
THEORY OF ERROR CORRECTING CODES
MT461/MT5461

MARK WILDON

These notes cover the part of the syllabus for MT461/MT5461 that

is not part of MT361. Further installments will be issued as they are

ready. All handouts and problem sheets will be put on the MT361

Moodle page, marked MSc/MSci.

I would very much appreciate being told of any corrections or possible

improvements to these notes.

You are warmly encouraged to ask questions in lectures, and to talk

to me after lectures and in my office hours. I am also happy to answer

questions about the lectures or problem sheets by email. My email

address is mark.wildon@rhul.ac.uk.

Extra lecture for MT461/MT5461: Thursday noon (ABLT2).

Office hours in McCrea 240: Tuesday 11am, Thursday 3pm, Fri-

day 3pm.

Date: Second term 2011/12.

2

Overview

The extra content on the syllabus for MT5461 is on Reed–Solomon

codes and cyclic codes over finite fields. These codes are examples of

the linear codes that will be covered in Part C of the main lectures.

We will first look at the original definition of Reed–Solomon codes,

and see one efficient decoding algorithm. Then in the second half of the

term we will look at cyclic codes in general, and make the connection

with Reed–Solomon codes. We will end by defining the important

family of BCH codes.

1. Revision of fields and polynomials

Most good codes make use of the algebraic structure of finite fields

and polynomial rings. For example, the Reed–Solomon code used on

compact discs has as its alphabet the finite field of order 2
8
. This sec-

tion gives the minimum background knowledge required for the course:

it will allow us to define Reed–Solomon codes over fields of prime order,

and to prove the results we need on cyclic codes.
1

Fields. Roughly put, fields are sets in which one can add, subtract

and multiply any two elements, and also divide by non-zero elements.

Examples of familiar infinite fields are the rational numbers Q and the

real numbers R. If p is a prime, then the set Fp = {0, 1, . . . , p − 1},
with addition and multiplication defined modulo p is a finite field (see

Theorem 1.3).

Definition 1.1. A field is a set of elements F with two operations, +

(addition) and × (multiplication), and two special elements 0, 1 ∈ F
such that 0 �= 1 and

(1) a+ b = b+ a for all a, b ∈ F;
(2) 0 + a = a+ 0 = a for all a ∈ F;
(3) for all a ∈ F there exists b ∈ F such that a+ b = 0;

(4) a+ (b+ c) = (a+ b) + c for all a, b, c ∈ F;

(5) a× b = b× a for all a, b ∈ F;
(6) 1× a = a× 1 = a for all a ∈ F;
(7) for all non-zero a ∈ F there exists b ∈ F such that a× b = 1;

(8) a× (b× c) = (a× b)× c for all a, b, c ∈ F;

(9) a× (b+ c) = a× b+ a× c for all a, b, c ∈ F.

1
If you have not seen finite fields of prime power order then you will have to take

one or two results on trust towards the end of the course. The examination will

only require finite fields of prime order.

3

It may be helpful to note that (1)–(4) imply that F is an abelian

group under addition, and that (5)–(8) imply that (F\{0},×) is an

abelian group under multiplication. The final axiom (9) is the dis-
tributive law relating addition and multiplication.

It is usual to write −a for the element b in (4), and a−1
for the

element b in (8). These are the additive and multiplicative inverses of

a and b, respectively: by the first exercise below they are unique. We

usually write ab rather than a× b.

Definition 1.2. The order of a finite field F is defined to be the number

of elements in F.

Exercise: show from the axioms for a field that if F is a field then

a × 0 = 0 for all a ∈ F. Show that if x ∈ F then x has a unique

additive inverse, and that if x �= 0 then x has a unique multiplicative

inverse.

Exercise: show from the axioms for a field that if F is a field and a,
b ∈ F are such that a× b = 0, then either a = 0 or b = 0.

Theorem 1.3. Let p be a prime. The set Fp = {0, 1, . . . , p − 1} with
addition and multiplication defined modulo p is a field.

Example 1.4. The addition and multiplication tables for the finite

field F4 = {0, 1,α, 1 + α} of order 4 are shown below.

+ 0 1 α 1 + α

0 0 1 α 1 + α
1 1 0 1 + α α
α α 1 + α 0 1

1 + α 1 + α α 1 0

× 1 α 1 + α

1 1 α 1 + α
α α 1 + α 1

1 + α 1 + α 1 α

Probably the most important thing to realise is that F4 is not the
integers modulo 4. Indeed, in Z4 = {0, 1, 2, 3} we have 2 × 2 = 0,

but if a ∈ F4 then a × a �= 0, as can be seen from the multiplication

table. (Alternatively this follows from the second exercise above.)

4

Polynomials. Let F be a field. Let F[x] denote the set of all polyno-
mials

f(x) = a0 + a1x+ a2x
2
+ · · ·+ adx

d

where d ∈ N0 and a0, a1, a2, . . . , ad ∈ F.

