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Abstract. The decomposition matrix of a finite group in prime char-

acteristic p records the multiplicities of its p-modular irreducible rep-

resentations as composition factors of the reductions modulo p of its

irreducible representations in characteristic zero. The main theorem of

this paper gives a combinatorial description of certain columns of the de-

composition matrices of symmetric groups in odd prime characteristic.

The result applies to blocks of arbitrarily high weight. It is obtained

by studying the p-local structure of certain twists of the permutation

module given by the action of the symmetric group of even degree 2m

on the collection of set partitions of a set of size 2m into m sets each of

size two. In particular, the vertices of the indecomposable summands of

all such modules are characterized; these summands form a new family

of indecomposable p-permutation modules for the symmetric group. As

a further corollary it is shown that for every natural number w there is a

diagonal Cartan number in a block of the symmetric group of weight w

equal to w + 1.

1. Introduction

A central open problem in the representation theory of finite groups is to

find the decomposition matrices of symmetric groups. The main result of

this paper gives a combinatorial description of certain columns of these ma-

trices in odd prime characteristic. This result applies to blocks of arbitrarily

high weight. Another notable feature is that it is obtained almost entirely

by using the methods of local representation theory.

We use the definitions of James’ lecture notes [26] in which the rows of

the decomposition matrix of the symmetric group Sn of degree n in prime

characteristic p are labelled by the partitions of n, and the columns by the

p-regular partitions of n, that is, partitions of n with at most p − 1 parts

of any given size. The entry dµν of the decomposition matrix records the

number of composition factors of the Specht module Sµ, defined over a field

of characteristic p, that are isomorphic to the simple module Dν , first defined

by James in [22] as the unique top composition factor of Sν .

Given an odd number p, a p-core γ and k ∈ N0, let wk(γ) denote the

minimum number of p-hooks that when added to γ give a partition with
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exactly k odd parts. (We recall the definition of p-hooks, p-cores and weights

in §2 below.) Let Ek(γ) denote the set of partitions with exactly k odd parts

that can be obtained from γ by adding wk(γ) disjoint p-hooks. Our main

theorem is as follows.

Theorem 1.1. Let p be an odd prime. Let γ be a p-core and let k ∈ N0.

Let n = |γ|+ wk(γ)p. If k ≥ p suppose that

wk−p(γ) 6= wk(γ)− 1.

Then Ek(γ) is equal to the disjoint union of subsets X1, . . . , Xc such that each

Xj has a unique maximal partition νj in the dominance order. Each νj is p-

regular and the column of the decomposition matrix of Sn in characteristic p

labelled by νj has 1s in the rows labelled by partitions in Xj, and 0s in all

other rows.

We leave it as a simple exercise to show that wk(γ) is well-defined. It may

clarify the main hypothesis in Theorem 1.1 to remark that since wk(γ) ≤
wk−p(γ)+1, we have wk−p(γ) 6= wk(γ)−1 if and only if wk−p(γ) > wk(γ)−1.

In particular Theorem 1.1 implies that if λ is a maximal partition in Ek(γ)

under the dominance order, then the only non-zero entries of the column of

the decomposition matrix labelled by λ are 1s in rows labelled by partitions

in Ek(γ). We give some examples of Theorem 1.1 in Example 6.2.

Much of the existing work on decomposition matrices of symmetric groups

has concentrated on giving complete information about blocks of small

weight. In contrast, Theorem 1.1 gives partial information about blocks

of arbitrary weight. In Proposition 6.4 we show that there are blocks of

every weight in which Theorem 1.1 completely determines a column of the

decomposition matrix.

We prove Theorem 1.1 by studying certain twists by the sign character of

the permutation module H(2m) given by the action of S2m on the collection

of all set partitions of {1, . . . , 2m} into m sets each of size two, defined over

a field F . (Equivalently H(2m) is the FS2m-module induced from the trivial

module for the imprimitive wreath product S2 oSm ≤ S2m.) For m, k ∈ N0,

let

H(2m ; k) =
(
H(2m) � sgnSk

)xS2m+k

S2m×Sk

where � denotes the outer tensor product of two modules. Thus when k = 0

we have H(2m ; k) = H(2m), and when m = 0 we have H(2m ; k) = sgnSk
; if

k = m = 0 then H(2m ; k) should be regarded as the trivial module for

the trivial group S0. It is known that the ordinary characters of these

modules are multiplicity-free (see Lemma 3.1), but as one might expect,

when F has prime characteristic, their structure can be quite intricate. Our

main contribution is Theorem 1.2 below, which characterizes the vertices of
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indecomposable summands of H(2m ; k) when F has odd characteristic. The

outline of the proof of Theorem 1.1 given at the end of this introduction

shows how the local information given by Theorem 1.2 is translated into our

result on decomposition matrices. This step, from local to global, is the key

to the argument.

Theorem 1.2. Let m ∈ N and let k ∈ N0. If U is an indecomposable

non-projective summand of H(2m ; k), defined over a field F of odd charac-

teristic p, then U has as a vertex a Sylow p-subgroup Q of (S2 oStp)×S(r−2t)p
for some t ∈ N0 and r ∈ N with tp ≤ m, 2t ≤ r and (r − 2t)p ≤ k. More-

over the Green correspondent of U admits a tensor factorization V �W as

a module for F
(
(NSrp(Q)/Q)× S2m+k−rp

)
, where V and W are projective,

and W is an indecomposable summand of H(2m−tp ; k−(r−2t)p).

Theorem 1.2 is a significant result in its own right. For odd primes p, it

gives the first infinite family of indecomposable p-permutation modules for

the symmetric group (apart from Scott modules, which always lie in principal

blocks) whose vertices are not Sylow p-subgroups of Young subgroups of

symmetric groups.

An important motivation for the proof of Theorem 1.2 is [10], in which

Erdmann uses similar methods to determine the p-local structure of Young

permutation modules and to establish their decomposition into Young mod-

ules. Also relevant is [34], in which Paget shows that H(2m) has a Specht

filtration for any field F . Using Theorem 11 of [44], it follows that H(2m ; k)

has a Specht filtration for every k ∈ N0. The local behaviour of H(2m) in

characteristic 2, which as one would expect is very different to the case of

odd characteristic, was analysed in [8]; the projective summands of H(2m ; k)

in characteristic 2 are identified in [33, Corollary 9]. In characteristic zero,

the module H(2m) arises in the first non-trivial case of Foulkes’ Conjecture

(see [17]). For this reason we call H(2m) a Foulkes module and H(2m ; k) a

twisted Foulkes module. For some recent results on the characters of general

Foulkes modules we refer the reader to [18] and [35].

Background on decomposition numbers. The problem of finding de-

composition numbers for symmetric groups in prime characteristic has mo-

tivated many deep results relating the representation theory of symmetric

groups to other groups and algebras. Given the depth of the subject we

give only a very brief survey, concentrating on results that apply to Specht

modules in blocks of arbitrarily high weight.

Fix an infinite field F of prime characteristic p. In [29] James proved

that the decomposition matrix for Sn modulo p appears, up to a column

reordering, as a submatrix of the decomposition matrix for polynomial rep-

resentations of GLd(F ) of degree n, for any d ≥ n. In [19, 6.6g] Green gave
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an alternative proof of this using the Schur functor from representations of

the Schur algebra to representations of symmetric groups. James later estab-

lished a similar connection with representations of the finite groups GLd(Fq),

and the Hecke algebras HF,q(Sn), in the case when p divides q−1 (see [27]).

In [9] Erdmann proved, conversely, that every decomposition number for

GLd(F ) appears as an explicitly determined decomposition number for some

symmetric group.

In [22] James proved that if Dν is a composition factor of Sµ then ν

dominates µ, and that if µ is p-regular then dµµ = 1. This establishes the

characteristic ‘wedge’ shape of the decomposition matrix of Sn with 1s on its

diagonal, shown in the diagram in [26, Corollary 12.3]. In [36] Peel proved

that the hook Specht modules (n − r, 1r) are irreducible when p does not

divide n, and described their composition factors for odd primes p when p

divides n. The p-regular partitions labelling these composition factors can

be determined by James’ method of p-regularization [24], which gives for

each partition µ of n a p-regular partition ν such that ν dominates µ and

dµν = 1. In [23] and [25], James determined the decomposition numbers dµν

for µ of the form (n − r, r) and, when p = 2, of the form (n − r − 1, r, 1).

These results were extended by Williams in [46]. In [28, 5.47] James and

Mathas, generalizing a conjecture of Carter, conjectured a necessary and

sufficient condition on a partition µ for the Specht module Sµ, defined for

a Hecke algebra HK,q(Sn) over a field K, to be irreducible. The necessity

of this condition was proved by Fayers [12] for symmetric groups (the case

q = 1), building on earlier work of Lyle [31]; later Fayers [13] proved that

the condition was sufficient for symmetric groups, and also for Hecke alge-

bras whenever K has characteristic zero. In [30, Theorem 1.10], Kleshchev

determined the decomposition numbers dλµ when µ is a p-regular partition

whose Young diagram is obtained from the Young diagram of λ by moving

a single box. In [43] the second author proved that in odd characteristic the

rows of any decomposition matrix of a symmetric group are distinct, and so

a Specht module is determined, up to isomorphism, by its multiset of com-

position factors; in characteristic 2 the isomorphism (Sµ)? = Sµ
′
, where µ′

is the conjugate partition to µ, accounts for all pairs of equal rows in the

decomposition matrix.

