MT461/MT5461
 Theory of Error Correcting Codes

Mark Wildon, mark.wildon@rhul.ac.uk

The extra content on the syllabus for MT5461 is on Reed-Solomon codes and cyclic codes over finite fields. These codes are examples of the linear codes that will be covered in Part C of the main lectures.

Definition 1.1

A field is a set of elements \mathbf{F} with two operations, + (addition) and \times (multiplication), and two special elements $0,1 \in \mathbf{F}$ such that $0 \neq 1$ and
(1) $a+b=b+a$ for all $a, b \in \mathbf{F}$;
(2) $0+a=a+0=a$ for all $a \in \mathbf{F}$;
(3) for all $a \in \mathbf{F}$ there exists $b \in \mathbf{F}$ such that $a+b=0$;
(4) $a+(b+c)=(a+b)+c$ for all $a, b, c \in \mathbf{F}$;
(5) $a \times b=b \times a$ for all $a, b \in \mathbf{F}$;
(6) $1 \times a=a \times 1=a$ for all $a \in \mathbf{F}$;
(7) for all non-zero $a \in \mathbf{F}$ there exists $b \in \mathbf{F}$ such that $a \times b=1$;
(8) $a \times(b \times c)=(a \times b) \times c$ for all $a, b, c \in \mathbf{F}$;
(9) $a \times(b+c)=a \times b+a \times c$ for all $a, b, c \in \mathbf{F}$.

Definition 1.2

The order of a finite field \mathbf{F} is defined to be the number of elements in F.

Exercise: show from the axioms for a field that if \mathbf{F} is a field then $a \times 0=0$ for all $a \in \mathbf{F}$. Show that if $x \in \mathbf{F}$ then x has a unique additive inverse, and that if $x \neq 0$ then x has a unique multiplicative inverse.

Exercise: show from the axioms for a field that if \mathbf{F} is a field and a, $b \in \mathbf{F}$ are such that $a \times b=0$, then either $a=0$ or $b=0$.

Theorem 1.3
Let p be a prime. The set $\mathbf{F}_{p}=\{0,1, \ldots, p-1\}$ with addition and multiplication defined modulo p is a field.

Lemma 1.5 (Division algorithm)

Let \mathbf{F} be a field, let $f(x) \in \mathbf{F}[x]$ be a non-zero polynomial and let $g(x) \in \mathbf{F}[x]$. There exist polynomials $s(x), r(x) \in \mathbf{F}[x]$ such that

$$
g(x)=s(x) f(x)+r(x)
$$

and either $r(x)=0$ or $\operatorname{deg} r(x)<\operatorname{deg} f(x)$.
Exercise: Let $f(x)=x^{3}+x+1 \in \mathbf{F}_{2}[x]$. Find the quotient and remainder when $g(x)=x^{5}+x^{2}+x$ is divided by $f(x)$.

Other Results on Polynomials

For Reed-Solomon codes we shall need the following properties of polynomials.

Lemma 1.6
Let \mathbf{F} be a field.
(i) If $f(x) \in \mathbf{F}[x]$ has $a \in \mathbf{F}$ as a root, i.e. $f(a)=0$, then there is a polynomial $g(x) \in \mathbf{F}[x]$ such that $f(x)=(x-a) g(x)$.
(ii) If $f(x) \in \mathbf{F}[x]$ has degree d then $f(x)$ has at most distinct roots in \mathbf{F}.
(iii) If $f, g \in \mathbf{F}[x]$ both have degree $<n$ and there exist distinct $a_{1}, \ldots, a_{n} \in \mathbf{F}$ such that $f\left(a_{i}\right)=g\left(a_{i}\right)$ for each $i \in\{1, \ldots, n\}$ then $f(x)=g(x)$.

