise 9.2. Fix Γ = F8
2. Let w ∈ F8

2 be chosen uniformly at random.
What are the possible values for P[P(w) + P(w + Γ) = 1]?

Lecture 27Attack 9.3. Let ek : Fn
2 → Fn

2 for k ∈ F`
2 be the encryption functions for a

block cipher of block size n and key length `. For (kotp, k) ∈ Fn
2 × F`

2, define
E(kotp,k) : Fn

2 → Fn
2 by

E(kotp,k)(x) = ek(x + k).

Let ∆ ∈ Fn
2 . In a chosen plaintext attack on the cryptosystem E, we choose

x ∈ Fn
2 and a difference ∆ ∈ Fn

2 and obtain the ciphertexts

z = E(kotp,k)(x)

z∆ = E(kotp,k)(x + ∆)

Set Γ = z + z∆. Then e−1
k (z) + e−1

k (z∆) = ∆. Moreover, for kguess ∈ F`
2, either

e−1
kguess

(z) + e−1
kguess

(z∆) 6= ∆

and we deduce kguess 6= k, or

e−1
kguess

(z) + e−1
kguess

(z∆) = ∆

42

and then kguess ∈ Kz where

Kz =
{

kguess ∈ Fn
2 : e−1

kguess
(z) + e−1

kguess
(z + Γ) = ∆

}
.

[There was an erroneous exercise here: Exercise 9.5 is what was meant.]

Intuitively: for the correct key k, undoing the second cipher we get
back the difference ∆; for wrong keys, we get ∆ only if kguess has the
special property that kguess ∈ Kz, where z = E(kotp,k)(x).

If the block cipher is good then Kz is small. Therefore false keys, where
we do not immediately see that our guess is wrong, are rare. Note that
we guess k, but not kotp.

Attack on the AES S-box. We apply Attack 9.3 to a cryptosystem based on
the pseudo-inverse function P : F8

2 → F8
2 used in AES.

Example 9.4. Take n = 8 and ` = 8. For k ∈ F8
2, define

ek(y) = P(y) + k

Note that e−1
k (z) = P(z + k) and so

e−1
kguess

(z) + e−1
kguess

(z∆) = P(z + kguess) + P(z∆ + kguess).

By definition z∆ = z + Γ. Hence the set Kz in Attack 9.3 is

Kz = {kguess ∈ F8
2 : P(z + kguess) + P(z + kguess + Γ) = ∆}.

Running the attack: Take ∆ = 1000 0000; this corresponds to 1 ∈ F28 . For
each kguess ∈ F8

2, we compute P(z+ kguess)+ P(z∆ + kguess). If the answer
is ∆ then kguess ∈ Kz and kguess is either k or a false key. Otherwise we
reject kguess.

By the generalized version of Exercise 9.1, there are usually exactly two
different kguess ∈ F8

2 such that P(z + kguess) + P(z + kguess + Γ) = ∆. One
must be k.

Exercise 9.5. Show that k + Γ ∈ Kz

So usually Kz = {k, k + Γ} and the attack in Attack 9.3 finds the key and
the false key k + Γ; very rarely, when ∆ = Γ−1, there are three false keys.

In the following examples we take kotp = 0000 0000.

(1) If k = 0000 0000 and x = 0100 0000 then, since P(0100 0000) =
1011 0001 and P(1100 0000) = 0110 1111, z + z∆ = 1101 1110.
There are exactly 2 keys kguess such that k ∈ Kz, namely

0000 0000, 1101 1110.

43

(2) If k = 0000 0000 and x = 0000 0000 then z + z∆ = 1000 0000 and
there are exactly 4 keys kguess such that k ∈ Kz, namely

0000 0000, 1000 0000, 0011 1101, 1011 1101.

(To check this you will need to know P(0011 1101) = 1011 1101
and so, since P(P(x)) = x for all x ∈ F8

2, P(1011 1101) = 0011 1101.)
This is the exceptional case when ∆−1 = Γ.