In [15] Fayers proved that the decomposition numbers in blocks of weight 3

of abelian defect are either 0 or 1. This paper includes a valuable summary of

the many techniques for computing decomposition numbers and references

to earlier results on blocks of weights 1 and 2. For results on weight 3 blocks

of non-abelian defect, and blocks of weight 4, the reader is referred to [16]

and [14]. For further general results, including branching rules and row and

column removals theorems, see [32, Chapter 6, Section 4].
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Outline. The main tool used to analyse the structure of twisted Foulkes

modules over fields of odd characteristic is the Brauer correspondence for p-

permutation modules, as developed by Broué in [6]. We state the necessary

background results on the Brauer correspondence and blocks of symmetric

groups in §2.

In §3 we collect the general results we need on twisted Foulkes modules. In

particular, Lemma 3.1 gives their ordinary characters. The twisted Foulkes

modules H(2m ; k) are p-permutation modules, but not permutation modules

(except when k ≤ 1), and so some care is needed when applying the Brauer

correspondence. Our approach is to use Lemma 3.3 to construct explicit

p-permutation bases: for more theoretical results on monomial modules for

finite groups the reader is referred to [4].

The main part of the proof begins in §4 where we prove Theorem 1.2. In §5
we prove Theorem 1.1, by filling in the details in the following sketch. The

hypotheses of Theorem 1.1, together with Lemma 3.1 on the ordinary char-

acter of H(2m ; k), imply that H(2m ; k) has a summand in the block of S2m+k

with p-core γ. If this summand is non-projective, then it follows from The-

orem 1.2, using Theorem 2.7 on the Brauer correspondence between blocks

of symmetric groups, that either H(2m ; k−p) has a summand in the block of

S2m+k−p with p-core γ, or one of H(2m−p ; k) and H(2m ; k−2p) has a summand

in the block of S2m+k−2p with p-core γ. All of these are shown to be ruled

out by the hypotheses of Theorem 1.1. Hence the summand is projective.

A short argument using Lemma 3.1, Brauer reciprocity and Scott’s lifting

theorem then gives Theorem 1.1. We also obtain the proposition below,

which identifies a particular projective summand of H(2m ; k) in the block of

S2m+k with p-core γ.

Proposition 1.3. Let p be an odd prime, let γ be a p-core and let k ∈ N0.

If k ≥ p suppose that wk−p(γ) 6= wk(γ)− 1. Let 2m+ k = |γ|+wk(γ)p. If λ

is a maximal partition in the dominance order on Ek(γ) then λ is p-regular

and the projective cover of the simple module Dλ is a direct summand of

H(2m ; k), where both modules are defined over a field of characteristic p.

In §6 we give some further examples and corollaries of Theorem 1.1 and

Proposition 1.3. In Lemma 6.3 we show that given any odd prime p, any

k ∈ N0, and any w ∈ N, there is a p-core γ such that wk(γ) = w. We use

these p-cores to show that the lower bound cλλ ≥ w + 1 on the diagonal

Cartan numbers in a block of weight w, proved independently by Richards

[37, Theorem 2.8] and Bessenrodt and Uno [3, Proposition 4.6(i)], is attained

for every odd prime p in p-blocks of every weight. Since the endomorphism

algebra of each H(2m ; k) is commutative (in any characteristic), it also follows

that for any odd prime p and any w ∈ N, there is a projective module for a
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symmetric group lying in a p-block of weight w whose endomorphism algebra

is commutative.

2. Preliminaries on the Brauer correspondence

In this section we summarize the principal results from [6] on the Brauer

correspondence for p-permutation modules. We then recall some key facts

on the blocks of symmetric groups. For background on vertices, sources and

blocks we refer the reader to [1]. Throughout this section let F be a field of

prime characteristic p.

The Brauer morphism. Let G be a finite group. An FG-module V is

said to be a p-permutation module if whenever P is a p-subgroup of G, there

exists an F -basis B of V whose elements are permuted by P . We say that

B is a p-permutation basis of V with respect to P , and write V = 〈B〉. It

is easily seen that if V has a p-permutation basis with respect to a Sylow

p-subgroup P of G then V is a p-permutation module.

The following proposition characterizing p-permutation modules is proved

in [6, (0.4)]. As usual, if V and W are FG-modules we write V | W to

indicate that V is isomorphic to a direct summand of W .

Proposition 2.1. An indecomposable FG-module V is a p-permutation

module if and only if there exists a p-subgroup P ≤ G such that V | F ↑GP .

Thus an indecomposable FG-module is a p-permutation module if and

only if it has trivial source. It follows that the restriction or induction of

a p-permutation module is still p-permutation, as is any summand of a p-

permutation module.

We now recall the definition of the Brauer correspondence for general

FG-modules before specializing to p-permutation modules. Let V be an

FG-module. Given a p-subgroup Q ≤ G we let V Q be the set {v ∈ V :

vg = v for all g ∈ Q} of Q-fixed elements. It is easy to see that V Q is an

FNG(Q)-module on which Q acts trivially. For R a proper subgroup of Q,

the relative trace map TrQR : V R → V Q is the linear map defined by

TrQR(v) =
∑
g

vg,

where the sum is over a set of right-coset representatives for R in Q. We

observe that ∑
R<Q

TrQR(V R)

is an FNG(Q)-module contained in V Q. The Brauer correspondent of V

with respect to Q is the FNG(Q)-module V (Q) defined by

V (Q) = V Q/
∑
R<Q

TrQR(V R).
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It follows immediately from the definition of the Brauer correspondence that

if U is another FG-module then (U ⊕ V )(Q) = U(Q)⊕ V (Q).

The following theorem is proved in [6, 3.2(1)].

Theorem 2.2. Let V be an indecomposable p-permutation FG-module and

let Q be a vertex of V . Let R be a p-subgroup of G. Then V (R) 6= 0 if and

only if R ≤ Qg for some g ∈ G.

If V is an FG-module with p-permutation basis B with respect to a Sylow

p-subgroup P of G and R ≤ P , then taking for each orbit of R on B the sum

of the vectors in that orbit, we obtain a basis for V R. The sums over vectors

lying in orbits of size p or more are relative traces from proper subgroups

of R, and so V (R) is equal to the F -span of

BR = {v ∈ B : vg = v for all g ∈ R}.
Thus Theorem 2.2 has the following corollary, which we shall use through-

out §4.

Corollary 2.3. Let V be a p-permutation FG-module with p-permutation

basis B with respect to a Sylow p-subgroup P of G. Let R ≤ P . The FNG(R)-

module V (R) is equal to 〈BR〉 and V has an indecomposable summand with

a vertex containing R if and only if BR 6= ∅.

The following proposition shows that the Brauer correspondent of a p-

permutation module is again a p-permutation module. This remark will be

crucial in the proof of Theorem 1.2.

Proposition 2.4. Let U be a p-permutation FG-module and let R be a

p-subgroup of G. The Brauer correspondent U(R) of U is a p-permutation

FNG(R)-module.

Proof. Let P ′ be a Sylow p-subgroup of NG(R) and let P be a Sylow p-

subgroup of G containing P ′. Let B be a p-permutation basis of U with

respect to P . By Corollary 2.3 the FNG(R)-module U(R) has BR as a basis.

Since R ≤ NG(P ′), it follows that BR is a p-permutation basis of U(R) with

respect to P ′. Therefore U(R) is a p-permutation FNG(R)-module. �

Remarkably, the Brauer correspondent of an indecomposable p-permut-

ation module with respect to its vertex agrees with its Green correspondent.

This is proved in [41, Exercise 27.4]. We therefore have the following theorem

(see [6, 3.6]).

Theorem 2.5. The Brauer correspondence sending V to V (Q) is a bijec-

tion between the set of indecomposable p-permutation FG-modules with ver-

tex Q and the set of indecomposable projective FNG(Q)/Q-modules. The

FNG(Q)-module V (Q) is the Green correspondent of V .
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Blocks of the symmetric group. The blocks of symmetric groups are

described combinatorially by Nakayama’s Conjecture, first proved by Brauer

and Robinson in two connected papers [38] and [5]. In order to state this

result, we must recall some definitions.

Let λ be a partition. A p-hook in λ is a connected part of the rim of the

Young diagram of λ consisting of exactly p boxes, whose removal leaves the

diagram of a partition. By repeatedly removing p-hooks from λ we obtain

the p-core of λ; the number of hooks we remove is the weight of λ.

Theorem 2.6 (Nakayama’s Conjecture). Let p be prime. The p-blocks of Sn

are labelled by pairs (γ,w), where γ is a p-core and w ∈ N0 is the associated

weight, such that |γ|+wp = n. Thus the Specht module Sλ lies in the block

labelled by (γ,w) if and only if λ has p-core γ and weight w. 2

We denote the block of weight w corresponding to the p-core γ by B(γ,w).

