
MT362/462/5462 Cipher Systems: Sheet 1

Attempt at least questions 1 to 5. Please staple your answers together
and remember to write your name or student number. You will get 1.25% of
your final mark for a reasonable attempt at this sheet.

The lecturer will be happy to discuss any of the questions in drop-in sessions:
Tuesday 3.30pm, Wednesday 11am, Thursday 11.30am, or by appointment.

To be handed in after the second lecture on Friday 11th October.

It is helpful if you indicate questions you did but are uncertain
about, or would like seen done in lectures.

The Mathematica notebook AlphabeticCiphers on Moodle can be used
to encrypt and decrypt using substitution ciphers, and compute frequencies
and the Index of Coincidence. Remember ‘Evaluate Notebook’ to get started.

1. Decrypt BYIKVXRYVVYGKI, assuming it is the ciphertext output by a Caesar cipher.
What is the key?

2. In Example 1.2, Alice agreed to send Bob his exam mark x ∈ {0, 1, . . . 99} by en-
crypting it as the ciphertext (x+k) mod 100. Assume that the key k ∈ {0, 1, . . . 99}
is known to only Alice and Bob and is chosen at random. Eve, the eavesdropper,
learns all messages that Alice sends to Bob.

(a) When Alice sends Bob the ciphertext 17, what, if anything, can Eve learn
about (i) the plaintext x?; (ii) the key k, supposing that Bob’s exam mark is
equally likely to be each number between 40 and 79?

(b) Suppose later Alice sends Bob her own exam mark x′ ∈ {0, 1, . . . , 99} using
the same cryptoscheme, and using the same key k. What can Eve learn now?

(c) Malcolm, the man-in-the-middle, can modify the ciphertext. Suppose he is
confident that Bob’s mark is between 40 and 79. Can he trick Bob into
thinking he failed?

3. In the first week you formed a block of four people, identified as Alice, Bob,
Alice′,Bob′. The pairs are {Alice,Bob} and {Alice′,Bob′}. You were then emailed
a substitution cipher key. Each person in a pair has the same key.

(a) Write a plaintext message x of at least 75 words on a subject of your choice,
and encrypt it using your substitution cipher key π. (Keep the spaces please!)
Email the ciphertext eπ(x) to all three people in your block.

(b) Decrypt the message from the other person in your pair. [Hint: do not use
frequency analysis!]

(c) Using frequency analysis, decrypt either of the messages sent to you by a
person not in your pair.

(d) Write up (c), explaining your method. An annotated printout is fine. Did
you learn the entire key? If you only looked at one message, why might using
both (but still decrypting only one) have been easier?



4. In a chosen plaintext attack, the attacker chooses a plaintext x, and is given the
corresponding ciphertext ek(x) for the key k.

Explain how to find the key by a chosen plaintext account when the cipher is (a) a
substitution cipher eπ; (b) a Vigenère cipher ek where k has length exactly 10.
Make it clear which plaintexts the attacker should choose.

5. The ciphertext below is the output of a Vigenère cipher. Each line has length 50.

01234567890123456789012345678901234567890123456789

WKMSDBPZPQYBGLLSDBTHCBLDNBAHLECQNBOTEOCRWOCOAXRDZT

MQZFLSDBAHLECQPBVSPEGREPMEPBLCQBRNPTMDMRYKSLPCOFLS

DBNKWFLSAURHJMMREQGNJPBHBCCQEKEAUXKTHQGOHBMEPECKAK

ESDLDSDBIDUFRHOHLNSKYRGXQHOHGRPBQS

(a) Find all positions in which SDB appear in the ciphertext.

(b) Compute the Index of Coincidence on the samples of size 20 (or larger if you
prefer) obtained by taking every m-th position in the ciphertext starting with
the first letter W in position 0, for each m ∈ {2, 3, 4}.
For example the sample for m = 3 of size 20 is WSPQGSTBNHCBERCXZQLB. To
get these samples in Mathematica, evaluate AlphabeticCiphers.nb; then
StringTake[SplitText[Q5Ciphertext, 3][[1]], {1, 20}].

(c) What do (a) and (b) suggest about the key length?

(d) Determine the key: start by guessing the plaintext corresponding to each SDB.

(e) Why is the Index of Coincidence least for m = 3 and in the middle for m = 2?

(The idea in (a) of finding the key length by comparing the positions containing a
fixed substring of the ciphertext is known as the Kasiski test.)

6. Let R be defined on plaintexts by R(x)i = xi+i mod 26, numbering positions in tu-
ples from 0. [Original version numbered from 1: it makes little difference.]
For exampleR(bead) = BFCG since bead←→ (1, 4, 0, 3), R

(
(1, 4, 0, 3)

)
= (1, 5, 2, 6)

and (1, 5, 2, 6)←→ BFCG. Similarly R2(aaaa) = ACEG.

Let eπ denote the substitution cipher with key π.

Propose known ciphertext attacks on the two ciphers (a) x 7→ Rj
(
eπ(x)

)
and (b)

x 7→ eπ
(
R(x)

)
. In (a) the key is (π, j) for some j ∈ {0, . . . , 25}; in (b) the key is

simply π. Assume the plaintext is an English message of about 100 words.

Which cipher has more possible keys? Which appears harder to break?

7. Let y be every m-th position in a ciphertext output by the Vigenère cipher. What
statistic would you compute to perform a χ2-test with null hypothesis that the
letters in y are distributed uniformly? How is this statistic related to the Index of
Coincidence?

8. Which of the ciphertexts XXXXX and VWXYZ could be the output of (a) a substitution
cipher, (b) a Vigenère cipher with key of length 3? Assume that the plaintext is a
single English word. (The Vigenère key need not be an English word.)