(3) Exercise: let k = 1111 1111. What are the guesses kguess if x =
0100 0000? What if x = 0000 0000? [Hint: use (1) and (2).]

Exercise 9.6.
(a) Show that the attack typically finds k and the false key k+ Γ using

at most 2× 28 decryptions to calculate e−1
kguess

(z) and e−1
kguess

(z∆).
(b) How many encryptions are needed to test all the pairs (kotp, k)

and (kotp, k + Γ) for kotp ∈ F8
2?

(c) Deduce that the attack finds the key (kotp, k) using at most 210

decryptions/encryptions. Why is this sub-exhaustive?

Example 9.4 should be compared with the meet-in-the-middle attack
on 2DES: both show that composing two block ciphers may not give a
significantly stronger cipher.

Lecture 28Attack on the Q-block cipher. Recall that we write elements as F8
2 as pairs

(v, w) where v ∈ F4
2 and w ∈ F4

2. In round 1 of the Q-block cipher (see Ex-
ample 8.5), the Feistel network sends (v, w) to

(
w, v + S(w + k(1))

)
where

S
(
(x0, x1, x2, x3)

)
= (x2, x3, x0 + x1x2, x1 + x2x3).

Lemma 9.7.
(i) For any x ∈ F4

2 we have S(x + 1000) = S(x) + 0010.
(ii) For any (v, w) ∈ F8

2 and any round key k(1) ∈ F4
2 we have

(
w, v + S(w + k(1))

)
+
(
w + 1000, v + S(w + 1000+ k(1))

)
= (1000, 0010).

By (ii) the first round of the Q-block cipher has a similar weakness
to the one-time pad: plaintexts (v, w) differing by (0000, 1000) are en-
crypted to vectors differing by (1000, 0010). Thus the first round of the Q-
block cipher behaves like a one-time pad, provided we take ∆ = (0000, 1000).

Example 9.8. We run Attack 9.3 on the Q-block cipher by taking ∆ =
(0000, 1000) and guessing the final 8 bits of the key k to undo the final
two rounds.

Take k = 0000 0000 0000 and x = 0000 0001. There are 16 keys kguess ∈ F8
2

such that kguess ∈ Kz, namely all binary words of the form ?0?0 ?0?0.
These are the possibilities for

(k(2)guess, k(3)guess) ∈ F8
2.

44

Trying each guess together with all 16 possibilities for k(1)guess ∈ F4
2 we get

k ∈ {0000 0000 0000, 1000 0010 1000, 1110 1000 0010, 0110 1010 1010}.
All these keys encrypt 0000 0001 to the same ciphertext, namely 0000 0100.
Repeating the attack with a different plaintext shows that k is one of the
first two keys.

That we are left with two keys is explained by Question 2 on Sheet 8:
it follows from Lemma 9.7(i) that, in the Q-block cipher, the encryption
functions ek and ek+1000 0010 1000 are the same.

45

(D) Public key ciphers and digital signatures

10. INTRODUCTION TO PUBLIC KEY CRYPTOGRAPHY

We begin with a way that Alice and Bob can establish a shared secret
key, communicating only over the insecure channel on page 4.

Everything in red is private. Everything not in red is known to the
whole world— this includes the eavesdropper Eve. (This is not a stan-
dard convention, and you are welcome to ignore it if you prefer.)

Example 10.1. Alice and Bob need a 128-bit key for use in AES. They
agree a prime p such that p > 2128. Then

(1) Alice chooses a secret a ∈N with 1 ≤ a < p. Bob chooses a secret
b ∈N with 1 ≤ b < p.

(2) Alice sends Bob 2a mod p. Bob sends Alice 2b mod p. (Note that
a and b are secret, but 2a and 2b are sent publically.)