The following description of the Brauer correspondence for blocks of sym-

metric groups is critical to the proof of Proposition 5.1 below.

Theorem 2.7. Let V be an indecomposable p-permutation module lying in

the block B(γ,w) of Sn. Suppose that R is contained in a vertex of V and

that R moves exactly the first rp elements of {1, . . . , n}; that is supp (R) =

{1, . . . , rp}. Then NSn(R) ∼= NSrp(R)× Sn−rp. Moreover,

(i) NSrp(R) has a unique block, b say.

(ii) The blocks b⊗B(γ,w − r) and B(γ,w) are Brauer correspondents.

(iii) As an FNSn(R)-module, V (R) lies in b⊗B(γ,w − r).

Proof. Part (i) is an immediate corollary of Lemma 2.6 and the following

sentence of [7]. Part (ii) is stated in (2) on page 166 of [7], and then proved as

a corollary of the characterisation of maximal Brauer pairs given in Propo-

sition 2.12 of [7]. Part (iii) follows from Lemma 7.4 of [45]. �

3. Foulkes modules and twisted Foulkes modules

Throughout this section let F be a field and let m ∈ N, k ∈ N0. We

define Ω(2m) to be the collection of all set partitions of {1, . . . , 2m} into m

sets each of size two. The symmetric group S2m acts on Ω(2m) in an obvious

way. We have already defined the Foulkes module H(2m) to be the permu-

tation module with F -basis Ω(2m), and the twisted Foulkes module H(2m ; k)

to be
(
H(2m) � sgnSk

)
↑S2m+k

S2m×Sk
.

Let χλ denote the irreducible character of Sn corresponding to the parti-

tion λ of n. When F has characteristic zero the ordinary character of H(2m)

was found by Thrall [42, Theorem III] to be
∑

µ χ
2µ where the sum is over

all partitions µ of m and 2µ is the partition obtained from µ by doubling

each part.
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Lemma 3.1. The ordinary character of H(2m ; k) is
∑

λ χ
λ, where the sum

is over all partitions λ of 2m+ k with exactly k odd parts.

Proof. This follows from Pieri’s rule (see [40, 7.15.9]) applied to the ordinary

character of H(2m). �

We remark that an alternative proof of Lemma 3.1 with minimal pre-

requisites can be found in [20]; the main result of [20] uses the characters of

twisted Foulkes modules to construct a ‘model’ character for each symmetric

group containing each irreducible character exactly once.

In the remainder of this section we suppose that F has odd characteris-

tic p and define a module isomorphic to H(2m ; k) that will be used in the

calculations in §4. Let SX denote the symmetric group on the set X. Let

∆(2m ; k) be the set of all elements of the form{
{i1, i′1}, . . . , {im, i′m}, (j1, . . . , jk)

}
where {i1, i′1, . . . , im, i′m, j1, . . . , jk} = {1, . . . , 2m+k}. Given δ ∈ ∆(2m ; k) of

the form above, we define

S(δ) =
{
{i1, i′1}, . . . , {im, i′m}

}
,

T (δ) = {j1, . . . , jk}.

The symmetric group S2m+k acts transitively on ∆(2m ; k) by

δg =
{
{i1g, i′1g}, . . . , {img, i′mg}, (j1g, . . . , jkg)

}
for g ∈ S2m+k. Let F∆(2m ; k) be the permutation module for FS2m+k with

F -basis ∆(2m ; k). Let K(2m ; k) be the subspace of F∆(2m ; k) spanned by{
δ − sgn(g)δg : δ ∈ ∆(2m ; k), g ∈ ST (δ)

}
.

Since this set is permuted by S2m+k, it is clear that K(2m ; k) is an FS2m+k-

submodule of F∆(2m ; k). For δ ∈ ∆(2m ; k), let δ ∈ F∆(2m ; k)/K(2m ; k) denote

the image δ+K(2m ; k) of δ under the quotient map. Let Ω(2m ; k) be the subset

of ∆(2m ; k) consisting of those elements of the form above such that j1 <

. . . < jk. In the next lemma we use Ω(2m ; k) to identify F∆(2m ; k)/K(2m ; k)

with H(2m ; k).

Lemma 3.2.

(i) For each δ ∈ ∆(2m ; k) there exists a unique ω ∈ Ω(2m ; k) such that

δ ∈ {ω,−ω}. Moreover, for this ω we have S(δ) = S(ω) and T (δ) = T (ω)

and there exists a unique h ∈ ST (δ) such that δh = ω.

(ii) The set {ω : ω ∈ Ω(2m ; k)} is an F -basis for F∆(2m ; k)/K(2m ; k).

(iii) The FS2m+k-modules H(2m ; k) and F∆(2m ; k)/K(2m ; k) are isomor-

phic.
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Proof. For brevity we write K for K(2m ; k). Let

δ =
{
{i1, i′1}, . . . , {im, i′m}, (j1, . . . , jk)

}
∈ ∆(2m ; k).

The unique h ∈ ST (δ) such that δh ∈ Ω(2m ; k) is the permutation such that

j1h < . . . < jkh. Set ω = δh. Since S(ω) = S(δ) and T (ω) = T (δ) we

have the existence part of (i). Since δ − sgn(h)δh ∈ K, it follows that

δ = sgn(h)ω, and that F∆(2m ; k)/K is spanned by {ω : ω ∈ Ω(2m ; k)}. Set

x = h−1. If g ∈ ST (δ) then

δ − sgn(g)δg = − sgn(x)
(
ω − sgn(x)ωx

)
+ sgn(x)

(
ω − sgn(xg)ωxg

)
.

Since T (δ) = T (ω) we have x, xg ∈ ST (ω). It follows that K is spanned by

{ω − sgn(y)ωy : ω ∈ Ω(2m ; k), y ∈ ST (ω)}.
Hence dimF∆(2m ; k)/K ≤ |Ω(2m ; k)| and dimK ≤ |Ω(2m ; k)|(k! − 1). Since

dimF∆(2m ; k) = |Ω(2m ; k)|k! we have equality in both cases. This proves

part (ii). Moreover, if ω = ±ω′ for ω, ω′ ∈ Ω(2m ; k) then S(ω) = S(ω′) and

T (ω) = T (ω′), and so ω = ω′. This proves the uniqueness in (i).

For (iii), let

ω =
{
{1, 2}, . . . , {2m− 1, 2m}, (2m+ 1, . . . , 2m+ k)

}
∈ Ω(2m ; k).

Write S2m × Sk for S{1,...,2m} × S{2m+1,...,2m+k}, thought of as a subgroup

of S2m+k. Given h ∈ S{1,...,2m} and x ∈ S{2m+1,...,2m+k} we have ωhx =

sgn(x)ωh. By (ii) the set {ωh : h ∈ S2m} is linearly independent. Hence

the F (S2m × Sk)-submodule of F∆(2m ; k)/K generated by ω is isomorphic

to H(2m) � sgnSk
. Since

dimF∆(2m ; k)/K = |Ω(2m ; k)| =
(

2m+ k

k

)
dimH(2m)

and the index of S2m × Sk in S2m+k is
(
2m+k
k

)
, it follows that

F∆(2m ; k)/K ∼=
(
H(2m) � sgnSk

)xS2m+k

S2m×Sk

as required. �

Since p is odd we have that

F ↑(S2oSm)×Sk

(S2oSm)×Ak
= F(S2oSm)×Sk

⊕
(
FS2oSm � sgnSk

)
where Ak denotes the alternating group on {2k + 1, . . . , 2k + n}. Hence

H(2m ; k) is a direct summand of the module induced from the trivial F
(
(S2 o

Sm)×Ak
)
-module, and so H(2m ; k) is a p-permutation module.

In the following lemma we construct a p-permutation basis for H(2m ; k).

Lemma 3.3. Let P be a p-subgroup of S2m+k.

(i) There is a choice of signs sω ∈ {+1,−1} for ω ∈ Ω(2m ; k) such that

{sωω : ω ∈ Ω(2m ; k)} is a p-permutation basis for H(2m ; k) with respect to P .
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(ii) Let ω =
{
{i1, i′1}, . . . , {im, i′m}, (j1, . . . , jk)} ∈ Ω(2m ; k) and let g ∈ P .

Then ω is fixed by g if and only if
{
{i1, i′1}, . . . , {im, i′m}

}
is fixed by g.

Proof. For ω ∈ Ω(2m ; k) let γ(ω) =
(
S(ω), T (ω)

)
. Let

Γ(2m ; k) =
{
γ(ω) : ω ∈ Ω(2m ; k)

}
.

Notice that the map

γ : Ω(2m;k) −→ Γ(2m ; k)

associating to each ω ∈ Ω(2m;k) the element γ(ω) ∈ Γ(2m ; k) is a bijection.