MT362/462/5462 Cipher Systems: Sheet 2

Attempt at least questions 1 to 4. Question 3 has an optional part
marked (?). Question 5 is compulsory for M.Sc. students. Please staple
your answers together and remember to write your name or student number.
You will get 1.25% of your final mark for a reasonable attempt at this sheet.

The lecturer will be happy to discuss any of the questions in drop-in sessions:
Tuesday 3.30pm, Wednesday 11am, Thursday 11.30am, or by appointment.

To be handed in after the second lecture on Friday 25th October.
Note you have a fortnight to do this sheet.

It is helpful if you indicate questions you did but are uncertain
about, or would like seen done in lectures.

Throughout we use the notation of §3, so K is the keyspace, P the plaintexts
and C the ciphertexts in a cryptosystem, with encryption functions ek : P →
C and decryption functions dk : C → P indexed by keys k ∈ K.

1. The cryptosystem shown below uses three keys from the affine cipher on Z3, each
with probability 1

3
. Suppose that plaintext 1 is sent with probability p and plain-

text 2 is sent with probability 1− p, so plaintext 0 is never sent.
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(a) Recall that e(a,c)(x) = ax + c. [Sorry, this should be e(a,c)(x) = ax + c
mod 3.] Which keys (a, c) are used in this cryptosystem?

(b) Find P[Y = 1|X = 1]. Express P[Y = 1], P[X = 1|Y = 1] in terms of p.

(c) When does the cryptosystem have perfect secrecy with respect to the proba-
bility distribution p0 = 0, p1 = p, p2 = 1− p on plaintexts?

2. Alice and Bob communicate using the numeric one-time pad cryptosystem from
Example 3.4, in which K = P = C = {0, 1, . . . , n−1} and the encryption functions
are defined by ek(x) = (x + k) mod n. Each key k ∈ K is chosen with equal
probability. Let px be the probability that x ∈ P is Alice’s message.

(a) Show that if x ∈ P and px > 0 then P[Yn = y|Xn = x] = 1
n

for all y ∈ C.
(b) Find P[Yn = y] for each y ∈ C.
(c) Hence show that P[Xn = x|Yn = y] = px for all x ∈ P with px > 0.

(d) What is P[Xn = x|Yn = y] if px = 0? Deduce from this and (c) that the
numeric one-time pad has perfect secrecy.



3. One of the encryption functions in the affine cipher (see Example 4.2) on Z13 is
e(2,5), defined by e(2,5)(x) = 2x + 5. Let d(2,5) be the decryption function, i.e. the
inverse of e(2,5).

(a) What is e(2,5)(9)?

(b) Find a formula for d(2,5)(y) and hence find d(2,5)(1).

(c) What encryption function is equal to d(2,5)?

(?) Generalize (c) by proving that the encryption functions form a group.

4. (a) Is there a cryptosystem such that |C| < |P|?
(b) Is there a cryptosystem with perfect secrecy such that |K| < |C|?
(c) A student writes: ‘since the encryption functions ek are injective, if k 6= k′

then ek(x) 6= ek′(x)’. Is this correct? Justify your answer with a proof or
counterexample, as appropriate.

(d) Give at least three different examples of cryptosystems with perfect secrecy
such that |P| = |K| = |C| = 4. [Hint: Latin squares.]

5. (M.Sc.) Work with the Shamir secret sharing scheme over F11 with 5 people and
threshold 3 using evaluation points ci = i for i ∈ {1, 2, 3, 4, 5}.
(a) Find the shares for the secret 5 ∈ F11, choosing a polynomial at random.

(b) Alice (Person 1), Bob (Person 2) and Charlie (Person 3) have the shares 7,
5, 3 respectively. The three agree to meet, simultaneously reveal their shares,
and together compute the secret.

(i) What is the secret?

(ii) Show, by giving an explicit example, that if Alice lies about her share to
Bob and Charlie, then she can both learn the secret and leave Bob and
Charlie knowing an incorrect secret.

(iii) Suggest a way to avoid some of the problems in (ii).

6. This question proves a converse result to Shannon’s Theorem (Theorem 3.10).
Suppose that |P| = |C| = |K|. Show that if each key is used with equal probability
and for all x ∈ P and y ∈ C there is a unique key k such ek(x) = y, then

(a) P[Y = y] > 0 for all y ∈ C;
(b) the cryptosystem has perfect secrecy.

7. In Theorem 3.10 we assumed that the cryptosystem was practical.

(a) Show that if the hypothesis ‘for all y ∈ C there exists x ∈ P and k ∈ K such
that ek(x) = y’ is dropped then conclusions (a), (b) and (c) of Theorem 3.10
may fail to hold.

(b) Show that if the hypothesis ‘P[K = k] > 0 for each k ∈ K’ is dropped then
again (a), (b) and (c) may fail to hold.



MT362/462/5462 Cipher Systems: Sheet 3

Attempt at least questions 1 to 5. Question 6 is compulsory for M.Sc.
students. Please staple your answers together and remember to write your
name or student number. You will get 1.25% of your final mark for a rea-
sonable attempt at this sheet.

The lecturer will be happy to discuss any of the questions in drop-in sessions:
Tuesday 3.30pm, Wednesday 11am, Thursday 11.30am, or by appointment.

To be handed in after the second lecture on Friday 1st November.

It is helpful if you indicate questions you did but are uncertain
about, or would like seen done in lectures.

1. Consider the affine cipher (see Example 4.2) with p = 151.

(a) Decrypt the ciphertext 138 sent using the key (12, 10).

(b) In a known plaintext and ciphertext Mark learns that e(a,c)(21) = 18. Find all
the possibilities for the key (a, c). Suppose that later he learns that e(a,c)(18) =
21. What is the key?

