
MT461/MT5461

Theory of Error Correcting Codes

Mark Wildon, mark.wildon@rhul.ac.uk

The extra content on the syllabus for MT5461 is on Reed–Solomon
codes and cyclic codes over finite fields. These codes are examples
of the linear codes that will be covered in Part C of the main
lectures.

mark.wildon@rhul.ac.uk

Definition 1.1
A field is a set of elements F with two operations, + (addition)
and × (multiplication), and two special elements 0, 1 ∈ F such
that 0 6= 1 and

(1) a + b = b + a for all a, b ∈ F;

(2) 0 + a = a + 0 = a for all a ∈ F;

(3) for all a ∈ F there exists b ∈ F such that a + b = 0;

(4) a + (b + c) = (a + b) + c for all a, b, c ∈ F;

(5) a× b = b × a for all a, b ∈ F;

(6) 1× a = a× 1 = a for all a ∈ F;

(7) for all non-zero a ∈ F there exists b ∈ F such that a× b = 1;

(8) a× (b × c) = (a× b)× c for all a, b, c ∈ F;

(9) a× (b + c) = a× b + a× c for all a, b, c ∈ F.

Definition 1.2
The order of a finite field F is defined to be the number of
elements in F.

Exercise: show from the axioms for a field that if F is a field then
a× 0 = 0 for all a ∈ F. Show that if x ∈ F then x has a unique
additive inverse, and that if x 6= 0 then x has a unique
multiplicative inverse.

Exercise: show from the axioms for a field that if F is a field and a,
b ∈ F are such that a× b = 0, then either a = 0 or b = 0.

Theorem 1.3
Let p be a prime. The set Fp = {0, 1, . . . , p− 1} with addition and
multiplication defined modulo p is a field.

Lemma 1.5 (Division algorithm)

Let F be a field, let f (x) ∈ F[x] be a non-zero polynomial and let
g(x) ∈ F[x]. There exist polynomials s(x), r(x) ∈ F[x] such that

g(x) = s(x)f (x) + r(x)

and either r(x) = 0 or deg r(x) < deg f (x).

Exercise: Let f (x) = x3 + x + 1 ∈ F2[x]. Find the quotient and
remainder when g(x) = x5 + x2 + x is divided by f (x).

Other Results on Polynomials

For Reed–Solomon codes we shall need the following properties of
polynomials.

Lemma 1.6
Let F be a field.

(i) If f (x) ∈ F[x] has a ∈ F as a root, i.e. f (a) = 0, then there is
a polynomial g(x) ∈ F[x] such that f (x) = (x − a)g(x).

(ii) If f (x) ∈ F[x] has degree d then f (x) has at most d distinct
roots in F.

(iii) If f , g ∈ F[x] both have degree < n and there exist distinct
a1, . . . , an ∈ F such that f (ai) = g(ai) for each i ∈ {1, . . . , n}
then f (x) = g(x).

Polynomial Interpolation

Lemma 1.7 (Polynomial interpolation)

Let F be a field. Let

a1, a2, . . . , ak ∈ F

be distinct and let y1, y2, . . . , yk ∈ F. The unique polynomial
f (x) ∈ F[x] of degree < k such that f (ai) = yi for all i is

f (x) =
n∑

i=1

yi

∏
j 6=i (x − aj)∏
j 6=i (ai − aj)

.

Part 1: Reed Solomon codes

§2 Definition and basic properties of Reed–Solomon codes

Definition 2.1
Let p be a prime and let k , n ∈ N be such that k ≤ n ≤ p. Let

a1, a2, . . . , an

be distinct elements of Fp. For each polynomial f (x) ∈ Fp[x] we
define a word u(f) ∈ Fn

p by

u(f) = (f (a1), f (a2), . . . , f (an)).

The Reed–Solomon code associated to the parameters p, n, k and
the field elements a1, a2, . . . , an is the length n code over Fp with
codewords

{u(f) : f ∈ Fp[x], deg f ≤ k − 1}.

