
Part D: Probabilistic methods

16. Revision of discrete probability

This section is intended to remind you of the definitions and language
of discrete probability theory, on the assumption that you have seen
most of the ideas before.

For further background see any basic textbook on probability, for
example Sheldon Ross, A First Course in Probability, Prentice Hall.

Definition 16.1.

• A probability measure p on a finite set Ω assigns a real number
pω to each ω ∈ Ω, so that 0 ≤ pω ≤ 1 and∑

ω∈Ω

pω = 1.

We say that pω is the probability of ω.

• A probability space is a finite set equipped with a probability
measure. The elements of a probability space are sometimes
called outcomes.

• An event is a subset of Ω.

• The probability of an event A ⊆ Ω, denoted P[A], is the sum of
the probabilities of the elements of A; that is, P[A] =

∑
ω∈A pω.

Note that it follows from this definition that P [{ω}] = pω for each
ω ∈ Ω. We also have P [∅] = 0 and P[Ω] =

∑
ω∈Ω pω = 1.

Example 16.2.

(1) To model throwing a single unbiased die, we could take Ω =
{1, 2, 3, 4, 5, 6} and put pω = 1/6 for each outcome ω ∈ Ω.
The event that we roll an even number is A = {2, 4, 6} and
P[A] = 1/6 + 1/6 + 1/6 = 1/2.

(2) For a pair of dice we could take

Ω = {1, 2, 3, 4, 5, 6} × {1, 2, 3, 4, 5, 6}

and give each element of Ω probability 1/36. Alternatively, if we
only care about the sum, we could take Ω = {2, 3, . . . , 12} with
probabilities p2 = 1/36, p3 = 2/36, . . . , p6 = 5/36, p7 = 6/36,
p8 = 5/36, . . . , p12 = 1/36.
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(3) Suppose we repeatedly flip a coin. For three flips, a suitable
probability space would be

Ω = {HHH, HHT,HTH,HTT, THH, THT, TTH, TTT}

where H stands for heads, and T for tails. To allow for a biased
coin, we fix 0 ≤ q ≤ 1 and give each sequence with exactly k
H’s probability qk(1− q)3−k.

(4) Let n ∈ N and let Ωn be the set of all n! permutations of
{1, 2, . . . , n}. Set pσ = 1/n! for each permutation σ. This gives
a suitable setup for Theorem 2.6. Later we will use the language
of probability theory to give a shorter proof of part (ii) of this
theorem.

It will sometimes be helpful to specify events a little informally. For
example, in (3) above, we might write P[at least two heads] rather than
P

[
{HHT,HTH, THH, HHH}

]
.

Unions, intersections and complements. Let Ω be a probability
space. If A, B ⊆ Ω and A ∩B = ∅, then

P[A ∪B] =
∑

ω∈A∪B

pω =
∑
ω∈A

pω +
∑
ω∈B

pω = P[A] + P[B].

More generally, for any A, B ⊆ Ω we have

P[A ∪B] =
∑

ω∈A∪B

pω =
∑
ω∈A

pω +
∑
ω∈B

pω −
∑

ω∈A∩B

pω

= P[A] + P[B]−P[A ∩B].

The complement of an event A is

A = {ω ∈ Ω : ω 6∈ A}.

Since

1 = P[Ω] = P[A ∪ A] = P[A] + P[A]

we have P[A] = 1−P[A].

Exercise: Restate the Principle of Inclusion and Exclusion (Theo-
rem 5.3) so that it becomes a result about probabilities.
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Conditional probability and independence.

Definition 16.3. Let Ω be a probability space and let A, B ⊆ Ω be
events.

• If P[B] 6= 0, then the conditional probability of A given B is
defined to be

P[A|B] =
P[A ∩B]

P[B]
.

• The events A, B are independent if P[A ∩B] = P[A]P[B].

The justification for the definition of P[A|B] is that it defines the
probability that A occurs if we already know that B occurred. Note
that if P[B] 6= 0, then A and B are independent events if and only if
P[A|B] = P[A]. In other words, the probability of A does not change
if we know that B occurred.

Conditional probability can be quite subtle.

Exercise: Show that if P[A], P[B] 6= 0, then P[A|B] = P[A] if and
only if P[B|A] = P[B]. Do you find this intuitively reasonable?

Exercise: Let Ω = {HH,HT, TH, TT} be the probability space for
two flips of a fair coin. Let A be the event that both flips are heads,
and let B be the event that at least one flip is heads. Write down A
and B as subsets of Ω and show that P[A|B] = 1/3.

Example 16.4 (The Monty Hall Problem). On a game show you are
offered the choice of three doors. Behind one of the doors is a desirable
prize (conventionally, a car) and behind the others, something valueless
(conventionally, goats). You pick a door and then the host, who knows
where the prize is, opens another door to reveal a goat. You may then
either open your original door, or change to the other unopened door.
Should you change?

Many people find the answer to the Monty Hall Problem a little
surprising. The Sleeping Beauty Problem, in which the sleeper is woken
either once or twice according to the toss of a coin, and after each
waking is asked for her credence that the coin landed heads, is still
controversial.
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Random variables.