2. Let q be prime. Suppose that Alice and Bob communicate using the affine cipher
on Zq with keyspace K = {(a, c) : a, c ∈ Zq, a 6= 0}, and that Alice’s plaintext is
x ∈ Zq with probability px.

(a) What is the size |K| of the keyspace?

(b) Show that for each x, y ∈ Zq there are exactly q−1 keys k such that ek(x) = y.

(c) Show that if each key is equally probable then the cryptosystem has perfect
secrecy. Can Eve learn anything about the plaintext from a known ciphertext?

(d) Show that the key can be determined by a chosen plaintext attack using
two plaintexts. Does this contradict perfect secrecy? Does a single plaintext
suffice?

(e) Can Malcolm, the man-in-the-middle, modify a ciphertext without Bob notic-
ing? How might this problem be reduced? [Hint: change P to a subset of Zq.]

3. Show that if K and X are independent random variables, taking values in sets K
and P respectively, then

H(K,X) = −
∑

k∈K

∑

x∈P
P[K = k]P[X = x](log2 P[K = k] + log2 P[X = x]).

Deduce that H(K,X) = H(K) + H(X). [Hint: please explain your steps, taking
care to use sigma notation correctly. The joint entropy H(K,X) is defined in
Definition 5.6.]



4. Eve intercepts the three ciphertexts ymdg, smrf, xmom encrypted using the same
key by a one-time pad. Find all three plaintexts and the key.

[Hint: the code used in the lecture is online at repl.it/@mwildon/OneTimePad2.
(Try Google Chrome if it doesn’t work in your first choice of browser.) If you do
it by hand, you might first guess a likely theme for the words.]

5. Let A = {a, . . . , z}, so An is all lowercase strings of length n. Assume that
plaintexts are English messages in lowercase, with spaces deleted.

(a) Estimate the unicity distance (see Definition 5.14) of the Vigenère cipher
using keys of length 10, chosen with equal probability from A10.

(b) Given bijections π, σ : A → A define e(π,σ) : {a, . . . , z}n → {a, . . . , z}n by

e(π,σ)(x)i =

{
π(xi) if i is even

σ(xi) if i is odd.

For example, if n = 4 then e(π,σ)(x0, x1, x2, x3) =
(
π(x0), σ(x1), π(x2), σ(x3)

)
.

(i) Estimate the unicity distance of the cryptosystem with keys all e(π,σ),
supposing that keys are chosen with equal probability.

(ii) Propose a chosen ciphertext attack on this cryptosystem. [Hint: see the
definition on page 19 of the printed lecture notes.]

6. (MSc.) Recall from the Preliminary Problem Sheet that x`−1 . . . x1x0 is the binary
form of 2`−1x`−1 + · · ·+ 2x1 + x0.

For j ∈ {0, 1, . . . , `− 1}, let fj : F`2 → F2 be the Boolean function defined so that
f(x`−1, . . . , x1, x0) is the bit in position j of x`−1 . . . x1x0 + 5 mod 16.

For example, taking ` = 3, since 6 = 01102 6 + 5 = 11 and 11 = 10112, we have
f3(0110) = 1, f2(0110) = 0, f1(0110) = 1 and f0(0110) = 1.

Express f0, f1, f2, f3 as polynomials in x3, x2, x1, x0. What is the coefficient of the
monomial x0x1x2 in f3?

For general j, what is the monomial with the maximum number of variables in fj?

7. Show that in a cryptosystem with perfect secrecy H(X|Y ) = H(X), where as
usual X is the plaintext and Y is the ciphertext.

8. Let X and Y be random variables taking values in sets X and Y respectively. Let
f : X → X be a function. Prove the inequality H

(
f(X) |Y

)
≤ H(X|Y ) used in

the ‘extras’ for Part A. [Hint: one proof uses the chaining rule, Lemma 5.8.]

9. Eve observes the ciphertexts jaekbwwoswoppljoeow and eszxzagrhaofvquwkhj

encrypted using the same one-time pad. Decrypt them both and find the key.



MT362/462/5462 Cipher Systems: Sheet 4

Attempt at least questions 1 to 3 and 4(a), (b), (c), (d). Questions
4(e) and 5 are compulsory for M.Sc. students. Please staple your answers
together and remember to write your name or student number.

The lecturer will be happy to discuss any of the questions in drop-in sessions:
Tuesday 3.30pm, Wednesday 11am, Thursday 11.30am, or by appointment.

To be handed in at the second lecture on Friday 8th November.

It is helpful if you indicate questions you did but are uncertain
about, or would like to seen done in lectures.

The Mathematica notebook used in lectures to find keystreams is available
from Moodle. By definition, the LFSR of width ` with taps T , where T ⊆
{1, 2, . . . , `}, has keystream k0k1k2 . . . such that ks =

∑
t∈T ks−t for all s ≥ `.

1. By Definition 5.8, the period of a keystream is its length until its first repeat. For
instance 001100110011 . . . has period 4. Let G be the LFSR of width 5 with taps
{4, 5}.

(a) (i) Let k = 00001. Calculate the keystream k0, k1, k2, . . . , defined by G for k.
What is the period of this keystream?

(ii) Find s such that (ks, ks+1, ks+2, ks+3, ks+4) = 00100.

(iii) How would your answer to (i) change if the key was 00100?

(b) Find a key k′ such that the keystream defined by G for k′ has period 7.

(c) Find all the periods of keystreams for G. What is the sum of the periods?

(d) By Definition 5.8, the period of G is the least m such that Gm = id, the
identity function. What is the period of G?

[You can use your answer to (a) in Question 3.]

2. Let F be the LFSR of width 4 with taps {2, 4}, as shown in the circuit diagram
below; the numbers correspond to the possible taps.

⊕ 1234

(a) Solve the equation F
(
(x0, x1, x2, x3)

)
= (y0, y1, y2, y3) and hence find a for-

mula for F−1.