Example 2.2

Let p = 5 and let k = 2.

(1) If n = 3 and we take a1 = 0, a2 = 1 and a3 = 2, then the
associated Reed–Solomon code has a codeword

(f (0), f (1), f (2))

for each f (x) ∈ Fp[x] of degree ≤ 1. If f (x) = bx + c then

u(f) = (c , b + c, 2b + c)

so the full set of codewords is

{(c , b + c, 2b + c) : b, c ∈ F5}.

Exercise: show that this code is 1-error detecting, but not
2-error detecting.

(2) If n = 4 and we take a1, a2, a3 as before, and a4 = 3 then we
get an extension of the code in (1).

Exercise: Show that if C = {(c , b + c , 2b + c , 3b + c) : b, c ∈ F5}
then C is 2-error detecting and 1-error correcting. (Hint: Question
4 on Sheet 1 will help, particularly for the latter part.)

Basic properties
For the rest of this section, fix parameters p, n, k and field
elements a1, a2, . . . , an. Let RSp,n,k denote the associated
Reed–Solomon code over Fp.

Lemma 2.3
The Reed–Solomon code RSp,n,k has size pk .

The next lemma gives a lower bound on the Hamming distances
between codewords in the Reed–Solomon code.

Lemma 2.4
If f , g ∈ Fp[x] are distinct polynomials of degree ≤ k − 1 then

d(u(f), u(g)) ≥ n − k + 1.

Theorem 2.5
The minimum distance of RSp,n,k is n − k + 1.

Remarks on Lemma 2.4 and Theorem 2.5

(1) Suppose that f , g ∈ Fp[x] are polynomials of degree < k .
Then by Lemma 2.4, d(u(f), u(g)) ≥ n − k + 1. In particular
u(f) 6= u(g). This gives another proof that the Reed–Solomon
code RSp,n,k has size pk .

(2) The interpolating polynomial given by Lemma 1.7 is unique.
Proof was omitted in Lecture 2, so will give now.

Corollary 2.6

Let p be a prime. If k, e ∈ N are such that k + 2e ≤ p then the
Reed–Solomon code RSp,k+2e,k is e-error correcting.

Optimality of Reed Solomon codes

The Singleton Bound (to be proved in Part B of the main course)
states that any p-ary code of length n and minimum distance d
has at most pn−d+1 codewords. By Lemma 2.3 and Theorem 2.5,
the Reed–Solomon codes meet this bound, and so have the largest
possible size for their length and minimum distance.

Example 2.7

Suppose we use the Reed–Solomon code with p = 5, n = 4 and
k = 2 evaluating at a1 = 0, a2 = 1, a3 = 2, a4 = 3, as in Example
2.2(2). By Corollary 2.6, this code is 1-error correcting. Suppose
we receive v = (4, 0, 3, 0).

Given any two positions i and j , it follows from Lemma 1.7 that
there is a unique polynomial g of degree < 2 such that g(ai) = vi
and g(aj) = vj .

The table on the next slide shows the interpolating polynomials for
each pair of positions and the corresponding codewords. For
example, to find f (x) such that f (0) = 4 and f (2) = 3, we use
Lemma 1.7 and get

f (x) = 4
x − 2

0− 2
+ 3

x − 0

2− 0
= 3(x − 2)− x = 2x + 4.

Conditions on f Solution Codeword u(f)

f (0) = 4, f (1) = 0 f (x) = 4 + x (4, 0, 1, 2)
f (0) = 4, f (2) = 3 f (x) = 4 + 2x (4, 1, 3, 0)
f (1) = 0, f (2) = 3 f (x) = 2 + 3x (2, 0, 3, 1)
f (0) = 4, f (3) = 0 f (x) = 4 + 2x (4, 1, 3, 0)
f (1) = 0, f (3) = 0 f (x) = 0 (0, 0, 0, 0)
f (2) = 3, f (3) = 0 f (x) = 4 + 2x (4, 1, 3, 0)

In practice, we would stop as soon as we found the codeword
(4, 1, 3, 0) since d(4130, 4030) = 1, and by the exercise on page 19
of the main lecture notes, there is at most one codeword within
distance 1 of any given word.

