
COMBINATORICS MT454 / MT5454

MARK WILDON

These notes are intended to give the logical structure of the course;
proofs and further remarks will be given in lectures. Further install-
ments will be issued as they are ready. All handouts and problem
sheets will be put on Moodle.

I would very much appreciate being told of any corrections or possible
improvements to these notes.

You are warmly encouraged to ask questions in lectures, and to talk
to me after lectures and in my office hours. I am also happy to answer
questions about the lectures or problem sheets by email. My email
address is mark.wildon@rhul.ac.uk.

Lectures: Monday 12 noon in MFLEC, Tuesday 12 noon in HTL1
and Friday 1pm in ABLT2.

Office hours in McCrea 240: Tuesday 11am, Wednesday 2pm and
Friday 3pm.

Date: First term 2012/13.
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1. Introduction

Combinatorial arguments may be found lurking in all branches of
mathematics. Many people first become interested in mathematics
by a combinatorial problem. But, strangely enough, at first many
mathematicians tended to sneer at combinatorics. Thus one finds:

“Combinatorics is the slums of topology.”
J. H. C. Whitehead (early 1900s, attr.)

Fortunately attitudes have changed, and the importance of combi-
natorial arguments is now widely recognised:

“The older I get, the more I believe that at the bottom
of most deep mathematical problems there is a combina-
torial problem.”

I. M. Gelfand (1990)

Combinatorics is a very broad subject. Often it will be useful to
prove the same result in different ways, in order to see different com-
binatorial techniques at work. There is no shortage of interesting and
easily understood motivating problems.

Overview. This course will give a straightforward introduction to four
related areas of combinatorics. Each is the subject of current research,
and taken together, they give a good idea of what the subject is about.

(A) Enumeration: Binomial coefficients and their properties. Prin-
ciple of Inclusion and Exclusion and applications. Rook poly-
nomials.

(B) Generating Functions: Ordinary generating functions and
recurrence relations. Partitions and compositions. Catalan
Numbers. Derangements.

(C) Ramsey Theory: “Complete disorder is impossible”. Pigeon-
hole Principle. Graph colouring.

(D) Probabilistic Methods: Linearity of expectation. First mo-
ment method. Applications to counting permutations. Lovász
Local Lemma.

Recommended Reading.

[1] A First Course in Combinatorial Mathematics. Ian Anderson,
OUP 1989, second edition.

[2] Discrete Mathematics. N. L. Biggs, OUP 1989.
[3] Combinatorics: Topics, Techniques, Algorithms. Peter J. Came-

ron, CUP 1994.
[4] Concrete Mathematics. Ron Graham, Donald Knuth and Oren

Patashnik, Addison-Wesley 1994.
[5] Invitation to Discrete Mathematics. Jiri Matoušek and Jaroslav

Nešetřil, OUP 2009, second edition.
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[6] Probability and Computing: Randomized Algorithms and Prob-
abilistic Analysis. Michael Mitzenmacher and Eli Upfal, CUP
2005.

[7] generatingfunctionology. Herbert S. Wilf, A K Peters 1994,
second edition. Available from http://www.math.upenn.edu/

~wilf/DownldGF.html.

In parallel with the first few weeks of lectures, you will be asked to
do some reading from generatingfunctionology : the problem sheets will
make clear what is expected.

Prerequisites.

• Permutations and their decomposition into disjoint cycles. (Re-
quired for derangements and for some applications in Part D.)

• Basic definitions of graph theory: vertices, edges, complete
graphs. (Required for Part C on Ramsey Theory.)

• Basic knowledge of discrete probability. This will be reviewed
in lectures when we get to part D of the course. A handout
with all the background results needed from probability theory
will be issued later in term.

Problem sheets and exercises. There will be weekly problem sheets;
the first will be due in on Monday 15th October. Exercises set in these
notes are intended to be simple tests that you are following the mate-
rial. Some will be done in lectures. Please may sure you can do all of
them.

Note on optional questions. Optional questions on problem sheets
are included for interest and to give extra practice. Harder optional
questions are marked (?). If you can do the compulsory questions
and know the bookwork, i.e. the definitions, main theorems,
and their proofs, as set out in the handouts and lectures, you
should do very well in the exam.
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2. Derangements

In the first two lectures we will see the Derangements Problem and
one way to solve it by ad-hoc methods. Later in the course we will
develop techniques that can be used to solve this problem more easily.

Definition 2.1. A permutation of a set X is a bijective function

σ : X → X.

A fixed point of a permutation σ of X is an element x ∈ X such that
σ(x) = x. A permutation is a derangement if it has no fixed points.

Usually we will consider permutations of {1, 2, . . . , n} for some nat-
ural number n ∈ N. It is often useful to represent permutations by
diagrams. For example, the diagram below shows the permutation
σ : {1, 2, 3, 4, 5} → {1, 2, 3, 4, 5} defined by

σ(1) = 2, σ(2) = 1, σ(3) = 4, σ(4) = 5, σ(5) = 3.