(3) Alice computes (2b)a mod p and Bob computes (2a)b mod p.
(4) Now Alice and Bob both know 2ab mod p. They each calculate

the number 2ab mod p in binary and take its final 128 bits to get
an AES key.

After (2), the eavesdropper Eve knows p, 2a mod p and 2b mod p. It is
believed that it is hard for her to use this information to find 2ab mod p.
The difficulty can be seen even in small examples.

After (4) Alice and Bob can communicate using the AES cryptosys-
tems, which has no known sub-exhaustive attacks.

So remarkably, Alice and Bob can communicate securely without ex-
changing any private key material.

Exercise 10.2. Let p = 11. As Eve you know that Alice has sent Bob 6.
Do you have any better way to find a such that 2a = 6 than trying each
possibility?

n 0 1 2 3 4 5 6 7 8 9

2n mod 11 1 2 4 8 5 10 9 7 3 6

To compute this table it is not necessary to calculate, for instance, 28 =
256, and then reduce it modulo 11. Instead, just double the previous
entry. Thus from 27 ≡ 7 mod 11 we get 28 ≡ 7× 2 = 14 ≡ 3 mod 11.

This exercise shows two number-theoretic facts that will be needed be-
low. (See also Fact 10.5 below.)

• Fermat’s Little Theorem: cp−1 ≡ 1 mod p [Corrected from mod
c] for any c not divisible by p.

46

• If cm 6≡ 1 mod p for all m such that 1 ≤ m < p− 1, then c is said to
be a primitive root modulo p. If c is a primitive root then, working
modulo p, we have

{1, c, c2, . . . , cp−2} = {1, 2, . . . , p− 1}
Primitive roots always exist17: in Exercise 10.2 we took c = 2.

Note that 2 is not always a primitive root: for example if p = 127 then
we have 27 = 128 ≡ 1 mod 127, so the powers of 2 are {1, 2, 4, 8, 16, 32, 64},
giving only 7 of the 126 non-zero elements.

Diffie–Hellman Key Exchange. This is nothing more than Example 10.1,
modified to avoid some potential weaknesses, and implemented effi-
ciently.

• The prime p is chosen so that p − 1 has at least one large prime
factor. (This is true of most primes. There are fast ways to decide
if a number is prime.)

• Rather than use 2, Alice and Bob use a primitive root modulo p,
so every element of {1, . . . , p − 1} is congruent to a power of g.
(The base is public.)

• Alice and Bob compute ga mod p and gb mod p by repeated squar-
ing: see Question 1 on Sheet 9 [Not Sheet 7]. This method is faster
than the repeated doubling seen in Exercise 10.2. Either method
shows that ga can be computed using only numbers of size about
p.

• The shared key is gabmod p.
Diffie–Hellman can be turned into the ElGamal cryptosystem: see Ques-

tion 6 [Not 2] on Sheet 9. But it is faster to use it, as defined above, to
establish a shared key, and then use this key with a fast block cipher such
as AES.

One-way functions. A one-way function is a bijective function that is fast to
compute, but whose inverse is hard to compute. It is beyond the scope of
this course to make this more precise.

It is not known whether one-way functions exist. Their existence im-
plies P 6= NP: very roughly, if P = NP then any problem whose solution
is quick to check, such as Sudoku, is also quick to solve. It is widely
believed that P 6= NP, but no proof is known.

17Let Z×p = {1, . . . , p− 1} be the multiplicative group of Zp. Claim: Z×p is cyclic
of order p− 1. Proof: if an abelian group A has elements of order t and t′ then it has
an element of order lcm(t, t′). Hence if t is greatest such that Z×p has an element
of order t then xt = 1 for all x ∈ Z×p . But a polynomial of degree t has at most t
roots, hence t ≥ p− 1. 2

47

Diffie–Hellman key exchange is secure only if, given g and gx it is hard
to find x. (This is called the Discrete Log Problem.) Equivalently, the
function

f : {0, . . . , p− 2} → {1, . . . , p− 1}
defined by f (x) = gx mod p, is one-way. This is widely believed to be the
case. But it more likely that the Discrete Log Problem is easy than that
AES has a sub-exhaustive attack.