§3 Efficient Decoding of Reed–Solomon codes

As usual we work with the Reed–Solomon code RSp,n,k where p is
prime and n, k ∈ N, and polynomials are evaluated at
a1, a2, . . . , an. Assume that n = k + 2e, so by Corollary 2.6 the
code is e-error correcting.

Theorem 3.1 (Key Equation)

Suppose that the codeword

u(f) = (f (a1), . . . , f (an))

is transmitted and the word (v1, . . . , vn) is received. If there are
≤ e errors in transmission then there exist polynomials

• Q(x) of degree ≤ k + e − 1

• E (x) of degree ≤ e,

such that the Key Equation

Q(ai) = viE (ai)

holds for each i ∈ {1, 2, . . . , n}.

Using Key Equation to Decode

It is not at all obvious why the Key Equation is helpful. We first
show that any solution to it can be used to decode a received word.

Lemma 3.2
Suppose that the codeword

u(f) = (f (a1), . . . , f (an))

is transmitted and the word (v1, . . . , vn) is received. If E (x) and
Q(x) satisfy the Key Equation, and the number of errors in
transmission is ≤ e, then Q(x) = f (x)E (x) and so
f (x) = Q(x)/E (x).

Solving Key Equation

Lemma 3.3
Suppose that the word (v1, . . . , vn) is received. The polynomials

Q(x) = Q0 + Q1x + · · ·+ Qk+e−1xk+e−1

E (x) = E0 + E1x + · · ·+ Eexe

in Fp[x] satisfy the Key Equation if and only if

Q0 + aiQ1 + a2i Q2 + · · ·+ ak+e−1
i Qk+e−1

= vi (E0 + aiE1 + a2i E2 + · · ·+ aei Ee)

for each i ∈ {1, . . . , n}.

Lemma 3.3 [continued]

An equivalent condition is that



1 a1 a21 · · · ak+e−1
1 −v1 −v1a1 · · · −v1ae1

1 a2 a22 · · · ak+e−1
2 −v2 −v2a2 · · · −v2ae2

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
1 an a2n · · · ak+e−1

n −vn −vnan · · · −vnaen





Q0

Q1
...

Qk+e−1
E0

E1
...

Ee



Example 3.4

Let p = 5, let k = 2, let e = 1 (so n = 4) and let a1 = 0, a2 = 1,
a3 = 2, a4 = 3. With these parameters, the Key Equation for the
polynomials Q(x) = Q0 + Q1x + Q2x2 and E (x) = E0 + E1x is


1 0 02 −v1 0
1 1 12 −v2 −v2
1 2 22 −v3 −2v3
1 3 32 −v4 −3v4




Q0

Q1

Q2

E0

E1

 = 0.

or equivalently


1 0 0 4v1 0
1 1 1 4v2 4v2
1 2 4 4v3 3v3
1 3 4 4v4 2v4




Q0

Q1

Q2

E0

E1

 = 0.

(1) Suppose we receive the word 4130. (This is the codeword for
f (x) = 4 + 2x . Then v1 = 4, v2 = 1, v3 = 3, v4 = 0 and we must
solve 

1 0 0 1 0
1 1 1 4 4
1 2 4 2 4
1 3 4 0 0




Q0

Q1

Q2

E0

E1

 = 0.

The kernel is two dimensional, spanned by the vectors

(0, 4, 2, 0, 1)t , (4, 2, 0, 1, 0)t .

The first vector gives Q(x) = 4x + 2x2 and E (x) = x , so we
decode using f (x) = Q(x)/E (x) = 4 + 2x to get u(f) = 4130.