Polynomial Interpolation

Lemma 1.7 (Polynomial interpolation)
Let \mathbf{F} be a field. Let

$$
a_{1}, a_{2}, \ldots, a_{k} \in \mathbf{F}
$$

be distinct and let $y_{1}, y_{2}, \ldots, y_{k} \in \mathbf{F}$. The unique polynomial $f(x) \in \mathbf{F}[x]$ of degree $<k$ such that $f\left(a_{i}\right)=y_{i}$ for all i is

$$
f(x)=\sum_{i=1}^{n} y_{i} \frac{\prod_{j \neq i}\left(x-a_{j}\right)}{\prod_{j \neq i}\left(a_{i}-a_{j}\right)} .
$$

Part 1: Reed Solomon codes

§2 Definition and basic properties of Reed-Solomon codes

Definition 2.1
Let p be a prime and let $k, n \in \mathbf{N}$ be such that $k \leq n \leq p$. Let

$$
a_{1}, a_{2}, \ldots, a_{n}
$$

be distinct elements of \mathbf{F}_{p}. For each polynomial $f(x) \in \mathbf{F}_{p}[x]$ we define a word $u(f) \in \mathbf{F}_{p}^{n}$ by

$$
u(f)=\left(f\left(a_{1}\right), f\left(a_{2}\right), \ldots, f\left(a_{n}\right)\right)
$$

The Reed-Solomon code associated to the parameters p, n, k and the field elements $a_{1}, a_{2}, \ldots, a_{n}$ is the length n code over \mathbf{F}_{p} with codewords

$$
\left\{u(f): f \in \mathbf{F}_{p}[x], \operatorname{deg} f \leq k-1\right\} .
$$

Example 2.2

Let $p=5$ and let $k=2$.
(1) If $n=3$ and we take $a_{1}=0, a_{2}=1$ and $a_{3}=2$, then the associated Reed-Solomon code has a codeword

$$
(f(0), f(1), f(2))
$$

for each $f(x) \in \mathbf{F}_{p}[x]$ of degree ≤ 1. If $f(x)=b x+c$ then

$$
u(f)=(c, b+c, 2 b+c)
$$

so the full set of codewords is

$$
\left\{(c, b+c, 2 b+c): b, c \in \mathbf{F}_{5}\right\} .
$$

Exercise: show that this code is 1-error detecting, but not 2-error detecting.
(2) If $n=4$ and we take a_{1}, a_{2}, a_{3} as before, and $a_{4}=3$ then we get an extension of the code in (1).

Exercise: Show that if $C=\left\{(c, b+c, 2 b+c, 3 b+c): b, c \in \mathbf{F}_{5}\right\}$ then C is 2-error detecting and 1-error correcting. (Hint: Question 4 on Sheet 1 will help, particularly for the latter part.)

Basic properties

For the rest of this section, fix parameters p, n, k and field elements $a_{1}, a_{2}, \ldots, a_{n}$. Let $R S_{p, n, k}$ denote the associated Reed-Solomon code over \mathbf{F}_{p}.

Lemma 2.3
The Reed-Solomon code $R S_{p, n, k}$ has size p^{k}.
The next lemma gives a lower bound on the Hamming distances between codewords in the Reed-Solomon code.

Lemma 2.4
If $f, g \in \mathbf{F}_{p}[x]$ are distinct polynomials of degree $\leq k-1$ then

$$
d(u(f), u(g)) \geq n-k+1
$$

Theorem 2.5
The minimum distance of $R S_{p, n, k}$ is $n-k+1$.

Remarks on Lemma 2.4 and Theorem 2.5

(1) Suppose that $f, g \in \mathbf{F}_{p}[x]$ are polynomials of degree $<k$. Then by Lemma $2.4, d(u(f), u(g)) \geq n-k+1$. In particular $u(f) \neq u(g)$. This gives another proof that the Reed-Solomon code $R S_{p, n, k}$ has size p^{k}.
(2) The interpolating polynomial given by Lemma 1.7 is unique. Proof was omitted in Lecture 2, so will give now.

Corollary 2.6
Let p be a prime. If $k, e \in \mathbf{N}$ are such that $k+2 e \leq p$ then the Reed-Solomon code $R S_{p, k+2 e, k}$ is e-error correcting.