If f(x) = a0+a1x+a2+ · · ·+adxd
where ad �= 0, then we say that d

is the degree of the polynomial f(x), and write deg f = d. Note that a
polynomial is a non-zero constant if and only if it has degree 0. (The

degree of the zero polynomial f(x) = 0 is unspecified.)

Polynomials are added and multiplied in the natural way.

Lemma 1.5 (Division algorithm). Let F be a field, let f(x) ∈ F[x]
be a non-zero polynomial and let g(x) ∈ F[x]. There exist polynomials
s(x), r(x) ∈ F[x] such that

g(x) = s(x)f(x) + r(x)

and either r(x) = 0 or deg r(x) < deg f(x).

We say that s(x) is the quotient and r(x) is the remainder when

g(x) is divided by f(x).

Exercise: Let f(x) = x3
+ x + 1 ∈ F2[x]. Find the quotient and

remainder when g(x) = x5
+ x2

+ x is divided by f(x).

For Reed–Solomon codes we shall need the following properties of

polynomials.

Lemma 1.6. Let F be a field.

(i) If f(x) ∈ F[x] has a ∈ F as a root, i.e. f(a) = 0, then there is
a polynomial g(x) ∈ F[x] such that f(x) = (x− a)g(x).

(ii) If f(x) ∈ F[x] has degree d then f(x) has at most d distinct
roots in F.

(iii) If f , g ∈ F[x] both have degree < n and there exist distinct
a1, . . . , an ∈ F such that f(ai) = g(ai) for each i ∈ {1, . . . , n}
then f(x) = g(x).

Lemma 1.7 (Polynomial interpolation). Let F be a field. Let

a1, a2, . . . , ak ∈ F

be distinct and let y1, y2, . . . , yk ∈ F. The unique polynomial f(x) ∈
F[x] of degree < k such that f(ai) = yi for all i is

f(x) =
n�

i=1

yi

�
j �=i(x− aj)�
j �=i(ai − aj)

.

5

Part 1: Reed–Solomon Codes

2. Definition and basic properties of Reed–Solomon codes

In this section we give the original definition of Reed–Solomon codes
over finite fields. We will work over the fields Fp of prime degree
constructed in Theorem 1.3, but it is easy to see that the definition
and all the results extend to a general finite field.

Definition 2.1. Let p be a prime and let k, n ∈ N be such that
k ≤ n ≤ p. Let

a1, a2, . . . , an

be distinct elements of Fp. For each polynomial f(x) ∈ Fp[x] we define
a word u(f) ∈ F

n
p by

u(f) = (f(a1), f(a2), . . . , f(an)).

The Reed–Solomon code associated to the parameters p, n, k and the
field elements a1, a2, . . . , an is the length n code over Fp with codewords

{u(f) : f ∈ Fp[x], f = 0 or deg f ≤ k − 1}.

Correction: Original version had {u(f) : f ∈ Fp[x], deg f ≤ k − 1}.
This wrongly excluded the zero polynomial, which has undefined de-
gree, but still needs to be included.

It is worth bearing in mind Remark 1.6(3) from the main lectures:
the parameters p, n, k and the field elements a1, a2, . . . , an are part of
the specification of a Reed–Solomon code, and should be assumed to
be known to everyone.

For instance, the Reed–Solomon code used on compact discs is de-
fined over the finite field F28 (using the obvious extension of Defini-
tion 2.1) and has parameters n = 255 and k = 223.

Example 2.2. Let p = 5 and let k = 2.

(1) If n = 3 and we take a1 = 0, a2 = 1 and a3 = 2, then the
associated Reed–Solomon code has a codeword

(f(0), f(1), f(2))

for each f(x) ∈ Fp[x] of degree ≤ 1. If f(x) = bx+ c then

u(f) = (c, b+ c, 2b+ c)

so the full set of codewords is

{(c, b+ c, 2b+ c) : b, c ∈ F5}.
This code is 1-error detecting, but not 2-error detecting.

6

(2) If n = 4 and we take a1, a2, a3 as before, and a4 = 3 then we
get an extension of the code in (1). The set of codewords is

{(c, b+ c, 2b+ c, 3b+ c) : b, c ∈ F5}.
This code has the same size as the previous code, but longer
length, so one might expect it to have better error-detecting
and error-correcting properties.

The next exercise will be rapidly subsumed by more general results
proved using the theory developed in Part A of the main course. But
you will find it very instructive to find a direct proof.

Exercise: Show that if C = {(c, b+c, 2b+c, 3b+c) : b, c ∈ F5} then C is
2-error detecting and 1-error correcting. (Hint: Question 4 on Sheet 1
will help, particularly for the latter part.)