The set Γ(2m ; k) is acted on by S2m+k in the obvious way. Let γ1, . . . , γc ∈
Γ(2m ; k) be representatives for the orbits of P on Γ(2m ; k). For each b ∈
{1, . . . , c}, let ωb ∈ Ω(2m ; k) be the unique element such that γb = γ(ωb).

Given any ω ∈ Ω(2m ; k) there exists a unique b such that γ(ω) is in the orbit

of P on Γ(2m ; k) containing γb. Choose g ∈ P such that γ(ω) = γbg. Then ω

and ωbg are equal up to the order of the numbers in their k-tuples, and so

there exists h ∈ ST (ω) such that ωbgh = ω. By Lemma 3.2(i) we have

ωbg = sωω

for some sω ∈ {+1,−1}. If g̃ ∈ P is another permutation such that

γ(ω) = γbg̃ then ωbgg̃
−1 = ±ωb. Hence the F -span of ωb is a 1-dimensional

representation of the cyclic p-group generated by gg̃−1. The unique such

representation is the trivial one, so ωbg = ωbg̃. The sign sω is therefore

well-defined. Now suppose that ω, ω′ ∈ Ω(2m ; k) and h ∈ P are such that

sωωh = ±sω′ω′. By construction of the basis there exists ωb ∈ Ω(2m ; k) and

g, g′ ∈ P such that sωω = ωbg and sω′ω′ = ωbg
′. Therefore

ωbgh = sωωh = ±sω′ω′ = ±ωbg′

and so ωbghg
′−1 = ±ωb. As before, the plus sign must be correct. This

proves (i).

For (ii), suppose that ωg = ω. Setting δ = ωg, and noting that δ = ω, it

follows from Lemma 3.2(i) that S(ωg) = S(δ) = S(ω). Hence the condition

in (ii) is necessary. Conversely, if
{
{i1, i′1}, . . . , {im, i′m}

}
is fixed by g then g

permutes {j1, . . . , jk} and so ωg ∈ {ω,−ω}. Since g ∈ P , it now follows

from (i) that ωg = ω, as required. �

In applications of Lemma 3.3(ii) it will be useful to note that there is

an isomorphism of S2m-sets between Ω(2m) and the set of fixed-point free

involutions in S2m, where the symmetric group acts by conjugation. Given

ω ∈ Ω(2m ; k) with S(ω) =
{
{i1, i′1}, . . . , {im, i′m}

}
, we define

I(ω) = (i1, i
′
1) · · · (im, i′m) ∈ S2m+k.
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By Lemma 3.3(ii), if g ∈ S2m+k is a p-element then g fixes ω if and only

if g commutes with I(ω). Corollary 2.3 and Lemma 3.3 therefore imply the

following proposition, which we shall use repeatedly in the next section.

Proposition 3.4. Let R be a p-subgroup of S2m+k and let P be a Sylow

p-subgroup of S2m+k containing a Sylow p-subgroup of NG(R). There is a

choice of signs sω ∈ {+1,−1} for ω ∈ Ω(2m ; k) such that{
sωω : ω ∈ Ω(2m ; k), I(ω) ∈ CS2m+k

(R)
}
.

is a p-permutation basis for the Brauer correspondent H(2m ; k)(R) with re-

spect to P ∩NG(R).

4. The local structure of H(2m ; k)

In this section we prove Theorem 1.2. Throughout we let F be a field of

odd characteristic p and fix m ∈ N, k ∈ N0. Any vertex of an indecom-

posable non-projective summand of H(2m ; k) must contain, up to conjugacy,

one of the subgroups

Rr = 〈z1z2 · · · zr〉

where zj is the p-cycle (p(j−1)+1, . . . , pj) and rp ≤ 2m+k, so we begin by

calculatingH(2m ; k)(Rr). In the second step we show that, for any t ∈ N such

that 2t ≤ r, the Brauer correspondent H(2tp ; (r−2t)p)(Rr) is indecomposable

as an FNSrp(Rr)-module and determine its vertex; in the third step we

combine these results to complete the proof.

In the second step we shall require the basic lemma below; its proof is left

to the reader.

Lemma 4.1. If P is a p-group and Q is a subgroup of P then the permu-

tation module F ↑PQ is indecomposable with vertex Q.

First step: Brauer correspondent with respect to Rr. Let r ∈ N be

such that rp ≤ 2m+ k. We define

Tr = {t ∈ N0 : tp ≤ m, 2t ≤ r, (r − 2t)p ≤ k}.

For t ∈ Tr let

A2t =
{
ω :

ω ∈ Ω(2m ; k), I(ω) ∈ CS2m+k
(Rr)

supp I(ω) contains exactly 2t orbits of Rr of length p

}
.

Lemma 4.2. There is a direct sum decomposition of FNS2m+k
(Rr)-modules

H(2m ; k)(Rr) ∼=
⊕
t∈Tr

〈A2t〉.
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Proof. By Proposition 3.4 the FNS2m+k
(Rr)-module H(2m ; k)(Rr) has as a

basis

A =
{
ω : ω ∈ Ω(2m ; k), I(ω) ∈ CS2m+k

(Rr)
}
.

Let ω ∈ Ω(2m ; k) be such that I(ω) ∈ CS2m+k
(Rr). Then I(ω) permutes, as

blocks for its action, the orbits of Rr. It follows that the number of orbits of

Rr of length p contained in supp I(ω) is even. Suppose this number is 2t.

Clearly 2t ≤ r and 2tp ≤ 2m. The remaining r − 2t orbits of length p are

contained in T (ω). Thus (r − 2t)p ≤ k, and so t ∈ Tr and ω ∈ A2t.

Let the p-cycles corresponding to the 2t orbits ofRr contained in supp I(ω)

be zj1 , . . . , zj2t . Let g ∈ NS2m+k
(Rr). Let ω? ∈ Ω(2m ; k) be such that

ω? = ±ωg. The p-cycles zgj1 , . . . , zgj2t correspond precisely to the orbits of

Rr contained in supp I(ω?). Hence ω? ∈ A2t, and so the vector space 〈A2t〉
is invariant under g. Since A =

⋃
t∈Tr A2t the lemma follows. �

There is an obvious factorizationNS2m+k
(Rr) = NSrp(Rr)×S{rp+1,...,2m+k}.

The next proposition establishes a corresponding tensor factorization of the

NS2m+k
(Rr)-module 〈A2t〉. The shift required to make the second factor

H(2m−tp ; k−(r−2t)p) a module for FS{rp+1,...,2m+k} is made explicit in the

proof.

Proposition 4.3. If t ∈ Tr then there is an isomorphism

〈A2t〉 ∼= H(2tp ; (r−2t)p)(Rr) �H(2m−tp ; k−(r−2t)p)

of F (NSrp(Rr)× S{rp+1,...,2m+k})-modules.

Proof. In order to simplify the notation we shall write K for the FS2m+k-

submodule K(2m ; k) of F∆(2m ; k) defined just before Lemma 3.2. Recall that

if ω ∈ Ω(2m ; k) then, by definition, ω = ω + K. Let J = K(2tp ; (r−2t)p).

It follows from Proposition 3.4, in the same way as in Lemma 4.2, that

H(2tp ; (r−2t)p)(Rr) has as a basis

{ω + J : ω ∈ Ω(2tp ; (r−2t)p), I(ω) ∈ CSrp(Rr)}.

Define ∆+ by shifting the entries in each of the elements of ∆(2m−tp,k−(r−2t)p)

by rp, so that F∆+ is an FS{rp+1,...,2m+k}-module, and similarly define

Ω+ ⊆ ∆+ by shifting Ω(2m−tp,k−(r−2t)p) and J+ ⊆ F∆+ by shifting the basis

elements of K(2m−tp,k−(r−2t)p). Then, by Lemma 3.2, H+ = F∆+/J+ is an

FS{rp+1,...,2m+k}-module with basis

{ω+ + J+ : ω+ ∈ Ω+}.

We shall define a linear map f : 〈A2t〉 → H(2tp ; (r−2t)p) � H+. Given

ω +K ∈ A2t where

ω =
{
{i1, i′1}, . . . , {im, i′m}, (j1, . . . , jk)} ∈ Ω(2m ; k)



14 EUGENIO GIANNELLI AND MARK WILDON

and the notation is chosen so that

{i1, i′1, . . . , itp, i′tp, j1, . . . , j(r−2t)p} = {1, . . . , rp},

we define (ω +K)f = (α+ J)⊗ (α+ + J+) where

α =
{
{i1, i′1}, . . . , {itp, i′tp}, (j1, . . . , j(r−2t)p)

}
α+ =

{
{itp+1, i

′
tp+1}, . . . , {imp, i′mp}, (j(r−2t)p+1, . . . , jk)

}
.

This defines a bijection betweenA2t and the basis for H(2tp ; (r−2t)p)(Rr)�H
+

afforded by the bases for H(2tp ; (r−2t)p)(Rr) and H+ just defined. The map f

is therefore a well-defined linear isomorphism.

Suppose that ω ∈ Ω(2m ; k) is as above and let g ∈ NS2m+k
(Rr). Let h ∈

ST (ωg) be the unique permutation such that (j1gh, . . . , jkgh) is increasing.