Optimality of Reed Solomon codes

The Singleton Bound (to be proved in Part B of the main course) states that any p-ary code of length n and minimum distance d has at most p^{n-d+1} codewords. By Lemma 2.3 and Theorem 2.5, the Reed-Solomon codes meet this bound, and so have the largest possible size for their length and minimum distance.

Example 2.7

Suppose we use the Reed-Solomon code with $p=5, n=4$ and $k=2$ evaluating at $a_{1}=0, a_{2}=1, a_{3}=2, a_{4}=3$, as in Example 2.2(2). By Corollary 2.6, this code is 1 -error correcting. Suppose we receive $v=(4,0,3,0)$.

Given any two positions i and j, it follows from Lemma 1.7 that there is a unique polynomial g of degree <2 such that $g\left(a_{i}\right)=v_{i}$ and $g\left(a_{j}\right)=v_{j}$.

The table on the next slide shows the interpolating polynomials for each pair of positions and the corresponding codewords. For example, to find $f(x)$ such that $f(0)=4$ and $f(2)=3$, we use Lemma 1.7 and get

$$
f(x)=4 \frac{x-2}{0-2}+3 \frac{x-0}{2-0}=3(x-2)-x=2 x+4
$$

Conditions on f	Solution	Codeword $u(f)$
$f(0)=4, f(1)=0$	$f(x)=4+x$	$(4,0,1,2)$
$f(0)=4, f(2)=3$	$f(x)=4+2 x$	$(4,1,3,0)$
$f(1)=0, f(2)=3$	$f(x)=2+3 x$	$(2,0,3,1)$
$f(0)=4, f(3)=0$	$f(x)=4+2 x$	$(4,1,3,0)$
$f(1)=0, f(3)=0$	$f(x)=0$	$(0,0,0,0)$
$f(2)=3, f(3)=0$	$f(x)=4+2 x$	$(4,1,3,0)$

In practice, we would stop as soon as we found the codeword $(4,1,3,0)$ since $d(4130,4030)=1$, and by the exercise on page 19 of the main lecture notes, there is at most one codeword within distance 1 of any given word.

§3 Efficient Decoding of Reed-Solomon codes

As usual we work with the Reed-Solomon code $R S_{p, n, k}$ where p is prime and $n, k \in \mathbf{N}$, and polynomials are evaluated at $a_{1}, a_{2}, \ldots, a_{n}$. Assume that $n=k+2 e$, so by Corollary 2.6 the code is e-error correcting.

Theorem 3.1 (Key Equation)
Suppose that the codeword

$$
u(f)=\left(f\left(a_{1}\right), \ldots, f\left(a_{n}\right)\right)
$$

is transmitted and the word $\left(v_{1}, \ldots, v_{n}\right)$ is received. If there are $\leq e$ errors in transmission then there exist polynomials

- $Q(x)$ of degree $\leq k+e-1$
- $E(x)$ of degree $\leq e$,
such that the Key Equation

$$
Q\left(a_{i}\right)=v_{i} E\left(a_{i}\right)
$$

Using Key Equation to Decode

It is not at all obvious why the Key Equation is helpful. We first show that any solution to it can be used to decode a received word.

Lemma 3.2
Suppose that the codeword

$$
u(f)=\left(f\left(a_{1}\right), \ldots, f\left(a_{n}\right)\right)
$$

is transmitted and the word $\left(v_{1}, \ldots, v_{n}\right)$ is received. If $E(x)$ and $Q(x)$ satisfy the Key Equation, and the number of errors in transmission is $\leq e$, then $Q(x)=f(x) E(x)$ and so $f(x)=Q(x) / E(x)$.