(b) Draw a circuit diagram for F−1. Is F−1 an LFSR?



3. Let F be an LFSR of width ` with taps T , so by definition

F
(
(x0, x1, . . . , x`−2, x`−1)

)
= (x1, x2, . . . , x`−1,

∑

t∈T
x`−t).

(a) Show that if F is invertible then ` ∈ T . [Hint: use the contrapositive.]

(b) Show conversely that if ` ∈ T then F is invertible and give a formula for F−1.

4. As in Question 1, let G be the LFSR of width 5 with taps {4, 5}. Let k0, k1, k2 . . .
be the keystream for 00100. The corresponding power series K(z) = k0 + k1z +
k2z

2 + · · · begins z2 + z6 + z7 + z10 + · · · .

(a) Compute K(z) up to the term z30. [Hint: use Question 1(a).]

(b) Find p ∈ N such that K(z)(1 + zp) is a polynomial.

(c) Show that K(z)(1 + z4 + z5) is a polynomial.

(d) Find a polynomial r(z) of the form 1+r1z+ · · ·+r6z
6+z7 such that K(z)r(z)

is a polynomial. Hence find an LFSR of width 7 having k0k1k2 . . . as a
keystream.

(e) (?) Is there an LFSR of width at most 4 having k0k1k2 . . . as a keystream?

5. (M.Sc.) Let � denote normal multiplication, performed on numbers written in
binary. For example (1, 0, 1, 0) � (0, 1, 0, 1) = (0, 0, 1, 1, 0, 0, 1, 0) since 10102 = 10
and 01012 = 5 and 10× 5 = 50 = 00110010. Define F : F8

2 → F8
2 by

F
(
(x7, x6, x5, x4, x3, x2, x1, x0)

)
= (x7, x6, x5, x4) � (x3, x2, x1, x0).

For j ∈ {7, 6, . . . , 0}, define a Boolean function fj : F8
2 → F2 by fj(x) = F (x)j,

numbering positions from the right. Thus f0(x) = x4x0 and f1(x) = x4x1 + x5x0.

(a) Write down the truth table for f1, with columns labelled x5, x4, x1, x0.

(b) Express f1 in disjunctive normal form.

(c) Express f2 in algebraic normal form.

6. Let F be an LFSR of width ` with taps T ⊆ {1, . . . , `} and let G be an LFSR of
width ` with taps U ⊆ {1, . . . , `}. Show that the function H : F`

2 → F`
2 defined by

H
(
(x0, x1, . . . , x`−1)

)
= (x1, . . . , x`−1,

∑

t∈T
x`−t +

∑

u∈U
x`−u

)

is an LFSR of width ` and determine the taps of H in terms of T and U .

7. A de Bruijn sequence of order ` is a cyclic sequence containing every element of
F`
2 exactly once. Thus 00010111 is a de Bruijn sequence of order 3; for instance,

to find 110, take the final two 1s and the initial 0.

(a) Use the LFSR in Example 5.2 to construct a de Bruijn sequence of order 4.

(b) Prove that there exist de Bruijn sequences of every order. (You may assume
there exists an LFSR of period 2` − 1 for every ` ∈ N.)



MT362/462/5462 Cipher Systems: Sheet 5

Attempt questions 1 to 5. M.Sc. students should also do question 6.
Please staple your answers together and remember to write your name or
student number.

The lecturer will be happy to discuss any of the questions in drop-in sessions:
Tuesday 3.30pm, Wednesday 11am, Thursday 11.30am, or by appointment.

To be handed in at the lecture on Monday 18th November. Note
you have a extra weekend for this sheet.

It is helpful if you indicate questions you did but are uncertain
about, or would like seen done in lectures.

The Mathematica notebook LFSRs.nb used in lectures to find keystreams
is on Moodle. By definition, the LFSR of width ` with taps T , where T ⊆
{1, . . . , `}, has keystream k0k1k2 . . . such that ks =

∑
t∈T ks−t for all s ≥ `.

1. Let F be the LFSR of width 5 with taps {3, 5}.

(a) Show that the keystream for 00001 starts 00001 00101 and continue it until it
repeats. [You can check your answer using Keystream[{3,5},{0,0,0,0,1}]

in Mathematica.]

(b) What is the period of this keystream?

(c) What is the period of F?

2. In 8-bit ASCII, ‘a’ is encoded as the binary form of 97, namely 01100001, ‘b’ as
the binary form of 98, namely 01100010, and so on.

Fix n ∈ N and consider the cryptosystem with plaintexts P = {a, . . . , z}n and
ciphertexts C = F8n

2 , in which a message of n characters is first converted to 8-bit
ASCII, and then encrypted using the cryptosystem defined in Definition 6.3 with
the LFSR F of width 5 with taps {3, 5} seen in Question 1.

Your key is the first 5 bits of the binary key in your email from the lecturer.

(a) Let k0k1k2 . . . be the keystream for your key. Show that k32m = km for each
m ∈ N0.

(b) Encrypt a message (lower-case, no spaces) of at least 25 characters. Send the
sequence of bits to everyone in your block.

[Hint: to do this in Mathematica, after loading and evaluating LFSRs.nb

use EncryptString[{3, 5}, {k0, k1, k2, k3, k4}, "message"] You
can also use CharacterToASCII["x"] to get the 8 bits for x, and so on.

(c) Decrypt the message from your partner.

(d) Decrypt either of the messages from the other two people in your block.
[Hint: start by looking at bits 0 and 32 in the ciphertext. If you do not have
a ciphertext to decrypt, use the one in the Mathematica notebook.]

(e) What is the minimum length of ciphertext needed to determine the key?