For the rest of this section, fix parameters p, n, k and field elements
a1, a2, . . . , an. Let RSp,n,k denote the associated Reed–Solomon code
over Fp.

Lemma 2.3. The Reed–Solomon code RSp,n,k has size p
k.

Possibly you have realised that the Hamming distances between
codewords in a code controls how many errors the code can detect
and correct. The next lemma gives a lower bound on these distances
for the Reed–Solomon code.

Lemma 2.4. If f , g ∈ Fp[x] are distinct polynomials of degree ≤ k−1
then

d(u(f), u(g)) ≥ n− k + 1.

To find the minimum distance (as defined in Definition 3.1 of the
main notes) of RSp,n,k we must also show that there are two codewords
in RSp,n,k at distance n− k+1. This can be done using Lemma 1.7 on
polynomial interpolation.

Theorem 2.5. The minimum distance of RSp,n,k is n− k + 1.

The Singleton Bound (to be proved in Part B of the main course)
states that any p-ary code of length n and minimum distance d has at
most p

n−d+1 codewords. By Lemma 2.3 and Theorem 2.5, the Reed–
Solomon codes meet this bound, and so have the largest possible size
for their length and minimum distance.

7

Corollary 2.6. Let p be a prime. If k, e ∈ N are such that k+2e ≤ p

then the Reed–Solomon code RSp,k+2e,k is e-error correcting.

We now discuss encoding and decoding for Reed–Solomon codes.
The code RSp,n,k has size pk so it can encode pk different messages. We
saw in the first proof of Lemma 2.3 (by polynomial interpolation) that
given any (b1, b2, . . . , bk) ∈ F

k
p, there exists a polynomial f ∈ Fp[x] of

degree < k such that f(ai) = bi for 1 ≤ i ≤ k, and so

u(f) = (b1, b2, . . . , bk, . . .).

Hence if we agree to identify messages with F
k
p, then we can use poly-

nomial interpolation to define a suitable encoder. (One advantage of
this encoder is that if a message is received without any errors, then
the message can be read off from the first k positions.)

Decoding is a much trickier issue. We would like to use nearest neigh-
bour decoding, but the näıve algorithm where we search through the
entire code looking for the nearest codeword is completely impractical
once p and k are large. For example, the Reed–Solomon code used on
compact disks has size k = 223 and size 256223.

The original decoder proposed by Reed and Solomon used polyno-
mial interpolation to find all codewords that agreed with the received
word in at least k positions. The nearest one would then be taken as
the sent codeword. (So the decoder implements nearest neighbour de-
coding.) However, there are

�
n
k

�
choices of k positions from n, so while

an improvement, this would still be impractical for large codes.

Example 2.7. Suppose we use the Reed–Solomon code with p = 5,
n = 4 and k = 2 evaluating at a1 = 0, a2 = 1, a3 = 2, a4 = 3, as
in Example 2.2(2). By Corollary 2.6, this code is 1-error correcting.
Suppose we receive v = (4, 0, 3, 0).

Given any two positions i and j, it follows from Lemma 1.7 that there is
a unique polynomial g of degree< 2 such that g(ai) = vi and g(aj) = vj.

The table below shows the interpolating polynomials for each pair of
positions and the corresponding codewords. For example, to find f(x)
such that f(0) = 4 and f(2) = 3, we use Lemma 1.7 and get

f(x) = 4
x− 2

0− 2
+ 3

x− 0

2− 0
= 3(x− 2)− x = 2x+ 4.

8

Conditions on f Solution Codeword u(f)

f(0) = 4, f(1) = 0 f(x) = 4 + x (4, 0, 1, 2)
f(0) = 4, f(2) = 3 f(x) = 4 + 2x (4, 1, 3, 0)
f(1) = 0, f(2) = 3 f(x) = 2 + 3x (2, 0, 3, 1)
f(0) = 4, f(3) = 0 f(x) = 4 + 2x (4, 1, 3, 0)
f(1) = 0, f(3) = 0 f(x) = 0 (0, 0, 0, 0)
f(2) = 3, f(3) = 0 f(x) = 4 + 2x (4, 1, 3, 0)

In practice, we would stop as soon as we found the codeword (4, 1, 3, 0)
since d(4130, 4030) = 1, and by the exercise on page 19 of the main
lecture notes, there is at most one codeword within distance 1 of any
given word.

3. Efficient decoding of Reed–Solomon codes

In this section we shall see an efficient algorithm for decoding Reed–
Solomon codes invented by Berlekamp and Welch in 1983. As usual
we work with the Reed–Solomon code RSp,n,k where p is prime and n,
k ∈ N, and polynomials are evaluated at a1, a2, . . . , an. Assume that
n = k + 2e, so by Corollary 2.6 the code is e-error correcting.