Solving Key Equation

Lemma 3.3
Suppose that the word $\left(v_{1}, \ldots, v_{n}\right)$ is received. The polynomials

$$
\begin{aligned}
& Q(x)=Q_{0}+Q_{1} x+\cdots+Q_{k+e-1} x^{k+e-1} \\
& E(x)=E_{0}+E_{1} x+\cdots+E_{e} x^{e}
\end{aligned}
$$

in $\mathbf{F}_{p}[x]$ satisfy the Key Equation if and only if

$$
\begin{aligned}
Q_{0}+a_{i} Q_{1}+a_{i}^{2} Q_{2} & +\cdots+a_{i}^{k+e-1} Q_{k+e-1} \\
& =v_{i}\left(E_{0}+a_{i} E_{1}+a_{i}^{2} E_{2}+\cdots+a_{i}^{e} E_{e}\right)
\end{aligned}
$$

for each $i \in\{1, \ldots, n\}$.

Lemma 3.3 [continued]

An equivalent condition is that

$$
\left(\begin{array}{ccccccccc}
1 & a_{1} & a_{1}^{2} & \cdots & a_{1}^{k+e-1} & -v_{1} & -v_{1} a_{1} & \cdots & -v_{1} a_{1}^{e} \\
1 & a_{2} & a_{2}^{2} & \cdots & a_{2}^{k+e-1} & -v_{2} & -v_{2} a_{2} & \cdots & -v_{2} a_{2}^{e} \\
\vdots & \vdots \\
\vdots & \vdots \\
\vdots & \vdots \\
1 & a_{n} & a_{n}^{2} & \cdots & a_{n}^{k+e-1} & -v_{n} & -v_{n} a_{n} & \cdots & -v_{n} a_{n}^{e}
\end{array}\right)\left(\begin{array}{c}
Q_{0} \\
Q_{1} \\
\vdots \\
Q_{k+e-1} \\
E_{0} \\
E_{1} \\
\vdots \\
E_{e}
\end{array}\right)
$$

Example 3.4

Let $p=5$, let $k=2$, let $e=1$ (so $n=4$) and let $a_{1}=0, a_{2}=1$, $a_{3}=2, a_{4}=3$. With these parameters, the Key Equation for the polynomials $Q(x)=Q_{0}+Q_{1} x+Q_{2} x^{2}$ and $E(x)=E_{0}+E_{1} x$ is

$$
\left(\begin{array}{ccccc}
1 & 0 & 0^{2} & -v_{1} & 0 \\
1 & 1 & 1^{2} & -v_{2} & -v_{2} \\
1 & 2 & 2^{2} & -v_{3} & -2 v_{3} \\
1 & 3 & 3^{2} & -v_{4} & -3 v_{4}
\end{array}\right)\left(\begin{array}{c}
Q_{0} \\
Q_{1} \\
Q_{2} \\
E_{0} \\
E_{1}
\end{array}\right)=0 .
$$

or equivalently

$$
\left(\begin{array}{ccccc}
1 & 0 & 0 & 4 v_{1} & 0 \\
1 & 1 & 1 & 4 v_{2} & 4 v_{2} \\
1 & 2 & 4 & 4 v_{3} & 3 v_{3} \\
1 & 3 & 4 & 4 v_{4} & 2 v_{4}
\end{array}\right)\left(\begin{array}{c}
Q_{0} \\
Q_{1} \\
Q_{2} \\
E_{0} \\
E_{1}
\end{array}\right)=0
$$

(1) Suppose we receive the word 4130. (This is the codeword for $f(x)=4+2 x$. Then $v_{1}=4, v_{2}=1, v_{3}=3, v_{4}=0$ and we must solve

$$
\left(\begin{array}{ccccc}
1 & 0 & 0 & 1 & 0 \\
1 & 1 & 1 & 4 & 4 \\
1 & 2 & 4 & 2 & 4 \\
1 & 3 & 4 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
Q_{0} \\
Q_{1} \\
Q_{2} \\
E_{0} \\
E_{1}
\end{array}\right)=0
$$