3. (a) Let k0k1k2k3k4k5k6k7 be the keystream of an LFSR of width 4. (The taps
could be anything.) Show that the the matrix equation




k0 k1 k2 k3
k1 k2 k3 k4
k2 k3 k4 k5
k3 k4 k5 k6







b4
b3
b2
b1


 =




k4
k5
k6
k7




has a solution b4, b3, b2, b1. [Hint: remember that if T is the taps then ks =∑
t∈T ks−t for each s ≥ `. Relate this to the four equations from the matrix.]

(b) Is the converse to (a) true? Justify your answer.

(c) Which of the bit sequences 00100110, 00100111, 11100001 and 0110111 is a
keystream of an LFSR of width 4? (In the last you are only given k0k1 . . . k6.)
Justify your answers. Do they change if the LFSR is required to be invertible?

4. Let F be the LFSR with taps {3, 4} and width 4 and let F ′ be the LFSR with taps
{2, 3} and width 3. Let k0k1k2k3k4 . . . = 00010 . . . and k′0k

′
1k
′
2k
′
3k
′
4 . . . = 00101 . . .

be the keystreams for 0001 and 001, respectively. Let us = ks + k′s for each s ∈ N.

(a) Show that u0u1u2u3u4 = 00111 and find u0u1u2 . . . u19.

(b) What is the period of u0u1u2 . . .?

(c) Find an LFSR of width 7 that has u0u1u2 . . . as a keystream. [Hint: the
method from Question 3 works, but there is a better way using annihilators.]

5. Let B0, B1, . . . , Bn−1 be a sequence of bits, each 0 or 1 independently with proba-
bility 1

2
. For b, b′ ∈ {0, 1}, let Mbb′ be the number of i ∈ {0, . . . , n − 2} such that

(Bi, Bi+1) = (b, b′).

(a) Show that the expected value of M00 is E[M00] = (n − 1)/4 and find
E[M01],E[M10],E[M11].

(b) Does the sequence below pass the monobit test in Exercise 7.4?

(0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0)
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2

What is n and what are the statistics M00, M10, M01, M11 for this sequence?

(c) Perform a χ2-test on M00,M01,M10,M11 to test the sequence in (b) for ran-
domness on pairs of bits. [Hint: use M00 +M01 +M10 +M11 = n to determine
the degrees of freedom.]

6. (a) (M.Sc.) Let f : F3
2 → F2 be defined by f(x0, x1, x2) = x1x2. Find all the

correlations corr(f, LT ) for T ⊆ {0, 1, 2} and hence check Theorem 4.6(c) that

(−1)f =
∑

T⊆{0,1,2}
corr(f, LT )(−1)LT

(b) Let S 4T = {u ∈ S ∪T : u 6∈ S ∩T}. Show that if f is an n-variable Boolean
function then corr(f + LS, LT ) = corr(f, LS4T ).

(c) Let g(x0, x1, x2) = x0 + x1x2. Express (−1)g in the form in (a). [Hint: use
(b) and Theorem 4.6(c).]
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Attempt at least questions 1 and 2 and either question 4 or ques-
tion 5. (?) denotes an optional part. Question 3 is compulsory for M.Sc. stu-
dents. Please staple your answers together and put your name and student
number on this sheet.

The lecturer will be happy to discuss any of the questions in drop-in sessions:
Tuesday 3.30pm, Wednesday 10am, Thursday noon, or by appointment.

To be handed in at the lecture on Monday 25th November.

It is helpful if you indicate questions you did but are uncertain
about, or would like seen done in lectures.

The Mathematica notebook LFSRs.nb used in lectures to find keystreams
is on Moodle. By definition, the LFSR of width ` with taps T , where T ⊆
{1, . . . , `}, has keystream k0k1k2 . . . such that ks =

∑
t∈T ks−t for all s ≥ `.

1. Let (k0, k1, k2, . . .) be a keystream of the LFSR F of width 2 with taps {1, 2}.
Let (k′0, k

′
1, k
′
2, . . .) be a keystream of an LFSR G of width 3 with unknown taps.

The keystreams are multiplied to give (k0k
′
0, k1k

′
1, k2k

′
2, . . .). Suppose you know

the product begins 101100000101.

(a) Explain why the keystreams of F and G have the form 1?11?????1?1, where
? denotes an unknown bit. By considering the possible keystreams produced
by F , deduce the key for F .

(b) By considering the keystream for F explain why the keystream of G is of the
form 1?11?00?01?1. Hence find a possible set of taps and the unique key for
G.

(c) Are the taps you found in (b) unique?

2. Working with polynomials with coefficients in F2, one can show (for instance using
Factor[X^511+1,Modulus->2] and the same replacing 511 with 73 in Mathe-
matica) that

• 1 + X4 + X9 divides X511 + 1

• 1 + X4 + X9 does not divide X73 + 1, but 1 + X + X9 does.

Given this, determine the periods of the LFSRs of width 9 with taps {4, 9} and
{1, 9}. [Hint: factorize 511 and use Corollary 6.12 and Lemma 6.13.] (?) Find the
periods of all the keystreams of each LFSR.

3. (M.Sc.) The table below shows the first 14 steps in the Berlekamp–Massey algo-
rithm applied to the sequence

(u0, u1, . . . , u14) = (1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0)

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

`n 1 1 2 2 3 3 3 3 3 7 7 7 7 7 7
Tn ∅ ∅ {2} {1, 2} {1} {1} {1} {1} {1} ? {1, 5, 6, 7} ? ? ? ?
m 0 0 2 2 4 4 4 4 4 9 9 9 ? 9



For instance, the LFSR F9 has length `9 = 3 and taps T9 = {1}. Performing step
9 of the algorithm using m = 4 gives the LFSR F10 of length `10 = 7 and taps T10

that you are asked to find in (i). Since the length goes up, m is updated to 9. You
should find that the final LFSR has taps {1, 2, 3, 4, 6, 7}.