Definition 16.5. Let Ω be a probability space. A random variable is
a function X : Ω → R. If X, Y : Ω → R are random variables then we
say that X and Y are independent if for all x, y ∈ R, the events

A = {ω ∈ Ω : X(ω) = x} and

B = {ω ∈ Ω : Y (ω) = y}

are independent.

The following shorthand notation will be very useful. If X : Ω → R
is a random variable then we write X = x for {ω ∈ Ω : X(ω) = x}.
We mainly use this shorthand in probabilities: thus

P[X = x] = P
[
{ω ∈ Ω : X(ω) = x}

]
.

Example 16.6. Let Ω = {HH,HT, TH, TT} be the probability space
for two flips of a fair coin. Define X : Ω → R to be 1 if the first
coin is heads, and zero otherwise. So X(HH) = X(HT ) = 1 and
X(TH) = X(TT ) = 0. Define Y similarly for the second coin.

(i) The random variables X and Y are independent.
(ii) Let Z be 1 if exactly one flip results in heads, and 0 otherwise.

Then X and Z are independent, and Y and Z are independent.
(iii) There exist x, y, z ∈ R such that

P[X = x, Y = y, Z = z] 6= P[X = x]P[y = y]P[Z = z].

This shows that one has to be quite careful when defining indepen-
dence of a family of random variables. (Except in the Lovász Local
Lemma we will be able to manage with the pairwise independence de-
fined above.)

Exercise: Show that X, Y : Ω → R are independent if and only if

P[(X = x) ∩ (Y = y)] = P[X = x]P[Y = y]

for all x, y ∈ R.

We can also define new random variables by looking at functions like
X + Y , aX for a ∈ R and XY . The constant functions c : Ω → R
defined by c(ω) = c for all ω ∈ Ω will also be useful. We notice that

{ω ∈ Ω : (X + Y )(ω) = z} =
⋃

x+y=z

{ω ∈ Ω : X(ω) = x, Y (ω) = y} .
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The above events are disjoint for different x and y, so we get

P[(X + Y ) = z] =
∑

x+y=z

P[(X = x) ∩ (Y = y)].

If X and Y are independent, then we have

P[(X + Y ) = z] =
∑

x+y=z

P[X = x]P[Y = y].

Note that in the sums above we sum over all x, y ∈ R. However,
there are only a finite number of x’s and y’s such that

{ω ∈ Ω : X(ω) = x, Y (ω) = y} 6= ∅.

Therefore the non-zero contributions come from finitely many terms,
and so the sums make sense.

Exercise: Show similarly that

P[XY = z] =
∑
xy=z

P[(X = x) ∩ (Y = y)]

and that if X and Y are independent, then

P[XY = z] =
∑
xy=z

P[X = x]P[Y = y].

Expectation and linearity.

Definition 16.7. Let Ω be a probability space with probability p. The
expectation E[X] of a random variable X : Ω → R is defined to be

E[X] =
∑
ω∈Ω

X(ω) pω .

Intuitively the expectation represents the average value of X on el-
ements of Ω, if we pick many elements independently, choosing ω ∈ Ω
with probability pω. Note that

E[X] =
∑
ω∈Ω

X(ω)pω =
∑
x∈R

∑
ω:X(ω)=x

xpω =
∑
x∈R

xP[X = x].

A critical property of expectation is that it is linear. This is easily
proved, but can be very useful in the problems we shall deal with. Note
that we do not assume independence in this lemma.
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Lemma 16.8. Let Ω be a probability space. If X1, X2, . . . , Xn : Ω → R
are random variables then

E[a1X + a2X2 + · · ·+ anXn] = a1E[X1] + a2E[X2] + · · ·+ anE[Xn]

for any a1, a2, . . . , an ∈ R.

When X, Y : Ω → R are independent random variables there is a
very useful formula for E[XY ].

Lemma 16.9. If X,Y : Ω → R are independent random variables
then E[XY ] = E[X]E[Y ].

Exercise: prove the lemma by arguing that

E[XY ] =
∑
z∈R

zP[XY = z] =
∑
z∈R

z
∑
xy=z

P[(X = x) ∩ (Y = y)]

and then using independence to factorise the right-hand side.

Variance.

Definition 16.10. Let Ω be a probability space. The variance Var[X]
of a random variable X : Ω → R is defined to be

Var[X] = E
[
(X − E[X])2

]
.

The variance measures the expected difference of X from its average
value. So it is a measure of the ‘spread’ of X.

It is tempting to define the variance as E
[
X−E[X]

]
, but by linearity

this expression is always zero. One might also try E
[
|X −E[X]|

]
, but

the problem is that the absolute value is hard to work with. The
definition above works well in practice.

Lemma 16.11. Let Ω be a probability space.

(i) If X : Ω → R is a random variable then

Var[X] = E[X2]− (E[X])2.

(ii) If X, Y : Ω → R are independent random variables then

Var[X + Y ] = Var[X] + Var[Y ].

Exercise: Show that (ii) can fail if X and Y are not independent. [Hint:
usually a random variable is not independent of itself.]