The kernel is two dimensional, spanned by the vectors

$$
(0,4,2,0,1)^{t}, \quad(4,2,0,1,0)^{t}
$$

The first vector gives $Q(x)=4 x+2 x^{2}$ and $E(x)=x$, so we decode using $f(x)=Q(x) / E(x)=4+2 x$ to get $u(f)=4130$.
(2) Suppose we receive the word 4030. Then $v_{1}=4, v_{2}=0$, $v_{3}=3, v_{4}=0$ and we must solve

$$
\left(\begin{array}{ccccc}
1 & 0 & 0 & 1 & 0 \\
1 & 1 & 1 & 0 & 0 \\
1 & 2 & 4 & 2 & 4 \\
1 & 3 & 4 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
Q_{0} \\
Q_{1} \\
Q_{2} \\
E_{0} \\
E_{1}
\end{array}\right)=0
$$

The kernel is one dimension spanned by $(1,2,2,4,1)^{t}$. So we take $Q(x)=1+2 x+2 x^{2}$ and $E(x)=4+x$. Polynomial division gives

$$
Q(x) / E(x)=2 x+4
$$

so we decode using $f(x)=2 x+4$ to get $u(f)=4130$.
(3) Finally suppose we receive 4020. Then the kernel is one dimensional, spanned by $(4,3,3,1,0)$. So we take $Q(x)=4+3 x+3 x^{2}$ and $E(x)=1$, but $Q(x) / E(x)$ does not have degree ≤ 1, so we are unable to decode. Since the Key Equation method always works when $\leq e$ errors occur, we know that ≥ 2 errors have occurred, but we are unable to correct them.

Part 2: Cyclic codes

§2 Cyclic codes

Cyclic codes are a special type of linear code. In Part C of the main course we will consider linear codes over the binary alphabet. Here we work more generally over a finite field \mathbf{F}_{p} of prime order.

Definition 4.1
Let p be prime. A code C over \mathbf{F} is linear if
(i) for all $u \in C$ and $a \in F$ we have $a u \in C$;
(ii) for all $u, v \in C$ we have $u+v \in C$.

Definition 4.2
Let p be a prime. A code C over \mathbf{F}_{p}. is said to be cyclic if C is linear and

$$
\left(u_{0}, u_{1}, \ldots, u_{n-1}\right) \Longrightarrow\left(u_{n-1}, u_{0}, \ldots, u_{n-2}\right) \in C
$$

Examples of Cyclic Codes

Example 4.3
(1) Let p be prime. The repetition code of length n over \boldsymbol{F}_{p} is cyclic.
(2) Let C be all binary words of length $n \in \mathbf{N}$ with evenly many 1 s . We may define C using addition in F_{2} by

$$
C=\left\{\left(u_{0}, \ldots, u_{n-1}\right): u_{i} \in \mathbf{F}_{2}, u_{0}+\ldots+u_{n-1}=0\right\}
$$

Then C is a cyclic code.
(3) Let D be the binary code $\{0000,1010,0101,1111\}$. Exercise: check that D is linear. The shift map acts on D by fixing 0000 and 1010 and swapping 1010 and 0101 , so D is cyclic.

Correspondence with polynomials

Definition 4.4

Let p be prime. Given a codeword

$$
u=\left(u_{0}, u_{1}, \ldots, u_{n-1}\right) \in \mathbf{F}_{p}^{n} .
$$

we define the polynomial corresponding to u to be

$$
u_{0}+u_{1} x+\cdots+u_{n-1} x^{n-1}
$$

and write

$$
u \longleftrightarrow u_{0}+u_{1} x+\cdots+u_{n-1} x^{n-1}
$$

Definition 4.5

Let p be prime. The ring $\mathbf{F}_{p}[x] /\left(x^{n}-1\right)$, read as ' $\mathbf{F}_{p}[x]$ modulo $x^{n}-1$ ' has elements all polynomials in $\mathbf{F}_{p}[x]$ of degree $<n$. Given

$$
\begin{aligned}
& f(x)=a_{0}+a_{1} x+\cdots+a_{n-1} x^{n-1} \\
& g(x)=b_{0}+b_{1} x+\cdots+b_{n-1} x^{n-1}
\end{aligned}
$$

in $\mathbf{F}_{p}[x] /\left(x^{n}-1\right)$ we define their sum, in the obvious way, to be

$$
f(x)+g(x)=\left(a_{0}+b_{0}\right)+\left(a_{1}+b_{1}\right) x+\cdots+\left(a_{n-1}+b_{n-1}\right) x^{n-1} .
$$