Let ω? = ωgh, so ω? ∈ Ω(2m ; k) and ωg = sgn(h)ω?. Since g permutes

{1, . . . , rp} we may factorize h as h = xx+ where x ∈ ST (α) and x+ ∈ ST (α+).

By definition of f we have

(ω? +K)f = (αgx+ J)⊗ (α+gx+ + J+).

Hence

(ω +K)gf = sgn(h)(ω? +K)f

= sgn(h) sgn(x) sgn(x+)(αg + J)⊗ (α+g + J+)

= (ω +K)fg.

The map f is therefore a homomorphism of FNS2m+k
(Rr)-modules. Since

f is a linear isomorphism, the proposition follows. �

Second step: the vertex of H(2tp ; (r−2t)p)(Rr). Fix r ∈ N and t ∈ N0

such that 2t ≤ r. In the second step we show that the FNSrp(Rr)-module

H(2tp ; (r−2t)p)(Rr) is indecomposable and that it has the subgroup Qt defined

below as a vertex.

To simplify the notation, we denote H(2tp ; (r−2t)p)(Rr) by M . Let C

and Et be the elementary abelian p-subgroups of NSrp(Rr) defined by

C = 〈z1〉 × 〈z2〉 × · · · × 〈zr〉,
Et = 〈z1zt+1〉 × · · · × 〈ztz2t〉 × 〈z2t+1〉 × · · · × 〈zr〉,

where the zj are the p-cycles defined at the start of this section. For i ∈
{1, . . . , tp}, let i′ = i+ tp, and for g ∈ S{1,...,tp}, let g′ ∈ S{tp+1,...,2tp} be the

permutation defined by i′g′ = (ig)′. Note that if 1 ≤ j ≤ t then z′j = zj+t.

Let L be the group consisting of all permutations gg′ where g lies in a Sylow

p-subgroup of S{1,...,tp} with base group 〈z1, . . . , zt〉, chosen so that z1 · · · zt is

in its centre. Let L+ be a Sylow p-subgroup of S{2tp+1,...,rp} with base group

〈z2t+1, . . . , zr〉, chosen so that z2t+1 · · · zr is in its centre. (The existence of

such Sylow p-subgroups follows from the construction of Sylow p-subgroups
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of symmetric groups as iterated wreath products in [21, 4.1.19 and 4.1.20].)

Let

Qt = L× L+.

Observe that Qt normalizes C and so 〈C,Qt〉 is a p-group contained in

CSrp(Rr). Let P be a Sylow p-subgroup of CSrp(Rr) containing 〈Qt, C〉.
Since there is a Sylow p-subgroup of Srp containing Rr in its centre, P is

also a Sylow p-subgroup of Srp. Clearly Et ≤ C and

Rr ≤ Et ≤ Qt ≤ P ≤ CSrp(Rr).

If t = 0 then M is the sign representation of NSrp(Rr), with p-permutation

basis B = {ω} where ω is the unique element of Ω(20 ; rp). It is then clear that

M has the Sylow p-subgroup Q0 of CSrp(Rr) as a vertex. We may therefore

assume that t ∈ N for the rest of this step.

By Proposition 3.4 there is a choice of signs sω ∈ {+1,−1} for ω ∈
Ω(2tp ; (r−2t)p) such that

B = {sωω : ω ∈ Ω(2tp ; (r−2t)p), I(ω) ∈ CSrp(Rr)}

is a p-permutation basis for M with respect to P . Let

Oj = {(j − 1)p+ 1, . . . , jp}

be the orbit of zj on {1, . . . , rp} of length p. If I(ω) ∈ CSrp(Rr) then I(ω)

permutes these orbits as blocks for its action; let

IO(ω) ∈ S{O1,...,Or}

be the involution induced by the action of I(ω) on the set of orbits.

Proposition 4.4. The FNSrp(Rr)-module M is indecomposable and has a

vertex containing Et.

Proof. For each involution h ∈ S{O1,...,Or} that fixes exactly r − 2t of the

orbits Oj , and so moves the other 2t, define

B(h) = {sωω ∈ B : IO(ω) = h}.

Clearly there is a vector space decomposition

M =
⊕
h

〈B(h)〉.

If g ∈ C then IO(ωg) = IO(ω) since g acts trivially on the set of orbits

{O1, . . . ,Or}. Therefore C permutes the elements of each B(h).

Let

h? = (O1,Ot+1) · · · (Ot,O2t) ∈ S{O1,...,Or}

and let sω?ω? ∈ B(h?) be the unique basis element such that

I(ω?) = (1, tp+ 1)(2, tp+ 2) · · · (tp, 2tp)
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(Equivalently, I(ω?) is the unique involution in S2tp that preserves the rela-

tive orders of the elements in Oj for 1 ≤ j ≤ 2t and satisfies IO(ω?) = h?.)

By Lemma 3.3(ii) we see that the stabiliser of ω? in C is the subgroup Et.

Let sδδ ∈ B(h?), then I(δ) = I(ω?) = h?. Without loss of generality we

have that

I(δ) = (1, i1)(2, i2) · · · (tp, itp),
where {i(j−1)p+1, i(j−1)p+2, . . . , ijp} = Ot+j for all j ∈ {1, . . . , t}. Hence,

there exist k1, k2, . . . , kt ∈ {0, 1, . . . , p− 1} and a permutation

g = zk1t+1z
k2
t+2 · · · zkt2t ,

such that (tp+ (j − 1)p+ 1)g = i(j−1)p+1 for all j ∈ {1, . . . , t}. Since sδδ is

fixed by Rr, it follows that sω?ω?g = sδδ. Therefore any basis element in

B(h?) can be obtained from ω? by permuting the members of Ot+1, . . . , O2t

by an element of C. It follows that B(h?) has size pt and is equal to the

orbit of sω?ω? on C. Therefore there is an isomorphism of FC-modules

〈B(h?)〉 ∼= F↑CEt
. By Lemma 4.1, 〈B(h?)〉 is an indecomposable FC-module

with vertex Et.

For each involution h ∈ S{O1,...,Or}, the FC-submodule 〈B(h)〉 of M is

sent to 〈B(h?)〉 by an element of NSrp(Rr) normalizing C. It follows that

if U is any summand of M , now considered as an FNSrp(Rr)-module, then

the restriction of U to C is isomorphic to a direct sum of indecomposable p-

permutation FC-modules with vertices conjugate in NSrp(Rr) to Et. Apply-

ing Theorem 2.2 to these summands, we see that there exists g ∈ NSrp(Rr)

such that U(Egt ) 6= 0. Now by Theorem 2.2, this time applied to the

FNSrp(Rr)-module U , we see that U has a vertex containing Egt . Hence

every indecomposable summand of M has a vertex containing Et.

We now calculate the Brauer correspondent M(Et). Let sωω ∈ B. It

follows from Lemma 3.3(ii) that ω is fixed by Et if and only if IO(ω)

is the involution h?. Hence, by Corollary 2.3 and Lemma 3.3, we have

M(Et) = 〈B(h?)〉. We have already seen that 〈B(h?)〉 is indecomposable as

an FC-module. Since C normalizes Et and centralizes Rr, it follows that

M(Et) is indecomposable as a module for the normalizer of Et in NSrp(Rr).

We already know that every indecomposable summand of M has a vertex

containing Et, so it follows from Corollary 2.3 that M is indecomposable. �

Note that if ω? is as defined in the proof of Proposition 4.4, then Qt

is a Sylow p-subgroup of CSrp

(
I(ω?)

) ∼= (S2 o Stp) × S(r−2t)p. Using this

observation and the p-permutation basis B for M it is now straightforward

to prove the following proposition.

Proposition 4.5. The indecomposable FNSrp(Rr)-module M has Qt as a

vertex.
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Proof. By Corollary 2.3, if Q is subgroup of P maximal subject to BQ 6= ∅
then Q is a vertex of M . By Lemma 3.3(ii), a basis element sωω ∈ B is fixed

by a p-subgroup Q of P if and only if Q ≤ CSrp

(
I(ω)

)
. Taking ω = ω? we see

that there is a vertex of M containing Qt. On the other hand, CSrp

(
I(ω)

)
is

conjugate in Srp to CSrp

(
I(ω?)

)
, and so if Q ≤ CSrp

(
I(ω)

)
then |Q| ≤ |Qt|.

It follows that Qt is a vertex of M . �

Third step: proof of Theorem 1.2. For the remainder of the proof we

shall regard S(r−2t)p as acting on {2tp + 1, . . . , rp}. We denote by Dt the

p-group C ∩NSrp(Qt). Notice that 〈Dt, Qt〉 is a p-group since is a subgroup

of 〈C,Qt〉 ≤ P . We shall need the following lemma to work with modules

for NSrp(Qt).

Lemma 4.6. The unique Sylow p-subgroup of NSrp(Qt) is the subgroup

〈Dt, Qt〉 of P .