Note that σ is a derangement.

4 MARK WILDON

It is often useful to represent permutations by diagrams; the diagram
below shows the permutation σ : {1, 2, 3, 4, 5} → {1, 2, 3, 4, 5} defined
by

σ(1) = 2,σ(2) = 1,σ(3) = 4,σ(4) = 5,σ(5) = 3.

1 2 3 4 5

1 2 3 4 5

Problem 2.2 (Derangements). How many of the n! permutations of
{1, 2, . . . , n} are derangements?

Let dn be the number of permutations of {1, 2, . . . , n} that are de-
rangements. By definition (or convention if you prefer) d0 = 1.

Exercise: Check, by listing permutations, that d1 = 0, d2 = 1, d3 = 2,
d4 = 9.

Lemma 2.3. If n ≥ 2 then there are dn−2 +dn−1 derangements σ such
that σ(1) = 2.

Theorem 2.4. If n ≥ 2 then dn = (n− 1)
�
dn−2 + dn−1

�

Using this recurrence relation it is easy to find values of dn for
larger n. At this point, N. J. A. Sloane’s Online Encyclopedia of In-
teger Sequences: see www.research.att.com/∼njas/sequences/ can
be used to see if a sequence is already known.

Corollary 2.5. For all n ∈ N,

dn = n!
�
1− 1

1!
+

1

2!
− 1

3!
+ . . . +

(−1)n

n!

�
.

Exercise: (a) check directly that the right-hand side is an integer;
(b) use the formula to prove the alternative recurrence relation dn =
ndn−1 + (−1)n.

A more systematic way to derive Corollary 2.5 from Theorem 2.4
will be seen in Part B of the course.

Theorem 2.6. Two probabilistic results:
(i) The probability that a randomly chosen permutation of {1, 2, . . . , n}

is a derangement tends to 1/e as n→∞.
(ii) The average number of fixed points of a permutation of {1, 2, . . . , n}

is 1.

We will prove more results like this in Part D of the course.

Exercise: For n ∈ N, how many permutations are there of {1, 2, . . . , n}?
How many of these permutations have 1 as a fixed point?

The principle used to solve this exercise, that when one choice is
made after another, the number of choices should be multiplied, will
be used many times in this course. In the case where one choice does
not affect the next, so we first choose an element of a set A, then an
element of a set B, the principle simply says that |A×B| = |A||B|.

More generally, if an object can be specified uniquely by a sequence
of n choices so that, when making the ith choice, we always have ex-
actly ci possibilities to choose from, then there are exactly c1c2 . . . cn
objects.

Problem 2.2 (Derangements). Let X be a set of size n. How many
permutations of X are derangements?

Let dn be the number of permutations of {1, 2, . . . , n} that are de-
rangements. By definition, although you may regard this as a conven-
tion if you prefer, d0 = 1.

Exercise: Check, by listing permutations, that d1 = 0, d2 = 1, d3 = 2
and d4 = 9.
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To solve the derangements problem we shall find a recurrence for the
numbers dn.

Lemma 2.3. If n ≥ 2 then there are dn−2 + dn−1 derangements σ of
{1, 2, . . . , n} such that σ(1) = 2.

Notice the use of another basic counting principle in Lemma 2.3: if
we can partition the objects we are counting into two disjoint sets A
and B, then the total number of objects is |A|+ |B|.

Theorem 2.4. If n ≥ 2 then dn = (n− 1)(dn−2 + dn−1).

Using this recurrence relation it is easy to find values of dn for much
larger n. At this point N. J. A. Sloane’s Online Encyclopedia of Integer
Sequences is a reliable guide to whether a sequence has already been
studied: see www.research.att.com/~njas/sequences/.

Corollary 2.5. For all n ∈ N0,

dn = n!
(

1− 1

1!
+

1

2!
− 1

3!
+ · · ·+ (−1)n

n!

)
.

Exercise: Check directly that the right-hand side is an integer.

A more systematic way to derive Corollary 2.5 from Theorem 2.4
will be seen in Part B of the course. Question 9 on Sheet 1 gives an
alternative proof that does not require knowing the answer in advance.

The proof of Corollary 2.5 and Question 9 show that it is helpful
to consider the probability dn/n! that a permutation of {1, 2, . . . , n},
chosen uniformly at random, is a derangement. Here ‘uniformly at
random’ means that each of the n! permutations of {1, 2, . . . , n} is
equally likely to be chosen.

Theorem 2.6. Two probabilistic results on derangements.
(i) The probability that a permutation of {1, 2, . . . , n}, chosen uni-

formly at random, is a derangement tends to 1/e as n→∞.
(ii) The average number of fixed points of a permutation of {1, 2, . . . , n}

is 1.

We shall prove more results like this in Part D of the course.
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Part A: Enumeration

3. Binomial coefficients and counting problems

The following notation is probably already familiar to you.

Notation 3.1. If Y is a set of size k then we say that Y is a k-set, and
write |Y | = k. To emphasise that Y is a subset of some other set X
then we may say that Y is a k-subset of X.