Theorem 3.1 (Key Equation). Suppose that the codeword

u(f) = (f(a1), . . . , f(an))

is transmitted and the word (v1, . . . , vn) is received. If there are ≤ e

errors in transmission then there exist polynomials

• Q(x) of degree ≤ k + e− 1
• E(x) of degree ≤ e,

such that the Key Equation

Q(ai) = viE(ai)

holds for each i ∈ {1, 2, . . . , n}.

It is not at all obvious why the Key Equation is helpful. We first
show that any solution to it can be used to decode a received word.

Lemma 3.2. Suppose that the codeword

u(f) = (f(a1), . . . , f(an))

is transmitted and the word (v1, . . . , vn) is received. If E(x) and Q(x)
satisfy the Key Equation, and the number of errors in transmission is
≤ e, then Q(x) = f(x)E(x) and so f(x) = Q(x)/E(x).

9

We saw in the proof of Theorem 3.1 that we could solve the Key
Equation if somehow we knew where the errors had occurred. But
this does not help us in practice. Instead we proceed by solving linear
equations. (Unlike the näıve approach in §2, we only have to solve one
system, not

�
n
k

�
separate systems!)

Lemma 3.3. Suppose that the word (v1, . . . , vn) is received. The poly-
nomials

Q(x) = Q0 +Q1x+ · · ·+Qk+e−1x
k+e−1

E(x) = E0 + E1x+ · · ·+ Eex
e

in Fp[x] satisfy the Key Equation if and only if

Q0 + aiQ1 + a
2
iQ2 + · · ·+ a

k+e−1
i Qk+e−1

= vi(E0 + aiE1 + a
2
iE2 + · · ·+ a

e
iEe)

for each i ∈ {1, . . . , n}. An equivalent condition is that

1 a1 a
2
1 · · · a

k+e−1
1 −v1 −v1a1 · · · −v1a

e
1

1 a2 a
2
2 · · · a

k+e−1
2 −v2 −v2a2 · · · −v2a

e
2

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
1 an a

2
n · · · a

k+e−1
n −vn −vnan · · · −vna

e
n

Q0

Q1
...

Qk+e−1

E0

E1
...
Ee

= 0

The matrix above is an n× (n+1) matrix. So we can solve the Key
Equation by solving an n× (n+ 1) system of linear equations.

Example 3.4. We shall use the code of Example 2.2(2) (also seen in
Example 2.7). Let p = 5, let k = 2, let e = 1 (so n = 4) and let a1 = 0,
a2 = 1, a3 = 2, a4 = 3. With these parameters, the Key Equation for
the polynomials Q(x) = Q0 +Q1x+Q2x

2 and E(x) = E0 + E1x is

1 0 0 4v1 0
1 1 1 4v2 4v2
1 2 4 4v3 3v3
1 3 4 4v4 2v4

Q0

Q1

Q2

E0

E1

= 0.

10

(1) Suppose we receive the word 4130. (This is the codeword for
f(x) = 4+ 2x.) Then v1 = 4, v2 = 1, v3 = 3, v4 = 0 and we must solve

1 0 0 1 0
1 1 1 4 4
1 2 4 2 4
1 3 4 0 0

Q0

Q1

Q2

E0

E1

= 0.

The kernel is two dimensional, spanned by the vectors

(0, 4, 2, 0, 1)t, (4, 2, 0, 1, 0)t.

The first vector gives Q(x) = 4x + 2x2 and E(x) = x, so we decode
using f(x) = Q(x)/E(x) = 4 + 2x to get u(f) = 4130. (The second
vector gives the same answer even more quickly.)

(2) Suppose we receive the word 4030. Then v1 = 4, v2 = 0, v3 = 3,
v4 = 0 and we must solve

1 0 0 1 0
1 1 1 0 0
1 2 4 2 4
1 3 4 0 0

Q0

Q1

Q2

E0

E1

= 0.

The kernel is one dimension spanned by (1, 2, 2, 4, 1)t. So we take
Q(x) = 1 + 2x+ 2x2 and E(x) = 4 + x. Polynomial division gives

Q(x)/E(x) = 2x+ 4

so we decode using f(x) = 2x+ 4 to get u(f) = 4130.

(3) Finally suppose we receive 4020. Then the kernel is one dimen-
sional, spanned by (4, 3, 3, 1, 0). So we take Q(x) = 4 + 3x + 3x2 and
E(x) = 1, but Q(x)/E(x) does not have degree ≤ 1, so we are unable
to decode. Since the Key Equation method always works when ≤ e er-
rors occur, we know that ≥ 2 errors have occurred, but we are unable
to correct them.

When more than e errors occur it can also happen that the received
word is decoded incorrectly. For example, this would happen in the
setup of Example 3.4 if we received 4000. Another possibility is that
E(x) does not divide Q(x): in this case we detect an error but are
unable to correct it.

Final remarks: (1) When preparing this section I used §4 of these notes:
http://math.berkeley.edu/~mhaiman/math55/reed-solomon.pdf.