The product $f(x) g(x) \in \mathbf{F}_{p}[x] /\left(x^{n}-1\right)$ is defined by taking the normal product $f(x) g(x) \in \mathbf{F}_{p}[x]$ and then taking the remainder on division by $x^{n}-1$.

Remarks 4.6

(1) This definition is analogous to the earlier definition (see Theorem 1.3) of the finite field \mathbf{F}_{p} as the set $\{0,1, \ldots, p-1\}$ with addition and multiplication defined by performing these operations in \mathbf{Z}, and then taking the remainder after division by p.
(2) We will assume that $\mathbf{F}[x] /\left(x^{n}-1\right)$ is a ring, i.e. it satisfies all the axioms, except (7), on page 2. It is routine but time-consuming to check they all hold.
This result also follow from the general theory of quotient rings. Defined this way, $\mathbf{F}[x] /\left(x^{n}-1\right)$ is the set of cosets

$$
f(x)+\left\langle\left(x^{n}-1\right)\right\rangle
$$

of the ideal in $\mathbf{F}[x]$ generated by $\left(x^{n}-1\right)$. Our definition makes a specific choice of coset representatives.

Cyclic shifts correspond to multiplication by x

Lemma 4.7
Let p be a prime and let $u=\left(u_{0}, u_{1}, \ldots, u_{n-1}\right) \in \mathbf{F}_{p}^{n}$. Let

$$
f(x)=u_{0}+u_{1} x+\cdots+u_{n-1} x^{n-1} \in \mathbf{F}_{p}[x] /\left(x^{n}-1\right)
$$

be the polynomial corresponding to u. The polynomial corresponding to $\left(u_{n-1}, u_{0}, \ldots, u_{n-2}\right)$ is $x f(x) \in \mathbf{F}[x] /\left(x^{n}-1\right)$.

From now on we will usually identify a cyclic code of length n over \mathbf{F}_{p} with the corresponding set of polynomials in $\mathbf{F}_{p}[x] /\left(x^{n}-1\right)$. By Lemma 4.7, cyclic shifts of codewords correspond to muliplication by x.

Exercise: Let $C \subseteq \mathbf{F}_{p}[x] /\left(x^{n}-1\right)$ be a cyclic code. Show that if $f(x) \in C$ and $h(x) \in \mathbf{F}_{p} /\left(x^{n}-1\right)$ then $h(x) f(x) \in C$.

Generator polynomials

Definition 4.8

Let p be a prime. Let C be a cyclic code of length n over the finite field \mathbf{F}_{p}, identified with a subset of $\mathbf{F}_{p}[x] /\left(x^{n}-1\right)$. A generator polynomial for C is a polynomial $g(x) \in \mathbf{F}_{p}[x]$ of degree $<n$ such that $g(x)$ divides $x^{n}-1$ and

$$
C=\left\{\bar{f}(x) \bar{g}(x): \bar{f}(x) \in \mathbf{F}[x] /\left(x^{n}-1\right)\right\}
$$

Here a bar over a polynomial means that it should be considered as an element of $\mathbf{F}_{p}[x] /\left(x^{n}-1\right)$. Thus the product $\bar{f}(x) \bar{g}(x)$ takes place in $\mathbf{F}_{p}[x] /\left(x^{n}-1\right)$, not in $\mathbf{F}_{p}[x]$.