(2) Suppose we receive the word 4030. Then v1 = 4, v2 = 0,
v3 = 3, v4 = 0 and we must solve


1 0 0 1 0
1 1 1 0 0
1 2 4 2 4
1 3 4 0 0




Q0

Q1

Q2

E0

E1

 = 0.

The kernel is one dimension spanned by (1, 2, 2, 4, 1)t . So we take
Q(x) = 1 + 2x + 2x2 and E (x) = 4 + x . Polynomial division gives

Q(x)/E (x) = 2x + 4

so we decode using f (x) = 2x + 4 to get u(f) = 4130.

(3) Finally suppose we receive 4020. Then the kernel is one
dimensional, spanned by (4, 3, 3, 1, 0). So we take
Q(x) = 4 + 3x + 3x2 and E (x) = 1, but Q(x)/E (x) does not have
degree ≤ 1, so we are unable to decode. Since the Key Equation
method always works when ≤ e errors occur, we know that ≥ 2
errors have occurred, but we are unable to correct them.

Part 2: Cyclic codes

§2 Cyclic codes

Cyclic codes are a special type of linear code. In Part C of the
main course we will consider linear codes over the binary alphabet.
Here we work more generally over a finite field Fp of prime order.

Definition 4.1
Let p be prime. A code C over F is linear if

(i) for all u ∈ C and a ∈ F we have au ∈ C ;

(ii) for all u, v ∈ C we have u + v ∈ C .

Definition 4.2
Let p be a prime. A code C over Fp. is said to be cyclic if C is
linear and

(u0, u1, . . . , un−1) =⇒ (un−1, u0, . . . , un−2) ∈ C .

Examples of Cyclic Codes

Example 4.3

(1) Let p be prime. The repetition code of length n over Fp is
cyclic.

(2) Let C be all binary words of length n ∈ N with evenly many 1s.
We may define C using addition in F2 by

C = {(u0, . . . , un−1) : ui ∈ F2, u0 + . . . + un−1 = 0}.

Then C is a cyclic code.

(3) Let D be the binary code {0000, 1010, 0101, 1111}. Exercise:
check that D is linear. The shift map acts on D by fixing 0000 and
1010 and swapping 1010 and 0101, so D is cyclic.

Correspondence with polynomials

Definition 4.4
Let p be prime. Given a codeword

u = (u0, u1, . . . , un−1) ∈ Fn
p.

we define the polynomial corresponding to u to be

u0 + u1x + · · ·+ un−1xn−1

and write
u ←→ u0 + u1x + · · ·+ un−1xn−1.

Definition 4.5
Let p be prime. The ring Fp[x]/(xn − 1), read as ‘Fp[x] modulo
xn − 1’ has elements all polynomials in Fp[x] of degree < n. Given

f (x) = a0 + a1x + · · ·+ an−1xn−1

g(x) = b0 + b1x + · · ·+ bn−1xn−1

in Fp[x]/(xn − 1) we define their sum, in the obvious way, to be

f (x) + g(x) = (a0 + b0) + (a1 + b1)x + · · ·+ (an−1 + bn−1)xn−1.

The product f (x)g(x) ∈ Fp[x]/(xn − 1) is defined by taking the
normal product f (x)g(x) ∈ Fp[x] and then taking the remainder
on division by xn − 1.

Remarks 4.6

(1) This definition is analogous to the earlier definition (see
Theorem 1.3) of the finite field Fp as the set {0, 1, . . . , p − 1}
with addition and multiplication defined by performing these
operations in Z, and then taking the remainder after division
by p.

(2) We will assume that F[x]/(xn − 1) is a ring, i.e. it satisfies all
the axioms, except (7), on page 2. It is routine but
time-consuming to check they all hold.

This result also follow from the general theory of quotient
rings. Defined this way, F[x]/(xn − 1) is the set of cosets

f (x) + 〈(xn − 1)〉

of the ideal in F[x] generated by (xn − 1). Our definition
makes a specific choice of coset representatives.