11

The next section in Haiman’s notes explains a refinement to the Key-
Equation method that reduces the problem to solving an e× e system
of equations and then doing a one-off polynomial interpolation. Since
e is much less than n (for the code used on compact discs, n = 255 and
e = 16) this is a big improvement.

(2) AMathematica notebook for solving the Key Equation is avail-
able on Moodle. Unless you really want to do it by hand, I suggest you
use it (or another computer algebra program) to do Question 4 on
Sheet 4.

12

Part 2: Cyclic codes

4. Cyclic codes

Cyclic codes are a special type of linear code. In Part C of the main
course we will consider linear codes over the binary alphabet. Here
we work more generally over a finite field Fp of prime order. (As for
Reed–Solomon codes, all our results extend to a general finite field.)

Definition 4.1. Let p be prime. A code C over Fp is linear if

(i) for all u ∈ C and a ∈ Fp we have au ∈ C;
(ii) for all u, w ∈ C we have u+ w ∈ C.

Here au is the word defined by (au)i = aui and u + v is defined by
(u + w)i = ui + wi. Equivalently, a code C over Fp is linear if C is a
vector subspace of Fn

p .

Exercise: Show that any Reed–Solomon code is linear.

Definition 4.2. Let p be a prime. A code C over Fp is said to be
cyclic if C is linear and

(u0, u1, . . . , un−1) =⇒ (un−1, u0, . . . , un−2) ∈ C.

The reason for numbering positions from 0 will be seen shortly. Note
that we can apply the shift in the definition many times, so a cyclic
code is closed under arbitrary cyclic shifts.

Example 4.3.

(1) Let p be prime and let n ∈ N. The repetition code of length n

over Fp is cyclic.

(2) Let C be the set of binary words of length n ∈ N with evenly
many 1s. We may define C using addition in F2 by

C = {(u0, . . . , un−1) : ui ∈ F2, u0 + · · ·+ un−1 = 0}.
Then C is a cyclic code.

(3) Let D be the binary code {0000, 1010, 0101, 1111}. Exercise:
check that D is linear. The shift map acts on D by fixing 0000
and 1111 and swapping 1010 and 0101, so D is cyclic.

There is a very helpful correspondence between codewords in a cyclic
code and polynomials.

13

Definition 4.4. Let p be prime. Given a codeword

u = (u0, u1, . . . , un−1) ∈ F
n
p .

we define the polynomial corresponding to u to be

u0 + u1x+ · · ·+ un−1x
n−1

and write

u ←→ u0 + u1x+ · · ·+ un−1x
n−1

.

For example, the polynomials corresponding to codewords in the
binary code D in Example 4.3(3) are as shown below:

0000 ←→ 0

1010 ←→ 1 + x
2

0101 ←→ x+ x
3

1111 ←→ 1 + x+ x
2 + x

3

Notice that 1+x
2 corresponds to 1010, and if we multiply 1+x

2 by x

we get x+x
3 which corresponds to 0101. If we multiply by x again we

get x
2 + x

4; however, the shift of 0101 is 1010, which corresponds to
1 + x

2. The same problem arises with 1111.

If somehow we could identify x
4 with 1 then in all cases multi-

plication by x would correspond to the cyclic shift (u0, u1, u2, u3) �→
(u3, u0, u1, u2) of codewords.

Definition 4.5. Let p be prime. The ring Fp[x]/(xn−1), read as ‘Fp[x]
modulo x

n − 1’ has elements all polynomials in Fp[x] of degree < n.
Given

f(x) = a0 + a1x+ · · ·+ an−1x
n−1

g(x) = b0 + b1x+ · · ·+ bn−1x
n−1

in Fp[x]/(xn − 1) we define their sum, in the obvious way, to be

f(x) + g(x) = (a0 + b0) + (a1 + b1)x+ · · ·+ (an−1 + bn−1)x
n−1

.

The product f(x)g(x) ∈ Fp[x]/(xn−1) is defined by taking the normal
product f(x)g(x) ∈ Fp[x] and then taking the remainder on division
by x

n − 1.

In Definition 4.4, the polynomial corresponding to a codeword u ∈ F
n
p

should be taken to be an element of Fp[x]/(xn − 1).

14

Remarks 4.6.

(1) This definition is analogous to the earlier definition (see Theo-
rem 1.3) of the finite field Fp as the set of numbers

{0, 1, . . . , p− 1}
with addition and multiplication defined by performing these
operations in Z, and then taking the remainder after division
by p.

(2) We will assume that F[x]/(xn−1) is a ring, i.e. it satisfies all the
axioms, except (7), on page 2. It is routine but time-consuming
to check they all hold.

This result also follow from the general theory of quotient rings.
Defined this way, F[x]/(xn − 1) is the set of cosets

f(x) + �(xn − 1)�
of the ideal in F[x] generated by (xn−1). Our definition makes
a specific choice of coset representatives.