Exercise 10.3. Why do we exclude p− 1 from the domain of f ?

Inverting modular exponentiation. In the RSA cryptosystem, we use mod-
ular exponentiation as the encryption map. We therefore need to know
when it is invertible.

Lemma 10.4. If p is prime and hcf(a, p− 1) = 1 then the inverse of x 7→ xa

mod p is y 7→ yr mod p, where ar ≡ 1 mod p− 1.

For example, x 7→ x3 mod 29 is invertible, with inverse y 7→ y19 mod
29. This works, since after applying both functions, in either order, we
send x to x57; by Fermat’s Little Theorem, x57 = x28×2+1 = (x28)2x ≡ x
mod 29. On the other hand x 7→ x7 mod 29 is not invertible: working
mod 29 the image is {1, 27, 214, 221} = {1, 12, 28, 17}.

Given p and a with hcf(a, p− 1) = 1, one can use Euclid’s algorithm to
find s, t ∈ Z such that as + (p− 1)t = 1. Then as = 1− pt so as ≡ 1 mod
p− 1, and we take r ≡ s mod p− 1. For example, if p = 29 and c = 5
then we have 28 = 9× 3 + 1 so

1 = 3× (−9) + 28× 1

and s = −9. Since −9 ≡ 19 mod 28, we take r = 19, as above.

This example shows all the ideas needed for the proof of Lemma 10.4,
and shows that it is fast to find r. Thus we cannot use x 7→ xa mod p as a
secure encryption function.

Fact 10.5. Let p and q be distinct primes. Let n = pq. If

hcf
(
c, (p− 1)(q− 1)

)
= 1

then x 7→ xc mod n is invertible with inverse y 7→ yr mod n, where cr ≡ 1 mod
(p− 1)(q− 1).

Example 10.6. Let p = 11, q = 17, so n = pq = 187 and (p− 1)(q− 1) =
160. Let c = 9. Adapting the proof for Lemma 10.4, we use Euclid’s
Algorithm to solve 9s + 160t = 1, getting s = −71 and t = 4. Since
−71 ≡ 89 mod 160, the inverse of x 7→ x9 mod 187 is y 7→ y89 mod 187.

48

Thus given p, q and c, it is easy to find r as in Fact 10.5. But it is believed
to be hard to find r given only n and c. If so, x 7→ xc mod n is a one-way
function, suitable for use as the encryption function in a cryptosystem.

In this context the term trapdoor function is also used: knowing the trap-
door, here the factors p and q, makes it easy to compute the inverse.

By contrast, the function f : {0, . . . , p− 2} → {1, . . . , p− 1} defined by
f (x) = gx is not a suitable encryption function, since while it is believed
to be one-way, there is no known trapdoor that makes it fast to compute
the inverse.

RSA Cryptosystem. Let n = pq be the product of distinct primes p and q.
In the RSA Cryptosystem, with RSA modulus n,

P = C = {0, 1, . . . , n− 1}
and

K =
{
(p, q, c) : c ∈ {1, . . . , n− 1}, hcf

(
c, (p− 1)(q− 1)

)
= 1

}
.

The public key corresponding to (p, q, c) is (n, c) and the private key cor-
responding to (p, q, c) is (n, r), where cr ≡ 1 mod (p − 1)(q − 1). The
encryption function for (p, q, c) is

x 7→ xc mod n

and the decryption function is

y 7→ yr mod n.

Note that anyone knowing the public key can encrypt, but only someone
knowing the private key (or the entire key (p, q, c)) can decrypt.

Example 10.7.
(1) For a small example, take p and q as in Example 10.6. If Alice’s

public key is (187, 9) then her private key is (187, 89). If Bob’s
message is 10 then he sends 109 to Alice, since 109 ≡ 109 mod
187. Alice decrypts to 10 by computing 10989 mod 187.