Cyclic shifts correspond to multiplication by x

Lemma 4.7
Let p be a prime and let u = (u0, u1, . . . , un−1) ∈ Fn

p. Let

f (x) = u0 + u1x + · · ·+ un−1xn−1 ∈ Fp[x]/(xn − 1)

be the polynomial corresponding to u. The polynomial
corresponding to (un−1, u0, . . . , un−2) is xf (x) ∈ F[x]/(xn − 1).

From now on we will usually identify a cyclic code of length n
over Fp with the corresponding set of polynomials in
Fp[x]/(xn − 1). By Lemma 4.7, cyclic shifts of codewords
correspond to muliplication by x .

Exercise: Let C ⊆ Fp[x]/(xn − 1) be a cyclic code. Show that if
f (x) ∈ C and h(x) ∈ Fp/(xn − 1) then h(x)f (x) ∈ C .

Generator polynomials

Definition 4.8
Let p be a prime. Let C be a cyclic code of length n over the finite
field Fp, identified with a subset of Fp[x]/(xn − 1). A generator
polynomial for C is a polynomial g(x) ∈ Fp[x] of degree < n such
that g(x) divides xn − 1 and

C =
{

f̄ (x)ḡ(x) : f̄ (x) ∈ F[x]/(xn − 1)
}
.

Here a bar over a polynomial means that it should be considered as
an element of Fp[x]/(xn − 1). Thus the product f̄ (x)ḡ(x) takes
place in Fp[x]/(xn − 1), not in Fp[x].

Example 4.9

Let C = {0, 1 + x2, x + x3, 1 + x + x2 + x3} ⊆ F2[x]/(x4 − 1) be
the polynomial version of the code in Example 6.2(2). We claim
that g(x) = 1 + x2 is a generator polynomial for C .

Since g(x)2 = (1 + x2)2 = 1 + x4 = x4 − 1, the polynomial g(x)
divides x4 − 1. Every polynomial in C is a multiple of 1 + x2.

Finally, suppose f̄ (x) ∈ F2[x]/(x4 − 1). Dividing f (x) by 1 + x2 we
can write

f (x) = s(x)(1 + x2) + r(x)

where the degree of r(x) is < 2. So r(x) ∈ {0, 1, x , 1 + x} and

f (x)(1 + x2) = s(x)(1 + x2)2 + r(x)(1 + x2).

Hence, taking products in F2[x]/(x4 − 1) we have

f̄ (x)(1 + x2) = r(x)(1 + x2) ∈ C .

Generator polynomials

Exercise: Consider the code over F3 with codewords
{(a, b, c, a, b, c) : a, b, c ∈ F3}. The corresponding subset of
F3[x]/(x6 − 1) is

C = {a + bx + cx2 + ax3 + bx4 + cx5 : a, b, c ∈ F3}.

Find a generator polynomial for C .

Theorem 4.10
Let F be a finite field and let C ⊆ F[x]/(xn − 1) be a cyclic code
of length n. Then C has a generator polynomial.

Defining a Code Using a Generator Polynomial

Theorem 4.11
Let p be a prime, let n ∈ N and let g(x) ∈ Fp[x]/(xn − 1) be a
divisor of xn − 1. If g(x) has degree r < n then

{g(x), xg(x), . . . , xn−r−1g(x)}.

is a basis for the cyclic code C ⊆ Fp[x]/(xn − 1) with generator
polynomial g(x).

Proof (unfinished from last week): it is sufficient to show that the
linear span of {g(x), xg(x), . . . , xn−r−1g(x)} inside Fp[x]/(xn − 1)
is closed under multiplication by x . So it is enough to show that
xn−r ḡ(x) is a linear combination of g(x), xg(x), . . . , xn−r−1g(x).