Exercise: Check that if f(x) = x+x
3 ∈ F2[x]/(x4−1) is the polynomial

corresponding to 0101 then xf(x) = 1 + x
2 and so

xf(x) ←→ 1010

as we wanted. Also show that f(x)2 = 0 ∈ F2[x]/(x4 − 1).

We defined the ring Fp[x]/(xn−1) so that the following lemma would
hold.

Lemma 4.7. Let p be a prime and let u = (u0, u1, . . . , un−1) ∈ F
n
p . Let

f(x) = u0 + u1x+ · · ·+ un−1x
n−1 ∈ Fp[x]/(x

n − 1)

be the polynomial corresponding to u. The polynomial corresponding to
(un−1, u0, . . . , un−2) is xf(x) ∈ F[x]/(xn − 1).

From now on we will usually identify a cyclic code of length n

over Fp with the corresponding set of polynomials in Fp[x]/(xn − 1).
By Lemma 4.7, cyclic shifts of codewords correspond to multiplication
by x. The next exercise gives a more general property.

Exercise: Let C ⊆ Fp[x]/(xn − 1) be a cyclic code. Show that if
f(x) ∈ C and h(x) ∈ Fp/(xn − 1) then h(x)f(x) ∈ C.

The next definition will lead to a way to find all cyclic codes over Fp

of a specified length.

15

Definition 4.8. Let p be a prime. Let C be a cyclic code of length n

over the finite field Fp, identified with a subset of Fp[x]/(xn − 1). A
generator polynomial for C is a polynomial g(x) ∈ Fp[x] of degree < n

such that g(x) divides xn − 1 and

C =
�
f̄(x)ḡ(x) : f̄(x) ∈ F[x]/(xn − 1)

�
.

Here a bar over a polynomial means that it should be considered as
an element of Fp[x]/(xn − 1). Thus the product f̄(x)ḡ(x) takes place
in Fp[x]/(xn − 1), not in Fp[x].

Example 4.9. Let C = {0, 1+x
2
, x+x

3
, 1+x+x

2+x
3} ⊆ F2[x]/(x4−1)

be the polynomial version of the code in Example 6.2(2). We claim that
g(x) = 1 + x

2 is a generator polynomial for C.

Since g(x)2 = (1+ x
2)2 = 1+ x

4 = x
4 − 1, the polynomial g(x) divides

x
4 − 1. Every polynomial in C is a multiple of 1 + x

2 since we have

0ḡ(x) = 0

1ḡ(x) = 1 + x
2

xḡ(x) = x+ x
3

(1 + x)ḡ(x) = 1 + x+ x
2 + x

3
.

Finally, suppose f̄(x) ∈ F2[x]/(x4−1). Dividing f(x) by 1+x
2 we can

write
f(x) = s(x)(1 + x

2) + r(x)

where the degree of r(x) is < 2. So r(x) ∈ {0, 1, x, 1 + x} and

f(x)(1 + x
2) = s(x)(1 + x

2)2 + r(x)(1 + x
2).

Hence, taking products in F2[x]/(x4 − 1) we have

f̄(x)(1 + x
2) = r(x)(1 + x

2) ∈ C.

Exercise: Consider the code over F3 with codewords {(a, b, c, a, b, c) :
a, b, c ∈ F3}. The corresponding subset of F3[x]/(x6 − 1) is

C = {a+ bx+ cx
2 + ax

3 + bx
4 + cx

5 : a, b, c ∈ F3}.
Find a generator polynomial for C.

Theorem 4.10. Let F be a finite field and let C ⊆ F[x]/(xn − 1) be a
cyclic code of length n. Then C has a generator polynomial.

Conversely, we can start with a generator polynomial and construct
a cyclic code.

16

Theorem 4.11. Let p be a prime, let n ∈ N and let g(x) ∈ Fp[x]/(xn − 1)
be a divisor of xn − 1. If g(x) has degree r < n then

{g(x), xg(x), . . . , xn−r−1
g(x)}.

is a basis for the cyclic code C ⊆ Fp[x]/(xn − 1) with generator poly-
nomial g(x).

Note that Theorem 4.11 shows that a cyclic code of length n with a
generator polynomial of degree r over the finite field Fp has dimension
n− r and size p

n−r.

The following example shows how to construct all cyclic codes of
a given length over the finite field Fp, provided we have to hand the
factorization of xn−1 in Fp. (Finding these factorizations requires finite
field theory beyond the scope of this course: they will be provided if
required in an exam question.)