Example 4.9

Let $C=\left\{0,1+x^{2}, x+x^{3}, 1+x+x^{2}+x^{3}\right\} \subseteq \mathbf{F}_{2}[x] /\left(x^{4}-1\right)$ be the polynomial version of the code in Example 6.2(2). We claim that $g(x)=1+x^{2}$ is a generator polynomial for C.
Since $g(x)^{2}=\left(1+x^{2}\right)^{2}=1+x^{4}=x^{4}-1$, the polynomial $g(x)$ divides $x^{4}-1$. Every polynomial in C is a multiple of $1+x^{2}$.
Finally, suppose $\bar{f}(x) \in \mathbf{F}_{2}[x] /\left(x^{4}-1\right)$. Dividing $f(x)$ by $1+x^{2}$ we can write

$$
f(x)=s(x)\left(1+x^{2}\right)+r(x)
$$

where the degree of $r(x)$ is <2. So $r(x) \in\{0,1, x, 1+x\}$ and

$$
f(x)\left(1+x^{2}\right)=s(x)\left(1+x^{2}\right)^{2}+r(x)\left(1+x^{2}\right)
$$

Hence, taking products in $\mathbf{F}_{2}[x] /\left(x^{4}-1\right)$ we have

$$
\bar{f}(x)\left(1+x^{2}\right)=r(x)\left(1+x^{2}\right) \in C
$$

Generator polynomials

Exercise: Consider the code over \mathbf{F}_{3} with codewords $\left\{(a, b, c, a, b, c): a, b, c \in \mathbf{F}_{3}\right\}$. The corresponding subset of $F_{3}[x] /\left(x^{6}-1\right)$ is

$$
C=\left\{a+b x+c x^{2}+a x^{3}+b x^{4}+c x^{5}: a, b, c \in \mathbf{F}_{3}\right\} .
$$

Find a generator polynomial for C.

Theorem 4.10
Let \mathbf{F} be a finite field and let $C \subseteq \mathbf{F}[x] /\left(x^{n}-1\right)$ be a cyclic code of length n. Then C has a generator polynomial.

Defining a Code Using a Generator Polynomial

Theorem 4.11
Let p be a prime, let $n \in \mathbf{N}$ and let $g(x) \in \mathbf{F}_{p}[x] /\left(x^{n}-1\right)$ be a divisor of $x^{n}-1$. If $g(x)$ has degree $r<n$ then

$$
\left\{g(x), x g(x), \ldots, x^{n-r-1} g(x)\right\}
$$

is a basis for the cyclic code $C \subseteq \mathbf{F}_{p}[x] /\left(x^{n}-1\right)$ with generator polynomial $g(x)$.

Proof (unfinished from last week): it is sufficient to show that the linear span of $\left\{g(x), x g(x), \ldots, x^{n-r-1} g(x)\right\}$ inside $\mathbf{F}_{p}[x] /\left(x^{n}-1\right)$ is closed under multiplication by x. So it is enough to show that $x^{n-r} \bar{g}(x)$ is a linear combination of $g(x), x g(x), \ldots, x^{n-r-1} g(x)$.

Defining a Code Using a Generator Polynomial

Theorem 4.11

Let p be a prime, let $n \in \mathbf{N}$ and let $g(x) \in \mathbf{F}_{p}[x] /\left(x^{n}-1\right)$ be a divisor of $x^{n}-1$. If $g(x)$ has degree $r<n$ then

$$
\left\{g(x), x g(x), \ldots, x^{n-r-1} g(x)\right\}
$$

is a basis for the cyclic code $C \subseteq \mathbf{F}_{p}[x] /\left(x^{n}-1\right)$ with generator polynomial $g(x)$.

Proof (unfinished from last week): it is sufficient to show that the linear span of $\left\{g(x), x g(x), \ldots, x^{n-r-1} g(x)\right\}$ inside $\mathbf{F}_{p}[x] /\left(x^{n}-1\right)$ is closed under multiplication by x. So it is enough to show that $x^{n-r} \bar{g}(x)$ is a linear combination of $g(x), x g(x), \ldots, x^{n-r-1} g(x)$.

Note that Theorem 4.11 shows that a cyclic code of length n with a generator polynomial of degree r over the finite field \mathbf{F}_{p} has dimension $n-r$ and size p^{n-r}.