(2) The MATHEMATICA notebook PKC.nb available from Moodle can
be used when p and q are bigger.

Typically p and q are chosen so that the standard exponent a =
216 + 1 = 65537 is coprime to (p − 1)(q − 1). Since 216 + 1 is
prime, this can be checked just by dividing p − 1 and q − 1 by
216 + 1. Then xc mod n can be computed quickly by repeated
squaring, as in Question 1 on Problem Sheet 9.

Question 6 on Sheet 9 shows that knowing (p − 1)(q − 1) and n is
equivalent to knowing p and q; this makes it unlikely that there is an
attack on RSA other than by factorizing n.

49

The best known factoring algorithm is the Number Field Sieve. It was
used to factorize a 768 bit n in 2010. This took about 1500 computer years,
in 2010 technology. NIST (the US standard body) now recommend that n
should have 2048 bits.

Extra: Historical note. Diffie–Hellman Key Exchange was published18 in
1976. The RSA Cryptosystem, named after Rivest, Shamir and Adle-
man was published19 in 1977. Both papers are clearly written and worth
reading—as here, the original account is often one of the best.

It emerged in 1997 that the RSA cryptoscheme had been discovered
in GCHQ in 1973 by Cocks, building on work of another GCHQ-insider,
Ellis, who had suggested in 1969 that ‘non-secret’ encryption might be
possible. Later in 1973 Williamson discovered Diffie–Hellman Key Ex-
change. See www.wired.com/1999/04/crypto/ for a good account.

Extra: Post-quantum cryptography. Computers operate on the bits {0, 1},
and binary words made up of these bits. Quantum computers operate
instead on qubits: a typical qubit is a ‘superposition’ of 0 and 1. For ex-
ample, in the standard notation, |0〉+ |1〉 is a qubit that, when measured,
is equally likely to collapse to each of the classical bits 0 and 1. Two en-
tangled qubits are the quantum analogue of a classical binary word in F2

2.

Quantum computers can perform some computations far more quickly
than classical computers. In particular, using Shor’s Algorithm, a quan-
tum computer can quickly factor integers. However to factor a 2048 bit
RSA number n into its two primes p and q requires a quantum computer
with at least 2048 qubits. In March 2018, Google reportedly tested a quan-
tum processor with 72 qubits. There is an ongoing debate over whether
large scale quantum computing is feasible: it is possible we will find out
within our lifetimes.

Because of this NIST is running a competition to choose a public key
cryptosystem resistant to quantum attacks. (A similar competition led to
the block cipher AES.) Proposals have been submitted using the mathe-
matics of error-correcting codes, lattices and elliptic curves. Much inter-
esting work has been done on evaluating these cryptosystems: it is an
exciting time for cryptography.

18Diffie, Whitfield; Hellman, Martin E., New directions in cryptography, IEEE
Trans. Information Theory 22 (1976) 644–654.

19Rivest, R. L.; Shamir, A.; Adleman, L., A method for obtaining digital signatures
and public-key cryptosystems, Comm. ACM 21 (1978) 120–126.

50

11. DIGITAL SIGNATURES AND HASH FUNCTIONS

Using the ASCII encoding (see Question 2 on Problem Sheet 5), any
message in any language can be represented by a natural number. In this
section we suppose the possible messages are elements of N0.

Digital signatures. Suppose Alice and Bob have RSA keys:

public private

Alice (m, a) (m, r)
Bob (n, b) (n, s)

Suppose Bob wants to tell Alice his bank details in a message x. He
looks up her public key (m, a) and sends her xa mod m. (Assume that
x < m.)

Malcolm, the man-in-the-middle, cannot decrypt xa mod m, because
he does not know r. But if he has control of the channel, he can replace
xa mod m with another x′a mod m, of his choice.