Note that Theorem 4.11 shows that a cyclic code of length n with
a generator polynomial of degree r over the finite field Fp has
dimension n − r and size pn−r .

Defining a Code Using a Generator Polynomial

Theorem 4.11
Let p be a prime, let n ∈ N and let g(x) ∈ Fp[x]/(xn − 1) be a
divisor of xn − 1. If g(x) has degree r < n then

{g(x), xg(x), . . . , xn−r−1g(x)}.

is a basis for the cyclic code C ⊆ Fp[x]/(xn − 1) with generator
polynomial g(x).

Proof (unfinished from last week): it is sufficient to show that the
linear span of {g(x), xg(x), . . . , xn−r−1g(x)} inside Fp[x]/(xn − 1)
is closed under multiplication by x . So it is enough to show that
xn−r ḡ(x) is a linear combination of g(x), xg(x), . . . , xn−r−1g(x).

Note that Theorem 4.11 shows that a cyclic code of length n with
a generator polynomial of degree r over the finite field Fp has
dimension n − r and size pn−r .

Binary Cyclic Codes of Length 7

Example 4.12

In F2[x] we have

x7 − 1 = (1 + x)(1 + x + x3)(1 + x2 + x3)

where each factor is irreducible, i.e. the factors cannot be written
as products of polynomials of small degree. The polynomial
divisors of x7 − 1 are therefore

1, 1 + x , 1 + x + x3, 1 + x2 + x3, (1 + x)(1 + x + x3),

(1 + x)(1 + x2 + x3), (1 + x + x3)(1 + x2 + x3)

(1) The code with generator polynomial 1 + x is the parity check
extension of the code consisting of all binary words of
length 6.

Example 4.12 [continued]

(2) Since

(1 + x + x3)(1 + x2 + x3) = 1 + x + x2 + x3 + x4 + x5 + x6

the code with this generator polynomial is the binary
repetition code of length 7.

(3) The code with generator polynomial 1 + x + x3 has generator
matrix 

1 1 0 1 0 0 0
0 1 1 0 1 0 0
0 0 1 1 0 1 0
0 0 0 1 1 0 1


it is equivalent to the Hamming [7, 4, 3]-code. Exercise: prove
this.

Generator matrices for Cyclic Codes

Theorem 4.13
Let C be a cyclic code of length n over F with generator
polynomial g(x) ∈ Fp[x] of degree r . If
g(x) = a0 + a1x + · · ·+ arx r then the (n − r)× n matrix

G =


a0 a1 a2 . . . ar 0 . . . 0
0 a0 a1 . . . ar−1 ar . . . 0
...

...
...

. . .
...

...
. . .

...
0 0 0 a0 ar−1 ar


is a generator matrix for C .

Encoding for Cyclic Codes

The encoding scheme on page 37 of the main notes would encode
the number represented by (b0, b1, . . . , bn−r−1) in binary as

(b0, b1, . . . , bn−r−1)G

As a polynomial, this codeword is

b0f (x) + b1xf (x) + · · ·+ bn−r−1xn−r−1f (x) =

(b0 + b1x + · · ·+ bn−r−1xn−r−1)f (x).

So we can encode messages in a cyclic code by polynomial
multiplication. This can be performed more quickly than matrix
multiplication.

Parity Check Matrices for Cyclic Codes

Theorem 4.14
Let C be a cyclic code over Fp of length n. Suppose that C has
generator polynomial g(x) ∈ Fp of degree r and that g has distinct
roots c1, . . . , cr ∈ Fp. Then the matrix

H =


1 c1 c2

1 · · · cn−1
1

1 c2 c2
2 · · · cn−1

2
...

...
...

. . .
...

1 cr c2
r · · · cn−1

r


is a parity check matrix for C . The syndrome of a received word
v ∈ Fn

p corresponding to the polynomial k(x) ∈ Fp[x]/(xn − 1) is
equal to

(k(c1), . . . , k(cr)).