Example 4.12. In F2[x] we have

x
7 − 1 = (1 + x)(1 + x+ x

3)(1 + x
2 + x

3)

where each factor is irreducible, i.e. the factors cannot be written as
products of polynomials of small degree. The polynomial divisors of
x
7 − 1 are therefore

1, 1 + x, 1 + x+ x
3
, 1 + x

2 + x
3
, (1 + x)(1 + x+ x

3),

(1 + x)(1 + x
2 + x

3), (1 + x+ x
3)(1 + x

2 + x
3)

(1) The code with generator polynomial 1 + x is the parity check
extension of the code consisting of all binary words of length 6.

(2) Since (1 + x+ x
3)(1 + x

2 + x
3) = 1+ x+ x

2 + x
3 + x

4 + x
5 + x

6

the code with this generator polynomial is the binary repetition
code of length 7.

(3) The code with generator polynomial 1 + x + x
3 has generator

matrix

1 1 0 1 0 0 0
0 1 1 0 1 0 0
0 0 1 1 0 1 0
0 0 0 1 1 0 1

it is equivalent to the Hamming [7, 4, 3]-code. Exercise: prove
this.

17

Theorem 4.13. Let C be a cyclic code of length n over F with genera-
tor polynomial g(x) ∈ Fp[x] of degree r. If g(x) = a0+ a1x+ · · ·+ arx

r

then the (n− r)× n matrix

G =

a0 a1 a2 . . . ar 0 . . . 0
0 a0 a1 . . . ar−1 ar . . . 0
...

...
...

. . .
...

...
. . .

...
0 0 0 a0 ar−1 ar

is a generator matrix for C.

The encoding scheme on page 37 of the main notes would encode the
number represented by (b0, b1, . . . , bn−r−1) in binary as

(b0, b1, . . . , bn−r−1)G

As a polynomial, this codeword is

b0f(x) + b1xf(x) + · · ·+ bn−r−1x
n−r−1

f(x) =

(b0 + b1x+ · · ·+ bn−r−1x
n−r−1)f(x).

So we can encode messages in a cyclic code by polynomial multiplica-
tion. This can be performed more quickly than matrix multiplication.

We end by finding the parity check matrix of an important family of
cyclic codes, which includes suitable cyclic Reed–Solomon codes (see
Question 5 on Sheet 8 and Question 11 on Sheet 9). This gives a way
to decode these codes using syndrome decoding.

Theorem 4.14. Let C be a cyclic code over Fp of length n. Suppose
that C has generator polynomial g(x) ∈ Fp of degree r and that g has
distinct roots c1, . . . , cr ∈ Fp. Then the matrix

H =

1 c1 c
2
1 · · · c

n−1
1

1 c2 c
2
2 · · · c

n−1
2

...
...

...
. . .

...
1 cr c

2
r · · · c

n−1
r

is a parity check matrix for C. The syndrome of a received word v ∈ F
n
p

corresponding to the polynomial k(x) ∈ Fp[x]/(xn − 1) is equal to

(k(c1), . . . , k(cr)).

In particular, we note that the syndromes of the n possible errors
affecting only a single bit are distinct, and so C is at least 1-error
correcting. In fact C has minimum distance r + 1: see the end of the
proof of Theorem 5.4 below.

18

5. A brief look at BCH codes

This section may be considered non-examinable, and is included for
interest only. Some knowledge of finite fields of prime power order is
needed.

Hamming codes as cyclic codes. We start by giving a more alge-
braic way to construct the Hamming code of length 7. This construc-
tion generalizes to Hamming codes of any length.

Let F8 be the finite field field of order 8. Let α ∈ F8 be such that
every non-zero element of F8 is a power of α. (It is a general theorem
that any finite field contains such a primitive element.) Let

C = {f(x) ∈ F2[x]/(x
7 − 1) : f(α) = 0}.

Exercise: show from this definition that C is a cyclic code.

Using the correspondence between polynomials and codewords, an
equivalent definition of C is

C = {(a0, a1, . . . , a6) ∈ F
7
2 : a0 + a1α + · · ·+ a6α

6 = 0}

Lemma 5.1. The code C is equivalent to the Hamming [7, 4, 3]-code
by a permutation of its positions.

Proof. We may define the finite field F8 by F8 = F2(α) where α is a
root of the irreducible primitive polynomial

g(x) = x
3 + x+ 1 ∈ F2[x].

If f(x) ∈ F2[x] is a polynomial such that f(α) = 0 then, since g(x) is
the minimum polynomial of α, g(x) divides f(x). Hence

C = {f(x) ∈ F2[x]/(x
7 − 1) : f(x) is divisible by g(x)}.

Thus C has generator polynomial g(x). It now follows from Exam-
ple 4.12(3) that C is equivalent to the Hamming code of length 7. �

BCH codes. BCH codes (named after Bose and Ray-Chaudhuri) are
the generalization of cyclic Hamming codes in which the polynomi-
als corresponding to codewords are required to have roots at several
different powers of the primitive element α.