(i) Verify that case (a) applies for steps 5, 6, 7, 8 and perform step 9 to obtain
the entry marked ? in the column for n = 10.

(ii) Find the five remaining entries marked ?.

(iii) Given that the entire sequence u0, u1, u2, . . . is generated by an LFSR of
width 7, will the taps change in further steps of the Berlekamp–Massey algo-
rithm? Justify your answer.

4. Let k0k1k2 . . . and k′0k
′
1k
′
2 . . . be keystreams of LFSRs with taps S and T and widths

` and `′, respectively. Let us = ks + k′s for s ∈ N0.

(a) Generalizing Example 8.2 [sorry, misprinted as 7.2] and Question 4(c) on
Sheet 5, show that u0u1u2 . . . is a keystream of an LFSR of width ` + `′.

(b) Give an example where u0u1u2 . . . is also the keystream of an LFSR of strictly
smaller width.

(c) (?) Define the taps of the LFSR you found in (a) in terms of S and T . [Hint:
a concise form uses the symmetric difference of sets S and T , defined by
S 4T = {u ∈ S ∪ T : u 6∈ S ∩ T}.]

5. The 2-quadratic stream cipher was defined in Example 8.5. Recall that F is
the LFSR of width 5 with taps {3, 5} and F ′ is the LFSR of width 6 with taps
{2, 3, 5, 6}. Given keys k ∈ F5

2 and k′ ∈ F6
2, the keystream u0u1u2 . . . is defined by

u0 = 0 and us = ksk
′
s + ks−1k′s−1 for each s ∈ N.

Using the attack in this example, the attacker guesses that k is v0v1v2v3v4 and
computes the correlation between the keystream v0v1 . . . v1023 and u0u1 . . . u1023.
(Here u0u1 . . . u1023 is obtained via a chosen plaintext attack, as in Exercise 7.1.)

The table below shows the four guessed keys v0v1v2v3v4 with the highest correla-
tions for several different k and k′. In each case the correlations for the other 32
guessed keys are close to 0.

k k′ guessed key, correlation

00001 000001 00000, 0.223; 00001, 0.242; 10000, 0.230; 10001, 0.203
00001 000011 00000, 0.230; 00001, 0.215; 10000, 0.219; 10001, 0.211

00111 000001 00000, 0.238; 00111, 0.199; 10011, 0.199; 10100, 0.254
00111 000011 00000, 0.199; 00111, 0.219; 10011, 0.234; 10100, 0.254

Explain why in each case there are three ‘fake keys’, with correlation about 1
4
, as

well as the correct key k0k1k2k3k4. Predict the three fake keys when k = 01000
and k′ is unknown.

[Hint: for 1
4

of the positions in the F ′ keystream, k′s = 0 and k′s−1 = 1 and so
us = ks−1. What keystream for F should u0u1 . . . u1023 then be compared with?
This should give you one ‘fake’ key.]



MT362/462/5462 Cipher Systems: Sheet 7

Attempt at least questions 1 to 4. Question 4(c) is optional.
M.Sc. students should also attempt question 5. Please staple your answers
together and put your name and student number on this sheet.

The lecturer will be happy to discuss any of the questions in drop-in sessions:
Tuesday 3.30pm, Wednesday 11am, Thursday 11.30am, or by appointment.

To be handed in at the Monday lecture on 2nd December.

It is helpful if you indicate questions you did but are uncertain
about, or would like seen done in lectures.

1. Let F be the Feistel Network for the function f : Fm
2 → Fm

2 so, by definition,
F
(
(v, w)

)
= (w, v + f(w)) for (v, w) ∈ F2m

2 .

Show that if (v′, w′) = F
(
(v, w)

)
is the encryption of (v, w) then (w, v) =

F
(
(w′, v′)

)
is the encryption of (w′, v′).

2. Consider the Q-block cipher as defined in Example 9.5, consisting of three rounds
of the Feistel Network

F
(
(v, w)

)
= (w, v + S(w + k(i)))

where v, w ∈ F4
2 and S

(
x0, x1, x2, x3)

)
= (x2, x3, x0 +x1x2, x1 +x2x3). Given a key

k ∈ F12
2 , the three round keys are k(1) = (k0, k1, k2, k3), k

(2) = (k4, k5, k6, k7) and
k(3) = (k8, k9, k10, k11) each in F4

2.

For readability below we write v0v1v2v3w0w1w2w3 for (v, w) ∈ F8
2 and similarly

k0k1k2k3 k4k5k6k7 k8k9k10k11 for a key k ∈ F12
2 .

(a) Encrypt 0000 0000 ∈ F8
2 using the key 0011 0011 0011.

(b) Decrypt the ciphertext 0111 0111 using the key in (a)

(c) Find a key k ∈ F12
2 such that ek(0001 0001) = 0000 0000.

(d) Show that given (v, w) ∈ F8
2 and w′ ∈ F4

2 there is a unique round key kround ∈
F4
2 such that (w, v + S(w + kround)) = (w,w′).

(e) How many keys k ∈ F12
2 have the property in (c)?

(f) Would your answer to (e) change if 0001 0001 and 0000 0000 were replaced
with different plaintexts and ciphertexts?

3. You have a black box implementing an encryption round of a Feistel block cipher
with block size 2m. Thus, given (v, w) ∈ F2m

2 and a round key kround both of your
choice, the box will output

(
w, v+S(w+kround)

)
. You do not know the function S.



Explain how to use the box to decrypt a ciphertext (v′, w′) ∈ F2m
2 encrypted

by applying the black box over 3 rounds with round keys k(1), k(2), k(3). [Hint:
Question 1 is relevant.]