Proof. Let x ∈ NSrp(Qt). If 2t + 1 ≤ j ≤ r then the conjugate zxj of the

p-cycle zj ∈ Et is a p-cycle in Qt. Since Qt normalizes Et, it permutes the

orbits O1, . . . , Or of Et as blocks for its action. No p-cycle can act non-

trivially on these blocks, so zxj ∈ 〈z2t+1, . . . , zr〉. Hence if 1 ≤ j ≤ t then

(zjzj+t)
x ∈ 〈z1zt+1, . . . , ztz2t〉. It follows that NSrp(Qt) factorizes as

NSrp(Qt) = NS2tp(L)×NS(r−2t)p
(L+)

where L and L+ are as defined at the start of the second step. More-

over, we see that NSrp(Qt) permutes, as blocks for its action, the sets

O1 ∪ Ot+1, . . . ,Ot ∪ O2t and O2t+1, . . . ,Or.
Let h ∈ NSrp(Qt) be a p-element. We may factorize h as gg+ where

g ∈ NS2tp(L) and g+ ∈ NS(r−2t)p
(L+) are p-elements. Since 〈L+, g+〉 is a

p-group and L+ is a Sylow p-subgroup of S(r−2t)p, we have g+ ∈ L+. Let

X = {O1 ∪ Ot+1, . . . ,Ot ∪ O2t}.
The group 〈L, g〉 permutes the sets in X as blocks for its action. Let

π : 〈L, g〉 → SX

be the corresponding group homomorphism. By construction L acts on the

sets O1, . . . ,Ot as a Sylow p-subgroup of S{O1,...,Ot}; hence Lπ is a Sylow

p-subgroup of SX . Since 〈L, g〉 is a p-group, there exists g̃ ∈ L such that

gπ = g̃π. Let y = gg̃−1. Since y acts trivially on X, we may write

y = g1 . . . gt

where gj ∈ SOj ∪Oj+t for each j. The p-group 〈L, y〉 has as a subgroup

〈zjzj+t, y〉. The permutation group induced by this subgroup on Oj ∪Oj+t,
namely 〈zjzj+t, gj〉, is a p-group acting on a set of size 2p. Since p is odd, the

unique Sylow p-subgroup of SOj ∪Oj+t containing zjzj+t is 〈zj , zj+t〉. Hence
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gj ∈ 〈zj , zj+t〉 for each j. Therefore y ∈ 〈z1, . . . , zt, zt+1, . . . , z2t〉 ≤ C. We

also know that y ∈ 〈Qt, g〉 ≤ NS2tp(Qt) ≤ NSrp(Qt). Therefore y ∈ Dt, and

since g̃ ∈ Qt, it follows that g ∈ 〈Dt, Qt〉. Hence h = gg+ ∈ 〈Dt, Qt〉 ≤
〈C,Qt〉 ≤ P .

Conversely, the subgroup 〈Dt, Qt〉 is contained in NSrp(Qt) because both

Dt and Qt are. It follows that 〈Dt, Qt〉 is the unique Sylow p-subgroup of

NSrp(Qt). �

We also need the following two general lemmas.

Lemma 4.7. Let Q and R be p-subgroups of a finite group G and let U be a

p-permutation FG-module. Let K = NG(R). If R is normal in Q then the

Brauer correspondents U(Q) and
(
U(R)

)
(Q) are isomorphic as FNK(Q)-

modules.

Proof. Let P be a Sylow p-subgroup of NG(R) containing Q and let B be a p-

permutation basis for U with respect to a Sylow p-subgroup of G containing

P . By Corollary 2.3 we have U(Q) = 〈BQ〉 as an FNG(Q)-module. In

particular

U(Q)↓NK(Q) = 〈BQ〉
as an FNK(Q)-module. On the other hand U(R) = 〈BR〉 as an FNG(R)-

module. Now BR is a p-permutation basis for U(R) with respect to K ∩ P .

Since this subgroup contains Q we have
(
U(R)

)
(Q) = 〈BR〉(Q) = 〈(BR)Q〉 =

〈BQ〉 as FNK(Q)-modules, as required. �

Lemma 4.8. Let G and G′ be finite groups and let U and U ′ be p-permutation

modules for FG and FG′, respectively. If Q ≤ G is a p-subgroup then

(U � U ′)(Q) = U(Q) � U ′, where on the left-hand side Q is regarded as a

subgroup of G×G′ in the obvious way.

Proof. This follows from Corollary 2.3 by taking p-permutation bases for

U and U ′ such that the p-permutation basis for U is permuted by a Sylow

p-subgroup of G containing Q. �

We are now ready to prove Theorem 1.2. We repeat the statement below

for the reader’s convenience.

Theorem 1.2. Let m ∈ N and let k ∈ N0. If U is an indecomposable

non-projective summand of H(2m ; k), defined over a field F of odd charac-

teristic p, then U has as a vertex a Sylow p-subgroup Q of (S2 oStp)×S(r−2t)p
for some t ∈ N0 and r ∈ N with tp ≤ m, 2t ≤ r and (r − 2t)p ≤ k. More-

over the Green correspondent of U admits a tensor factorization V �W as

a module for F
(
(NSrp(Q)/Q)× S2m+k−rp

)
, where V and W are projective,

and W is an indecomposable summand of H(2m−tp ; k−(r−2t)p).
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Proof. Let r ∈ N be maximal such that the subgroup Rr is contained in a

vertex of U . Let K = NSrp(Rr). By Lemma 4.2 and Proposition 4.3 there

is an isomorphism of NS2m+k
(Rr)-modules

H(2m ; k)(Rr) ∼=
⊕
t∈Tr

(
H(2tp ; (r−2t)p)(Rr) �H(2m−tp ; k−(r−2t)p))

compatible with the factorization NS2m+k
(Rr) = K × S2m+k−rp, where we

regard S2m+k−rp as acting on {rp + 1, . . . , 2m + k} and shift each module

H(2m−tp ; k−(r−2t)p) appropriately.

For t ∈ Tr, let Mt = H(2tp ; (r−2t)p)(Rr). By Proposition 4.5, each Mt

is indecomposable as an FNSrp(Rr)-module. Hence, by the Krull–Schmidt

Theorem, there is a subset T ′ ⊂ Tr, and for each t ∈ T ′, a non-zero sum-

mand Wt of H(2m−tp ; k−(r−2t)p), such that

U(Rr) ∼=
⊕
t∈T ′

Mt �Wt

as F (K×S2m+k−rp)-modules. By Proposition 4.5, Mt has Qt as a vertex for

each non-zero t ∈ T ′. It is clear that M0 = sgnSrp
(Rr) has vertex Q0 as an

FNSrp(Rr)-module. Let ` be the least element of T ′. If t > ` then Qt does

not contain a conjugate of the subgroup E` of Q`. Hence, by Theorem 2.2,

we have Mt(Q`) = 0. It now follows from Lemmas 4.7 and 4.8 that there is

an isomorphism of F (NK(Q`)× S2m+k−rp)-modules

U(Q`) ∼= U(Rr)(Q`) ∼= M`(Q`) �W`.

Since M` has Q` as a vertex, we have M`(Q`) 6= 0. It follows that U has a

vertex Q containing Q`.

Let B be the p-permutation basis for M` defined in the second step. Since

B is permuted by the Sylow p-subgroup P of K, it follows from Corollary 2.3

and Lemma 4.6 that C = BQ` is a p-permutation basis for the FNK(Q`)-

module M`(Q`) with respect to the Sylow p-subgroup 〈D`, Q`〉 of NK(Q`).

Since W` is isomorphic to a direct summand of the p-permutation module

H(2m−`p ; k−(r−2`)p) it has a p-permutation basis C+ with respect to a Sylow

p-subgroup P+ of S{rp+1,...,2m+k}. Therefore

C � C+ = {v ⊗ v+ : v ∈ C, v+ ∈ C+}

is a p-permutation basis for M`(Q`)�W` with respect to the Sylow subgroup

〈D`, Q`〉 × P+ of NK(Q`)× S2m+k−rp.

Suppose, for a contradiction, that Q strictly contains Q`. Since Q is

a p-group there exists a p-element g ∈ NQ(Q`) ≤ NS2m+k
(Q`) such that

g 6∈ Q`. Now Q` has orbits of length at least p on {1, . . . , rp} and fixes

{rp+ 1, . . . , 2m+ k}. Since g permutes these orbits as blocks for its action,

we may factorize g as g = hh+ where h ∈ NSrp(Q`) and h+ ∈ S2m+k−rp. By

Lemma 4.6 we have that 〈Q`, h〉 ≤ NK(Q`).
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Corollary 2.3 now implies that (C � C+)〈Q`,g〉 6= ∅. Let v ⊗ v+ ∈ C � C+
be such that (v ⊗ v+)g = v ⊗ v+. Then v ∈ B〈Q`,h〉. But Q` is a ver-

tex of M`, so it follows from Corollary 2.3 that h ∈ Q`. Hence h+ is a

non-identity element of Q. By taking an appropriate power of h+ we find

that Q contains a product of one or more p-cycles with support contained in

{rp+ 1, . . . , 2m+ k}. This contradicts our assumption that r was maximal

such that Rr is contained in a vertex of U .