Binary Cyclic Codes of Length 7

Example 4.12
$\ln \mathbf{F}_{2}[x]$ we have

$$
x^{7}-1=(1+x)\left(1+x+x^{3}\right)\left(1+x^{2}+x^{3}\right)
$$

where each factor is irreducible, i.e. the factors cannot be written as products of polynomials of small degree. The polynomial divisors of $x^{7}-1$ are therefore

$$
\begin{aligned}
& 1,1+x, 1+x+x^{3}, 1+x^{2}+x^{3},(1+x)\left(1+x+x^{3}\right) \\
& (1+x)\left(1+x^{2}+x^{3}\right),\left(1+x+x^{3}\right)\left(1+x^{2}+x^{3}\right)
\end{aligned}
$$

(1) The code with generator polynomial $1+x$ is the parity check extension of the code consisting of all binary words of length 6.

Example 4.12 [continued]

(2) Since

$$
\left(1+x+x^{3}\right)\left(1+x^{2}+x^{3}\right)=1+x+x^{2}+x^{3}+x^{4}+x^{5}+x^{6}
$$

the code with this generator polynomial is the binary repetition code of length 7 .
(3) The code with generator polynomial $1+x+x^{3}$ has generator matrix

$$
\left(\begin{array}{lllllll}
1 & 1 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 & 1
\end{array}\right)
$$

it is equivalent to the Hamming [7, 4, 3]-code. Exercise: prove this.

Generator matrices for Cyclic Codes

Theorem 4.13
Let C be a cyclic code of length n over \mathbf{F} with generator polynomial $g(x) \in \mathbf{F}_{p}[x]$ of degree r. If $g(x)=a_{0}+a_{1} x+\cdots+a_{r} x^{r}$ then the $(n-r) \times n$ matrix

$$
G=\left(\begin{array}{cccccccc}
a_{0} & a_{1} & a_{2} & \ldots & a_{r} & 0 & \ldots & 0 \\
0 & a_{0} & a_{1} & \ldots & a_{r-1} & a_{r} & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & a_{0} & \ldots & \ldots & a_{r-1} & a_{r}
\end{array}\right)
$$

is a generator matrix for C.

Encoding for Cyclic Codes

The encoding scheme on page 37 of the main notes would encode the number represented by $\left(b_{0}, b_{1}, \ldots, b_{n-r-1}\right)$ in binary as

$$
\left(b_{0}, b_{1}, \ldots, b_{n-r-1}\right) G
$$

As a polynomial, this codeword is

$$
\begin{aligned}
b_{0} f(x)+b_{1} x f(x)+\cdots+ & b_{n-r-1} x^{n-r-1} f(x)= \\
& \left(b_{0}+b_{1} x+\cdots+b_{n-r-1} x^{n-r-1}\right) f(x) .
\end{aligned}
$$

So we can encode messages in a cyclic code by polynomial multiplication. This can be performed more quickly than matrix multiplication.

Parity Check Matrices for Cyclic Codes

Theorem 4.14
Let C be a cyclic code over \mathbf{F}_{p} of length n. Suppose that C has generator polynomial $g(x) \in \mathbf{F}_{p}$ of degree r and that g has distinct roots $c_{1}, \ldots, c_{r} \in \mathbf{F}_{p}$. Then the matrix

$$
H=\left(\begin{array}{ccccc}
1 & c_{1} & c_{1}^{2} & \cdots & c_{1}^{n-1} \\
1 & c_{2} & c_{2}^{2} & \cdots & c_{2}^{n-1} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & c_{r} & c_{r}^{2} & \cdots & c_{r}^{n-1}
\end{array}\right)
$$

is a parity check matrix for C. The syndrome of a received word $v \in \mathbf{F}_{p}^{n}$ corresponding to the polynomial $k(x) \in \mathbf{F}_{p}[x] /\left(x^{n}-1\right)$ is equal to

$$
\left(k\left(c_{1}\right), \ldots, k\left(c_{r}\right)\right)
$$