To do this, Malcolm must know Alice’s public key. For comparison,
using a symmetric cipher such as DES or AES, only Alice and Bob know
the encryption function ek, so Malcolm cannot attack in this way.

How can Alice be confident that a message signed ‘Bob’ is from Bob,
and not from Malcolm pretending to Bob?

Example 11.1. Alice is expecting a message from Bob. She receives z,
and computes da(z) = zr mod m, but gets garbage. Thinking that Bob
has somehow confused the keys, she computes zb mod n, and gets the
ASCII encoding of

‘Bob here, my account number is 40081234’.

(a) How did Bob compute z?
(b) Should Alice believe z was sent by Bob?
(c) Can Malcolm read z?
(d) How can Bob avoid the problem in (c)?

Let x ∈ N0 be Bob’s message. If Bob’s RSA number n is about 22048

then the message x is a legitimate ciphertext only if x < 22048. This may
seem big, but, using the 7-bit ASCII coding, it means only 2048/7 ≈ 290
characters can be sent. Bob can get round this by splitting the message
into blocks, but computing db(x(i)) for each block x(i) ∈ {1, . . . , n− 1} is
slow. It is better to send x, and then append db(v) where v is a hash of x.

51

Hash functions and the birthday paradox.

Definition 11.2.
(a) A hash function of length m is a function h : N0 → Fm

2 . The value
h(x) is the hash of the message x ∈N0.

(b) Let (n, b) be Bob’s public key in the RSA cryptosystem. The pair(
x, db(h(x))

)
is a signed message from Bob.

Alice verifies that a pair (x, s) is a valid signed message from Bob by
checking that h(x) = eb(s).

A cryptographically useful hash function has the following properties:
(a) It is fast to compute h(x).
(b) Given a message x ∈ N0, and its hash h(x), it is hard to find

x′ ∈N such that x′ 6= x and h(x′) = h(x). (Preimage resistance.)
(c) It is hard to find a pair (x, x′) with x 6= x′ such that h(x) = h(x′).

(Collision resistance.)

When Alice receives the signed message (x, s) from Bob, she verifies
that h(x) = eb(s), and so s = db(h(x)). She now knows that Bob has
decrypted (that is signed), the hash value h(x). Only Bob can do this.
So an attacker who wants to change x has to replace x with some x′ with
h(x′) = h(x). By preimage resistance, it is hard for the attacker to find any
such x′. Therefore Alice can be confident that x really is Bob’s message.

A good hash function of length m behaves like a random function from
N0 to Fm

2 . Given a hash value v = h(x), a brute-force search for x′ such
that h(x′) = v will succeed on each x′ with probability 1

2m . Hence the
number of trials until first success is distributed geometrically with pa-
rameter 1

2m , so on average 2m trials are needed. Thus in (b) ‘hard to find’
means ‘requires at least 2m hashes’.

Exercise 11.3. Let h : N→ Fm
2 be a good hash function. On average, how

many hashes does an attacker need to calculate to find a pair (x, x′) with
h(x) = h(x′)?

The mathematics behind Exercise 11.3 is the well-known Birthday Para-
dox: in a room with 23 people, the probability is about 1

2 that two people
have the same birthday.

Lemma 11.4. If there are B possible birthdays then in a room of
√

2 ln 2
√

B
people, the probability is about 1

2 that two people have the same birthday.

For instance, when B = 365, Lemma 11.4 says we need
√

2 log 2
√

365 ≈
22.49 people. In practice the constant

√
2 log 2 ≈ 1.1774 is often replaced

with 1.

In (c) the birthdays are hash values, so we have B = 2m. Since
√

2m =
2m/2 we interpret ‘hard to find’ as ‘requires at least 2m/2 hashes’.