Therefore U has vertex Q`. We saw above that there is an isomorphism

U(Q`) ∼= M`(Q`) �W` of F (NK(Q`) × S2m+k−rp)-modules. This identifies

U(Q`) as a vector space on which NS2m+k
(Q`) = NSrp(Q`)×S2m+k−rp acts.

It is clear from the isomorphism in Proposition 4.3 that NSrp(Q`) acts on

the first tensor factor and S2m+k−rp acts on the second. Hence the action

of NK(Q`) on M`(Q`) extends to an action of NSrp(Q`) on M`(Q`) and we

obtain a tensor factorization V �W` of U(Q`) as an NSrp(Q`)× S2m+k−rp-

module. An outer tensor product of modules is projective if and only if both

factors are projective, so by Theorem 2.5, V is a projective FNSrp(Q`)/Q`-

module, W` is a projective FS2m+k−rp-module, and U(Q`) is the Green

correspondent of U . �

5. Proofs of Theorem 1.1 and Proposition 1.3

In this section we prove Proposition 1.3, and hence Theorem 1.1. It will

be convenient to assume that H(2m ; k) is defined over the finite field Fp.

Proposition 1.3 then follows for an arbitrary field of characteristic p by

change of scalars. We assume the common hypotheses for these results, so γ

is a p-core such that 2m+ k = |γ|+ wk(γ)p and if k ≥ p then

wk−p(γ) 6= wk(γ)− 1.

Let λ be a maximal element of Ek(γ) under the dominance order.

Write H
(2m ; k)
Q for the twisted Foulkes module defined over the rational

field. This module has an ordinary character given by Lemma 3.1. In

particular it has χλ as a constituent, and so the rational Specht module SλQ

is a direct summand of H
(2m ; k)
Q . Therefore, by reduction modulo p, each

composition factor of Sλ (now defined over Fp) appears in H(2m ; k). In

particular H(2m ; k) has a summand in the block B(γ,wk(γ)) with p-core γ

and weight wk(γ). We now use Theorem 1.2 to show that any such summand

is projective.

Proposition 5.1. Every summand of H(2m ; k) in the block B(γ,wk(γ)) of

S2m+k is projective.
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Proof. Suppose, for a contradiction, that H(2m ; k) has a non-projective sum-

mand U in B(γ,wk(γ)). By Theorem 1.2, the vertex of U is a Sylow sub-

group Qt of (S2 o Stp)× S(r−2t)p for some r ∈ N and t ∈ N0 such that

tp ≤ m, 2t ≤ r and (r − 2t)p ≤ k.

Suppose first of all that 2t < r. In this case there is a p-cycle g ∈ Qt.
Replacing Qt with a conjugate, we may assume that g = (1, . . . , p) and so

〈g〉 = R1 where R1 is as defined at the start of the first step in §4. By

Lemma 4.2 and Proposition 4.3, we have that k ≥ p and U(R1) is a direct

summand of

H(2m ; k)(R1) = sgnSp
(〈g〉) �H(2m ; k−p).

Hence there exists an indecomposable summand W of H(2m ; k−p) such that

sgnSp
(〈g〉) �W | U(R1).

By Theorem 2.7, W lies in the block B(γ,wk(γ) − 1) of S2m+k−p. In par-

ticular, this implies that H(2m ; k−p) has a composition factor in this block.

Therefore there is a constituent χµ of the ordinary character of H(2m ; k−p)

such that Sµ lies in B(γ,wk(γ) − 1). But then, by Lemma 3.1, µ is a par-

tition with p-core γ having exactly k − p odd parts and weight wk(γ) − 1.

Adding a single vertical p-hook to µ gives a partition of weight wk(γ) with

exactly k odd parts. Hence wk−p(γ) = wk(γ)−1, contrary to the hypothesis

on wk−p(γ).

Now suppose that 2t = r. Let g = (1, . . . , p)(p+ 1, . . . , 2p). Then g ∈ Qt
by definition and 〈g〉 = R2. By Lemma 4.2 and Proposition 4.3 we have

that U(R2) is a direct summand of

H(2m ; k)(R2) =
(
H(2p)(〈g〉) �H(2m−p ; k)

)⊕(
sgnS2p

(〈g〉) �H(2m ; k−2p)
)

where the second summand should be disregarded if k < 2p. It follows that

either there is an indecomposable FS2m+k−2p-module V such that

H(2p)(〈g〉) � V | U(R2),

or k ≥ 2p and there is an indecomposable FS2m+k−2p-module W such that

sgnS2k
(〈g〉) �W | U(R2).

Again we use Theorem 2.7. In the first case V lies in the blockB(γ,wk(γ)−
2) of S2m+k−2p. Hence there is a constituent χµ of the ordinary character

of H(2m−p ; k) such that µ is a partition with p-core γ and weight wk(γ)− 2

having exactly k odd parts. This contradicts the minimality of wk(γ). In

the second case W also lies in the block B(γ,wk(γ) − 2) of S2m+k−2p and

there is a constituent χµ of the ordinary character of H(2m ; k−2p) such that

µ is a partition with p-core γ and weight wk(γ) − 2 having exactly k − 2p

odd parts. But then by adding a single vertical p-hook to µ we reach a
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partition with weight wk(γ)− 1 having exactly k− p odd parts. Once again

this contradicts the hypothesis that wk−p(γ) 6= wk(γ)− 1. �

For ν a p-regular partition, let P ν denote the projective cover of the

simple module Dν . To finish the proof of Proposition 1.3 we must show

that if λ is a maximal element of Ek(γ) then P λ is one of the projective

summands of H(2m ; k) in the block B(γ,wk(γ)). For this we need a lifting

result for summands of the monomial module H(2m ; k), which we prove using

the analogous, and well known, result for permutation modules. Let Zp

denote the ring of p-adic integers and let H
(2m ; k)
Zp

denote the twisted Foulkes

module defined over Zp.

Lemma 5.2. If U is a direct summand of H(2m ; k) then there is a ZpS2n+k-

module UZp, unique up to isomorphism, such that UZp is a direct summand

of H
(2m ; k)
Zp

and UZp ⊗Zp Fp
∼= U .

Proof. Let Ak denote the alternating group on {2m + 1, . . . , 2m + k}. Let

M = Fp ↑S2m+k

S2oSm×Ak
be the permutation module of S2m+k acting on the cosets

of S2oSm×Ak and let MZp = Zp↑S2m+k

S2oSm×Ak
be the corresponding permutation

module defined over Zp. Since p is odd, the trivial Zp(S2 o Sm × Sk) module

is a direct summand of Zp↑S2oSm×Sk
S2oSm×Ak

. Hence, inducing up to S2m+k (as in

the remark after Lemma 3.2), we see that MZp = H
(2m ; k)
Zp

⊕M ′Zp
where M ′Zp

is a complementary ZpS2m+k-module, and M = H(2m ; k) ⊕M ′ where M ′ is

the reduction modulo p of M ′Zp
.

By Scott’s lifting theorem (see [2, Theorem 3.11.3]), reduction modulo p is

a bijection between the summands of MZp and the summands of M . By the

same result, this bijection restricts to a bijection between the summands

of the permutation module M ′Zp
and the summands of M ′. Since U is

a direct summand of M there is a summand UZp of MZp , unique up to

isomorphism, such that UZp ⊗Zp Fp
∼= U . By the remarks just made, UZp is

isomorphic to a summand of H
(2m ; k)
Zp

. �

Let P νZp
be the Zp-free ZpS2m+k-module whose reduction modulo p is P ν .

By Brauer reciprocity (see for instance [39, §15.4]), the ordinary character

of P νZp
is

(?) ψν =
∑
µ

dµνχ
µ.

The result mentioned in the introduction, that if dµν 6= 0 then ν dominates µ,

implies that the sum may be taken over those partitions µ dominated by ν.

Proof of Proposition 1.3. We have seen that each summand of H(2m ; k) in

the block B(γ,wk(γ)) is projective and that there is at least one such sum-

mand. Let P ν1 , . . . , P νc be the summands of H(2m ; k) in B(γ,wk(γ)). Using



DECOMPOSITION NUMBERS OF THE SYMMETRIC GROUP 23

Lemma 5.2 to lift these summands to summands of H
(2m ; k)
Zp

we see that the

ordinary character of the summand of H
(2m ; k)
Zp

lying in the p-block of S2m+k

with core γ and weight wk(γ) is ψν1 + · · ·+ ψνc . By Lemma 3.1 we have

(†) ψν1 + · · ·+ ψνc =
∑

µ∈Ek(γ)

χµ.

By hypothesis λ is a maximal partition in the dominance order on Ek(γ), and

by (?) each ψνj is a sum of ordinary irreducible characters χµ for partitions

µ dominated by νj . Therefore one of the partitions νj must equal λ, as

required. �

We are now ready to prove Theorem 1.1

Proof of Theorem 1.1. Suppose that the projective summands of H(2m ; k)

lying in the block B(γ,wk(γ)) are P ν1 , . . . , P νc . Then by (†) above, Ek(γ)

has a partition into disjoint subsets X1, . . . ,Xc such that νj ∈ Xj and

ψνj =
∑
µ∈Xj

χµ

for each j. It now follows from (?) that the column of the decomposition

matrix of Sn in characteristic p labelled by νj has 1s in the rows labelled by

partitions in Xj , and 0s in all other rows. �

6. Applications of Theorem 1.1 and Proposition 1.3

We begin with a precise statement of the result on diagonal Cartan num-

bers mentioned in the introduction after Proposition 1.3.