Definition 5.2. Let t ∈ N be given and let 2r − 1 > 2t + 1. Let
α ∈ F2r be a primitive root. The BCH-code with design distance 2t+1
and length n = 2r − 1 is the cyclic code C defined over F2 by

C = {f(x) ∈ F2[x]/(x
n − 1) : f(α) = f(α2) = . . . = f(α2t+1) = 0}.

19

Equivalently, using the same idea as in Theorem 4.14, we may define

C = {(u0, u1, . . . , un−1) ∈ F
n
2 : (u0, u1, . . . , un−1)K

tr = 0}
where

K =

1 α α
2

. . . α
n−1

1 α
2

α
4

. . . α
2(n−1)

...
...

...
. . .

...
1 α

2t
a
2(2t)

. . . a
2t(n−1)

Note that while K behaves like a parity matrix for C, it is not one
in the strict sense of Definition 14.1, because the entries of K are not
in F2.

Example 5.3. Let r, t ∈ N and let C be the BCH-code of length
2r − 1 with design distance 2t+ 1.

(1) If r = 3 and t = 1 then since the minimum polynomial of α2 if
x
3 + x + 1, as for α, it follows from Lemma 5.1 that C is the

Hamming [7, 4, 3]-code.

(2) If r = 3 and t = 2 then

C = {f(x) ∈ F2[x] : f(α) = f(α3) = 0, deg f ≤ 6.}
The minimum polynomials of α,α2 and α

4 are x
3 + x + 1 and

the minimum polynomial of α3 is x
3 + x

2 + 1. Hence, C has
generator polynomial

(x3 + x+ 1)(x3 + x
2 + 1) = x

6 + x
5 + x

4 + x
3 + x

2 + x+ 1.

In this case we merely succeed in giving a complicated construc-
tion of the repetition code. Note that the minimum distance of
this code is 7, which is strictly more than the design distance 5.

(3) Let r = 4 and let t = 2. Let α be a root of x4 + x + 1; this
is a primitive polynomial so α has multiplicative order 15. The
minimum polynomial of α3 is x4 + x

3 + x
2 + x+ 1 so the BCH

code for these parameters is cyclic with minimum polynomial
x
8 + x

7 + x
6 + x

4 + 1. By Theorem 4.13 the code is

C = {f(x)(x8 + x
7 + x

6 + x
4 + 1) : f(x) ∈ F2[x], deg f ≤ 6}

and so dimC = 15−8 = 7. Since the generator polynomial has
weight 5, the code contains words of weight 5. Hence C has min-
imum distance at most 5. It therefore follows from Theorem 5.4
below that C is a 2-error correcting binary [15, 7, 5]-code.

For comparison, the Hamming code of length 15 is a [15, 11, 3]-code.
The Hadamard codes constructed in Question 2 of Sheet 6 are lin-
ear: taking a linear Hadamard (16, 32, 8) and puncturing it in its final
position gives a [15, 5, 7]-code.

20

Working with linear codes of length 15 we have the following table
of good codes.

1-error correcting (Hamming) size 211 = 2048 [15,11,3]
2-error correcting (BCH) size 27 = 128 [15,7,5]
3-error corr. (punctured Hadamard) size 25 = 32 [15,5,7]

By the exercise below, the Hamming and punctured Hadamard codes
are optimal. The BCH code has the largest possible size of a linear bi-
nary code of length 15 and minimum distance 5, but there is a larger
non-linear code, of size 256. (See Theorem 7.4.5 in Van Lint, Introduc-
tion to coding theory.)

Exercise: Show from the Hamming Packing Bound that A2(15, 3) =
211. Use Theorem 11.6 and Corollary 9.7 in the main notes to show
that A2(15, 7) = 25.

Theorem 5.4. Let C be the BCH code of length n = 2r−1 and design
distance 2t + 1. Then C is a cyclic code of dimension ≥ n − rt and
minimum distance ≥ 2t+ 1.

Outline proof. The product of the minimum polynomials of αi for 1 ≤
i ≤ 2t+1 is a generator polynomial for C. Each minimum polynomial
has degree ≤, since α ∈ F

r
2. Moreover, if f ∈ F2[x] then f(α) = 0 if

and only if f(α2) = 0. Hence the minimum polynomial of α2i is the
same as the minimum polynomial of αi, and so we need only consider
odd powers of α. It follows that g has degree ≤ rt and so the dimension
of C is at least n− rt, by Theorem 4.11.

To show that the minimum distance of C is at least 2t + 1 it suf-
fices, by the same idea used in Question 10 on Sheet 9, to show that
no 2t columns of the matrix K following Definition 5.2 are linearly de-
pendent over F2. This can be proved using Lemma 1.7 on polynomial
interpolation, or by using the Vandermonde determinant. �

BCH codes can be decoded by syndrome decoding, as described at
the end of §4. There are also more efficient decoders based on the
Berlekamp–Massey algorithm.