4. 3DES is the block cipher of block size 64 and keyspace F56
2 × F56

2 × F56
2 with

encryption functions defined by

e(k,k′,k′′)(x) = ek′′
(
dk′

(
ek(x)

))

where ek and dk are the encryption and decryption functions for DES.

(a) Show that there is a meet-in-the-middle attack using multiple chosen plain-
texts that finds the key using about 2112 encryptions/decryptions.

(b) Assume no attack better than (a) exists. Is 3DES secure?

(c) (?) Suggest why the middle map is decryption rather than encryption.

5. (M.Sc.) The LFSR of width 4 with taps {1, 4} [Corrected] has keystream
100011110101100 with period 15.

(a) What is the minimum possible width of an LFSR with keystream
100011110101101? [Hint: use the theoretical results in §5 of the M.Sc. course.]

(b) Find an LFSR generating the keystream in (a) by applying the Berlekamp–
Massey algorithm.

6. The affine block cipher of block size n has keyspace all pairs (A, b), where A is an
invertible n × n matrix with entries in F2 and b ∈ Fn

2 . The encryption functions
e(A,b) : Fn

2 → Fn
2 are defined by

e(A,b)(x) = xA + b.

(a) Define the decryption functions d(A,b) : Fn
2 → Fn

2 .

(b) How can the key be recovered in a chosen plaintext attack? How many
plaintext / ciphertext pairs are required?

(c) Does repeating the cipher, as in the example of 2DES, so a plaintext is first
encrypted with one key (A, b), and then another key (A′, b′), make this cipher
any more secure?

(d) Does this cipher have the ‘confusion’ property?

(e) Does this cipher have the ‘diffusion’ property?
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Attempt at least questions 1 to 4. M.Sc. students should also attempt
question 5. Please staple your answers together and put your name and
student number on this sheet.

The lecturer will be happy to discuss any of the questions in drop-in sessions:
Tuesday 3.30pm, Wednesday 10am, Thursday 11am, or by appointment.

To be handed in at the lecture on Monday 9th December. [Cor-
rected deadline.]

Your feedback to the lecturer: what question, if any, do you most want
solved in lectures? What was easy, hard, interesting this week?

1. Let S : F4
2 → F4

2 be the S-box in the Q-block cipher, defined by S
(
(x0, x1, x2, x3)

)
=

(x2, x3, x0 + x1x2, x1 + x2x3). Recall from Example 9.5 that the Feistel network in
round i of this cipher is

(v(i−1), v(i)) 7→
(
v(i), v(i−1) + S(v(i) + k(i))

)

where k(i) ∈ F4
2 is the round key.

(a) Let ∆ ∈ F4
2. Show that if ∆2 = 0, i.e. ∆ is of the form (?, ?, 0, ?) then

S(x + ∆) + S(x) =

{
(0,∆3,∆0,∆1) if x2 = 0

(0,∆3,∆0 + ∆1,∆1 + ∆3) if x2 = 1.

(b) Deduce Lemma 10.1(i), that S(x + 1000) = S(x) + 0010 for all x ∈ F4
2.

(c) Find all possibilities for S(x + 0010) + S(x) where x ∈ F4
2.

(d) Let Γ = 0000 1000. Let (v, w) ∈ F8
2 be chosen uniformly at random. Let

(v′, w′) and (v′Γ, w
′
Γ) be the encryptions of (v, w) and (v, w) + Γ, respectively

over the first two rounds of the Q-block cipher.

Show that no matter what the key is, (v′, w′) + (v′Γ, w
′
Γ) is equally likely to

be each of the four differences {0010 0000, 1010 0001, 1010 0010, 0010 0011}.
[Corrected: bit in position 4 should be 0, as changed above, not 1.]

(e) Suggest a subexhaustive attack on the Q-block cipher in which the attacker
first guesses k(3), and then (k(1), k(2)).

2. Let ek for k ∈ F12
2 be the encryption maps in the Q-block cipher. Show using

Lemma 10.1(i) that ek(x) = ek+1000 0010 1000(x) for all x ∈ F8
2.



3. Which functions in the Q-block cipher are responsible for

(a) confusion (non-linearity between nearby bits in the input and output),

(b) diffusion (spreading non-linearity across all output bits)?

4. Take the affine block cipher from Example 10.4, so the key is a pair (A, b) where
A is an n× n matrix with entries from F2 and b ∈ Fn

2 .

Give a chosen plaintext attack that finds the key using n+ 1 encryptions of plain-
texts of your choice. (Specify the chosen plaintexts precisely.)

(?) Can the key be determined using n or fewer encryptions?

5. Let P = C = F8
2. Consider the cryptosystem with keys (k, k′) ∈ F8

2 × F8
2 and

encryption functions defined by e(k,k′)(x) = P (x + k) + k′, where P is the pseudo-
inversion function from AES.

(a) Find e−1
(k,k′)(z) for z ∈ F8

2.

(b) In a difference attack on this cryptosystem, the attacker takes ∆ = 1000 0000
corresponding to 1 ∈ F28 and chooses x ∈ F8

2. She uses her black box to
calculate z = e(k,k′)(x) and z∆ = e(k,k′)(x∆), and finds Γ = z + z∆. Suppose
that Γ 6= 1000 0000. Show, using Lemma 10.8, that she can find {k, k + ∆}.

(c) Find all possible keys (k, k′) in terms of Γ.

6. The University of Erewhon has, at fabulous expense, purchased an examination
database from TTTT (Totally Trusted Transmission Technologies) in which the
grades, which must be numbers between 0 and 99, are encrypted using 3DES with
a fixed secret key k ∈ F168

2 . A typical table is a set of ordered pairs

{
(
Alice, ek(75)

)
,
(
Bob, ek(40)

)
,
(
Charlie, ek(65)

)
, . . .}.

Criticize the security of this system. How could it be improved?