Theorem 6.1 ([37, Theorem 2.8] or [3, Proposition 4.6(i)]). If ν is a p-

regular partition of n such that ν has weight w then dµν 6= 0 for at least

w + 1 distinct partitions µ.

If |Ek(γ)| ≤ 2wk(γ) + 1 then it follows from Theorems 1.1 and 6.1 that

Ek(γ) has a unique maximal partition, say λ, and the only non-zero entries

of the column of the decomposition matrix of Sn labelled by λ are 1s in rows

labelled by partitions in Ek(γ). In these cases Theorem 1.1 becomes a sharp

result.

Example 6.2. Firstly let p = 3 and let γ = (3, 1, 1). We leave it to the

reader to check that w0(γ) = 3 and

E0(γ) = {(8, 4, 2), (6, 6, 2), (6, 4, 4), (6, 4, 2, 2)}.
Hence the column of the decomposition matrix of S12 in characteristic 3

labelled by (8, 4, 2) has 1s in the rows labelled by the four partitions in

E0(γ) and no other non-zero entries. (The full decomposition matrix of the

block B((3, 1, 1), 3) was found by Fayers in [11, A.8].)
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Secondly let p = 7 and let γ = (4, 4, 4). Then w6(γ) = 2 and E6(γ) =

X ∪ X ′ where

X = {(11, 4, 4, 3, 14), (11, 4, 4, 2, 15), (10, 5, 4, 3, 14), (10, 5, 4, 2, 15)},
X ′ = {(9, 5, 5, 5, 1, 1), (9, 5, 5, 4, 1, 1, 1), (8, 5, 5, 5, 1, 1, 1)}.

The partitions in X and X ′ are mutually incomparable under the dominance

order. Thus Theorem 1.1 determines the columns of the decomposition

matrix of S26 in characteristic 7 labelled by (11, 4, 4, 3, 14) and (9, 5, 5, 5, 1, 1).

Finally let p = 5 and let γ = (5, 4, 2, 14). Then w6(γ) = 3, and

E6(γ) =

{
(15, 9, 2, 14), (15, 6, 5, 14), (13, 11, 2, 14)

(13, 6, 5, 3, 13), (10, 9, 7, 14), (10, 9, 5, 3, 13)

}
.

It is easily seen that w1(γ) > 2. (In fact w1(γ) = 8.) Therefore Theorem 1.1

determines the column of the decomposition matrix of S30 in characteristic 5

labelled by (15, 9, 2, 14).

We now use the following combinatorial lemma to prove that the bound

in Theorem 6.1 is attained in blocks of every weight. Note that when p = 3

and e = 2 the core used is (3, 1, 1), as in the first example above. For an

introduction to James’ abacus see [21, page 78].

Lemma 6.3. Let p be an odd number, let e ∈ N0, and let γ be the p-core

represented by the p-abacus with two beads on runner 1, e + 1 beads on

runner p − 1, and one bead on every other runner. If 0 ≤ k ≤ e + 1 then

wk(γ) = e+ 1− k and |Ek(γ)| = wk(γ) + 1.

Proof. The p-core γ is represented by the abacus A shown in Figure 1 over-

leaf. Moving the lowest e+1−k beads on runner p−1 down one step leaves

a partition with exactly k odd parts. Therefore wk(γ) ≤ e+ 1− k.

Suppose that λ is a partition with exactly k odd parts that can be obtained

by a sequence of single step bead moves on A in which exactly e− r beads

are moved on runner p− 1 and at most e+ 1− k moves are made in total.

We may suppose that r ≥ k and that the beads on runner p− 1 are moved

first, leaving an abacus A?. Numbering rows as in Figure 1, so that row 0

is the highest row, let row ` be the lowest row of A? to which any bead is

moved in the subsequent moves. Let B be the abacus representing λ that

is obtained from A? by making these moves. The number of spaces before

each beads on runner p−1 in rows `, `+1, . . . , r is the same in both A? and

B, and is clearly odd in A?. Hence the parts corresponding to these beads

are odd. Therefore ` ≥ r − k + 1.

If B has a bead in row ` on a runner other than runner 1 or runner p− 1,

then this bead has been moved down from row 0, and so has been moved at

least ` times. The total number of moves made is at least (e−r)+` ≥ e−k+1,
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. . .

e+ 1 beads

0 1 2 . . . p− 1

row 0
row 1

row e

Figure 1. Abacus A representing the p-core γ in Lemma 6.3.

and so ` = r− k+ 1. But now B has beads corresponding to odd parts of λ

on runner p − 1 in row 0, as well as rows `, ` + 1, . . . , r, giving k + 1 odd

parts in total, a contradiction.

It follows that the sequence of bead moves leading to B may be reordered

so that the first e− r moves are made on runner p− 1, and then the lowest

bead on runner 1 is pushed down r−k times to row r−k+ 1. The partition

after these moves has k + 1 odd parts. Moving the bead on runner 1 down

one step from row r− k+ 1 reduces the number of odd parts by one, and is

the only such move that does not move a bead on runner p − 1. Therefore

Ek(γ) contains the partition constructed at the start of the proof, and one

further partition for each r ∈ {0, 1, . . . , e− k}. �

Given an arbitrary weight w ∈ N and k ∈ N0, Lemma 6.3 gives an

explicit partition λ satisfying the hypothesis of Theorem 1.1 and such that

wk(γ) = w. We use this in the following proposition.

Proposition 6.4. Let p be an odd prime and let k, w ∈ N0 be given. There

exists a p-core γ and a partition λ with p-core γ and weight w such that λ

has exactly k odd parts and the only non-zero entries in the column of the

decomposition matrix labelled by λ are 1s lying in the w+ 1 rows labelled by

elements of Ek(γ).

Proof. If w = 0 and k = 0 then take λ = (2). Otherwise let γ be the p-core

in Lemma 6.3 when e = w + k − 1. By this lemma we have wk(γ) = w.

Moreover, if k ≥ p then wk−p(γ) = w+p. Taking λ to be a maximal element

of Ek(γ), the proposition follows from Theorem 1.1 and Theorem 6.1. �

We now turn to an application of Proposition 1.3. Write H
(2m ; k)
R for

the twisted Foulkes module defined over a commutative ring R. Since the

ordinary character of H
(2m ; k)
Q is multiplicity-free, the endomorphism algebra

of H
(2m ; k)
F is commutative whenever the field F has characteristic zero.

Hence the endomorphism ring of H
(2m ; k)
Z is commutative. This ring has a

canonical Z-basis indexed by the double cosets of the subgroup S2 oSm×Sk
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in S2m+k. This basis makes it clear that the canonical map

EndZS2m+k
(H

(2m ; k)
Z )→ EndFpS2m+k

(H
(2m ; k)
Fp

)

is surjective, and so EndFS2m+k
(H

(2m ; k)
F ) is commutative for any field F .

This fact has some strong consequences for the structure of twisted Foulkes

modules.

Proposition 6.5. Let U and V be distinct summands in a decomposition of

H(2m ; k), defined over a field F , into direct summands. Then EndFS2m+k
(U)

is commutative and HomFS2m+k
(U, V ) = 0.

Proof. Let πU be the projection map from H(2m ; k) onto U and let ιU and

ιV be the inclusion maps of U and V respectively into H(2m ; k). Suppose

that φ ∈ HomFS2n(U, V ) is a non-zero homomorphism. Then πUφιV does

not commute with πU ιU . (We compose homomorphisms from left to right.)

Moreover sending θ ∈ EndFS2m+k
(U) to πUθιU defines an injective map from

EndFS2m+k
(U) into the commutative algebra EndFS2m+k

H(2m ; k). �

Proposition 6.5 implies that if λ is a p-regular partition and P λ is a direct

summand of H(2m ; k), defined over a field of characteristic p, then there are

no non-zero homomorphisms from P λ to any other summand of H(2m ; k).

Thus every composition factor of H(2m ; k) isomorphic to Dλ must come from

P λ. We also obtain the following corollary.

Corollary 6.6. Let F be a field of odd characteristic. Given any w ∈ N

there exists n ∈ N and an indecomposable projective module P λ for FSn

lying in a block of weight w such that EndFSn(P λ) is commutative.

Proof. Let γ be the p-core in Lemma 6.3 when e+1 = w. Taking k = 0 we see

that w0(γ) = w. If λ is a maximal element of E0(γ) then, by Proposition 1.3,

P λ is a direct summand of H(2m), where 2m = |λ| and both modules are

defined over the field F . The result now follows from Proposition 6.5. �
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[7] M. Broué, Les l-blocs des groupes GL(n, q) et U(n, q2) et leurs structures locales,
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