52

Hash functions in practice. We have already seen one way to make a hash
function. Fix a block cipher of length m and a key k. Chop the message
x into blocks x(1), x(2), . . . , x(t), such that each x(i) < 2m. Let b(i) ∈ Fm

2
be the binary form of x(i). Then apply the block cipher in cipher block
chaining mode (see page 40), to get

y(1) = ek(b(1))

y(2) = ek(y(1) + b(2)),
...

y(t) = ek(y(t−1) + b(t))

The final ciphertext y(t) ∈ Fm
2 depends on the entire message x in a com-

plicated way, so is a good choice for the hash value.

Example 11.5 (SHA-256). SHA-256 is the most commonly used hash func-
tion today. It has length 256. There is an internal state of 256 bits, divided
into 8 words of 32 bits. The message x is chopped into 512 bit blocks; each
block is then further divided into words, which are combined by multi-
plying bits in the same positions (this is ‘logical and’), addition in F32

2 ,
cyclic shifts (like an LFSR), and addition modulo 232, over 64 rounds. As
in Cipher Block Chaining, the output for block x(i) is used in the calcula-
tion for x(i+1). The best attack can break (b) when the number of rounds
is reduced to 57, and (c) when the number of rounds is reduced to 46.

When you create an account online, you typically choose a username,
let us say ‘Alice’ and a password, say ‘alicepassword’. A well run web-
site will not store your password. Instead, oversimplifying slightly, your
password is converted to a number x and the SHA-256 hash h(x) is stored.
By (b), it is hard for anyone to find another word whose hash is also h(x).

Provided your password is hard to guess, your account is secure, and
you have avoided telling the webmaster your password.

Exercise 11.6. As described, it will be obvious to a hacker who has ac-
cess to the password database when two users have the same password.
Moreover, if you use the same password on two different sites, the same
hash will be stored on both. How can this be avoided?

Extra: the Bitcoin blockchain.

Example 11.7. The bitcoin blockchain is a distributed record of all trans-
actions involving bitcoins. When Alice transfers a bitcoin b to Bob, she
posts a public message x, saying ‘I Alice give Bob the bitcoin b’, and signs
this message20, by appending da(h(x)), to get

(
x, da(h(x)

)
.

20Rather than use RSA, Bitcoin specifies the ECDSA signature algorithm: very
roughly this replaces the ring Zn with an elliptic curve. The hash function h is two
iterations of SHA-256.

53

Signing the message ensures that only Alice can transfer Alice’s bitcoins.
But as described so far, Alice can double-spend: a few minutes later she
can sign another message

(
x′, da(h(x′))

)
where x′ says ‘I Alice give Char-

lie the bitcoin b’.

To avoid this, transactions are validated in blocks. To validate a block of
transactions

(
x(1), da(1)(h(x(1)))

)
,
(
x(2), da(2)(h(x(2)))

)
, . . .

a miner searches for c ∈ N such that, when the list with c appended
is converted to a number, its hash, by two iterations of SHA-256, has a
large number of initial zeros21. Assuming that SHA-256 has property (b),
preimage resistance, there is no better way to do this then an exhaustive
search for c. The list of validated transactions becomes a block; making a
new block is called ‘growing the blockchain’.

When Bob receives
(

x′, da(h(x′))
)
, he looks to see if there is are blocks

already containing a transaction involving the bitcoin b mentioned in x′.
When Bob finds

(
x, da(h(x))

)
as part of a block with the laboriously com-

puted c, Bob knows Alice has cheated.

Miners are incentivized to grow the block chain: the reward for growing
the blockchain is given in bitcoins. Thus bitcoin, which really is noth-
ing more than the blockchain, depends on the computational difficulty of
finding preimages and collisions for hash functions. The prize for grow-
ing the block chain is only given for blocks that have a consistent transac-
tion history, so Alice’s double-spending transaction will not make it into
a block.22

Miners are further incentivized by transaction fees, again paid in bitcoins,
attached to each transaction. These will become more important as the
per block reward gets smaller.