7. In a variation on the Q-block cipher, the round keys k(i) are added using addition
modulo 16, denoted �, rather than the usual addition in F4

2, denoted +. For
example 0011 � 1001 = 1100. Suggest a difference attack on the modified cipher.

8. Fix a block cipher with encryption maps ek : Fn
2 → Fn

2 for k ∈ Fm
2 . Show that

there exists Q ∈ N such that eQk = e−1
k for all keys k. Does this mean all block

ciphers can be broken?
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Attempt questions 1 to 4 and 6. M.Sc. students should also attempt
question 7: the final part (?) is optional.

This sheet need not be handed in. Model answers will be posted on Moodle
as usual. You are welcome to email the lecturer mark.wildon@rhul.ac.uk

with any questions.

Private keys, and other private information, are written in red.

1. (a) Compute 2131 mod 3023. [Hint: to do this by hand, first compute 22, 24, 28,
216 . . . 2128 by repeated squaring: note that (2m)2 = 22m.]

(b) Find x such that 2x ≡ 35 mod 37.

2. Suppose that Bob’s RSA public key is (2279, 17). As Eve you observe the RSA
ciphertext 37 sent to Bob. Find Bob’s private key and hence find the plaintext.

3. Generate an RSA public key (n, a) with n > 2128 and private key (n, r). Use the
Mathematica notebook PKC.nb on Moodle and the PowerMod function.

(a) Email your public key to your partner in your cell.

(b) Email a message x of your choice, using the RSA Cryptosystem, to your
partner in your block. [Hint: you know their public key when you receive
their email from (a). Your message can be a number between 0 and n− 1, or
if you use the functions in the notebook, an English string.]

(c) Decrypt the message from your partner. [If your partner is uncooperative,
you may use the lecturer as a substitute in (a) and (c).]

(d) Suppose all emails are observed by Eve. What, if anything, can she learn?

(e) Suppose all emails can be modified by Malcolm. What, if anything, can he
learn?

4. Consider the cryptoscheme in which English plaintexts are converted to 8-bit
ASCII (‘a’ ↔ 01100001, ‘b’ ↔ 01100010, and so on, as on Problem Sheet 5)
and then encrypted using RSA with the appropriate public key.

For example ‘hi’ becomes 1101000 1101001 which is the binary form of 13409. If
Alice’s public key is (n, a) then she is sent 13409a mod n. Assume that n ≈ 22048.

(a) Alice is expected an important message ‘yes’ or ‘no’ from Bob. Show that
Eve can decrypt Bob’s ciphertext without knowing Alice’s private key.

(b) Can the problem in (a) occur if Alice and Bob use a symmetric cipher such
as AES where the key is entirely private? How can it be avoided while still
using the RSA cryptosystem?

5. Let (n, a) be Alice’s RSA public key. Suppose that n = pq. Let t = (p− 1)(q− 1).
Show that an attacker who knows n and t can easily find p and q. [Hint: find a
quadratic equation for p with coefficients expressed in terms of n and t.]



6. In Diffie–Hellman Key Exchange, we saw that the eavesdropper Eve knows the
prime p, the base g and ga mod p. Only Alice knows her exponent a. (We write
ga mod p entirely in black because although a is private, ga mod p is public.)

Bob wants to send a message x ∈ {1, . . . , p− 1} to Alice.

(a) Suppose Bob sends xga mod p. Show that Eve can find x.

(b) Explain why Bob can send x(ga)r mod p for any private r of his choice. (This
is not entirely obvious because Bob knows ga mod p but not ga.) Can Alice
find x?

(c) Suppose Bob sends x(ga)r mod p and then sends r. Can Alice find x? Can
Eve find x?

(d) Suppose Bob sends x(ga)r mod p and then sends gr mod p. Can Alice find
x? Can Eve find x?

Remark: (d) is the ElGamal cryptoscheme: Alice publishes (g, ga, p) as her public
key, and keeps (g, a, p) as her private key.

7. (M.Sc.) Let ek : F8
2 → F8

2 for k ∈ F12
2 be the encryption maps in the Q-block

cipher. Find corr(L{0} ◦ ek, L{2,5}) and corr(L{0} ◦ ek, L{2,6}). Assuming you have
good estimates for these statistics, and for corr(L{0} ◦ ek, L{2}) = 1

2
(−1)k0+k6 , how

many possibilities are there for k? (?) Find some further high correlations that
give more information about the key.

8. (M.Sc.) Let F : Fn
2 → Fn

2 . Suppose that corr(LU ◦ F,LT ) = c > 0. Let k ∈ Fn
2

and define G : Fn
2 → Fn

2 by G(x) = F (x + k).

(a) Show that corr(LU ◦G,LT ) = (−1)LT (k)c.

An attacker has a collection {(v(j), v′(j)) : 1 ≤ j ≤ q} of chosen plaintext/ciphertext

pairs. She estimates the correlation in (a) by computing Sj = LU(v′(j)) + LT (v(j))
for each j, and taking C = 1

q

∑q
j=1(−1)Sj .

(b) Find P[Sj = 0] and P[Sj = 1]. [Corrected from P[Zj = 1] and P[Zj = −1].]

(c) Show that if q is large then the distribution of C is approximately normal
with mean c and variance 1−c2

q
. [Hint: use the Central Limit Theorem.]

(d) How large must q be for the attacker to be confident of learning LT (k)?

9. Harry the Horrible Hacker creates an RSA public key (n, a).

(a) What is to stop him from publishing (n, a) on the web and claiming that it
is Alice the Angelic’s public key?

(b) Can he upload data to the web that appears to have been encrypted by Alice?

(c) What are the implications for laws that require key disclosure, for example a
Section 49 notice under the Regulation of Investigatory Powers Act 2000?