An excellent introductory video on bitcoin is available here: www.youtube.
com/watch?v=bBC-nXj3Ng4&feature=youtu.be. The best summary account
of bitcoin is still the original paper: bitcoin.org/bitcoin.pdf by Satoshi
Nakamoto (2008).

21At the time of writing 72 zeros are required: see Problem Sheet 9, Question 9
for the implications for the bitcoin economy.

22This is a oversimplification: it is possible for two inconsistent blocks to enter
the block chain, if they are mined at almost the same time. Then some miners will
work on growing the history from block A, and others from block B. The prize for
growing the blockchain is only paid for growing the longest (consistent) chain. So
after a few more verifications the network will agree on one consistent history. In
the Finney attack, which assumes Alice has considerable computational power, she
can (a) mine, but not release, a block verifying a transfer to Charlie (and a num-
ber of other, unrelated transactions); (b) make another transaction transferring the
same bitcoin to Bob; (c) release her mined block, voiding the transfer to Bob. Bob
can avoid being the victim of this attack by waiting for at least one verification of
the transfer. It is usual to wait for six.

54

Extra: factoring n given an RSA private key (n, r). (This was a quiz at the
end of lecture 22.) Suppose we learn n and the decryption exponent r. We
already know the public key (n, c). Hence we can compute cr. By choice
of r, we know that cr ≡ 1 mod (p− 1)(q− 1). Hence cr− 1 is a multiple
of (p− 1)(q− 1).

Let t be obtained by dividing cr− 1 by small odd primes until a factor
is found. There is a good chance that either p − 1 divides t and q − 1
does not, or vice versa. Assuming the first case, Fermat’s Little Theorem
implies that xt ≡ 1 mod p for all x not divisible by p. Moreover, because
hcf(t, q− 1) is a proper factor of the order q− 1 of the group Z×q , xt 6≡ 1
mod q for most x. Therefore for most x, p divides xt − 1 mod n, but q
does not and so hcf(xt − 1, n) = p.

This attack is related to the Pollard ρ-factoring method, which you can
learn about on the web or in our computational number theory course.

Example 11.8. As in the example in lectures we suppose Alice generates
an RSA key using MATHEMATICA, defining p and q by NextPrime[2^80]

and NextPrime[2^81].23 Alice publishes (n, 65537) as her public key.
Her decryption exponent r, found by PowerMod[65537,-1,(p-1)(q-1)]

is 2 486 450 . . . 629441 ≈ 2.4× 1048.

Suppose that Mark the Mole learns her private key (n, r). He computes
cr− 1 = 162 954 . . . 674 816 ≈ 1.6× 1053 and by trial division,
Select[Range[1, 1000], Mod[c*r - 1, #] == 0~And~PrimeQ[#] &]

in MATHEMATICA, finds that the smallest prime factors of cr − 1 are
2, 3, 43, 617, Since 9 divides cr − 1, it is possible that 3 divides both
p − 1 and q − 1, so instead he uses 43 and takes t = (cr − 1)/43. Try-
ing x = 2 he computes 2t − 1 mod n using PowerMod[2, t, n] - 1 and
then hcf(2t − 1, n) using GCD[PowerMod[2, t, n] - 1, n]. The highest
common factor turns out to be p.

You can check this using the MATHEMATICA notebook on Moodle. It has
a similar example with primes of the cryptographically standard size:
p, q ≈ 21024.

Why it worked: Factoring p− 1 and q− 1 shows that

p− 1 = 22 × 1093× 31039× 8 908 647 580 887 961

q− 1 = 24 × 3× 43× 617× 683× 78233× 35 532 364 099

and that cr − 1 = 3× 18483× (p − 1)(q − 1). Dividing by 43 removed
the factor of q− 1, so t is divisible by p− 1 but not q− 1, and the attack
quickly finds p.

23As mentioned in lectures this is a terrible idea: the binary form of n, namely
1 75 zeros. . . 101011 72 zeros. . . 11011101 makes the factors easily guessable.