We shall define binomial coefficients combinatorially.

Definition 3.2. Let n, k ∈ N0. Let X = {1, 2, . . . , n}. The binomial
coefficient

(
n
k

)
is the number of k-subsets of X.

By this definition, if k 6∈ N0 then
(
n
k

)
= 0. Similarly if k > n then(

n
k

)
= 0. It should be clear that we could replace X with any other set

of size n and we would define the same numbers
(
n
k

)
.

We should check that the combinatorial definition agrees with the
usual definition.

Lemma 3.3. If n, k ∈ N0 and k ≤ n then
(
n

k

)
=
n(n− 1) . . . (n− k + 1)

k!
=

n!

k!(n− k)!
.

Many of the basic properties of binomial coefficients can be given
combinatorial proofs involving explicit bijections. We shall say that
such proofs are bijective.

Lemma 3.4. If n, k ∈ N0 then
(
n

k

)
=

(
n

n− k

)
.

Lemma 3.5 (Fundamental Recurrence). If n, k ∈ N then
(
n

k

)
=

(
n− 1

k − 1

)
+

(
n− 1

k

)
.

Binomial coefficients are so-named because of the famous binomial
theorem. (A binomial is a term of the form xrys.)

Theorem 3.6 (Binomial Theorem). Let x, y ∈ C. If n ∈ N0 then

(x+ y)n =
n∑

k=0

(
n

k

)
xkyn−k.
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Exercise: give inductive or algebraic proofs of the previous three re-
sults.

Exercise: in New York, how many ways can one start at a junction
and walk to another junction 4 blocks away to the east and 3 blocks
away to the north?

We can now answer a basic combinatorial question: How many ways
are there to put k balls into n numbered urns? The answer depends
on whether the balls are distinguishable. We may consider urns of
unlimited capacity, or urns that can only contain one ball.

Numbered balls Indistinguishable balls

≤ 1 ball per urn

unlimited capacity

Three of the entries can be found fairly easily. The entry in the
bottom-right can be found in many different ways: two will be demon-
strated in this lecture.

Theorem 3.7. Let n ∈ N and let k ∈ N0. The number of ways to place
k indistinguishable balls into n numbered urns of unlimited capacity is(
n+k−1

k

)
.

The following reinterpretation of Theorem 3.7 can be useful.

Corollary 3.8. Let n ∈ N and let k ∈ N0. The number of k-tuples
(t1, . . . , tn) such that t1, t2, . . . , tn ∈ N0 and

t1 + t2 + · · ·+ tn = k

is
(
n+k−1

k

)
.

4. Further binomial identities

This is a vast subject and we shall only cover a few aspects. Par-
ticularly recommended for further reading is Chapter 5 of Concrete
Mathematics, [4] in the list on page 2.
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Arguments with subsets. The two identities below are among the most
useful in practice.

Lemma 4.1 (Subset of a subset). If k, r, n ∈ N0 and k ≤ r ≤ n then
(
n

r

)(
r

k

)
=

(
n

k

)(
n− k
r − k

)
.

Lemma 4.2 (Vandermonde’s convolution). If a, b ∈ N0 and m ∈ N0

then
m∑

k=0

(
a

k

)(
b

m− k

)
=

(
a+ b

m

)
.

Corollaries of the Binomial Theorem. The following results can be ob-
tained by making a strategic choice of x and y in the Binomial Theorem.

Corollary 4.3. If n ∈ N then
(
n

0

)
+

(
n

1

)
+

(
n

2

)
+ · · ·+

(
n

n− 1

)
+

(
n

n

)
= 2n,

(
n

0

)
−
(
n

1

)
+

(
n

2

)
− · · ·+ (−1)n−1

(
n

n− 1

)
+ (−1)n

(
n

n

)
= 0.

Corollary 4.4. For all n ∈ N there are equally many subsets of
{1, 2, . . . , n} of even size as there are of odd size.

Corollary 4.5. If n ∈ N0 and b ∈ N then
(
n

0

)
bn +

(
n

1

)
bn−1 + · · ·+

(
n

n− 1

)
b+

(
n

n

)
= (1 + b)n.

There is a nice bijective proof of Corollary 4.5; it will appear as a
question with hints on Sheet 2.

Some identities visible in Pascal’s Triangle. There are a number of
nice identities that express row, column or diagonal sums in Pascal’s
Triangle.

Lemma 4.6 (Alternating row sums). If n ∈ N, r ∈ N0 and r ≤ n
then

r∑

k=0

(−1)k
(
n

k

)
= (−1)r

(
n− 1

r

)
.

Perhaps surprisingly, there is no simple formula for the unsigned row
sums

∑r
k=0

(
n
k

)
.
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Lemma 4.7 (Diagonal sums, a.k.a. parallel summation). If n ∈ N,
r ∈ N0 then

r∑

k=0

(
n+ k

k

)
=

(
n+ r + 1

r

)
.

For the column sums on Pascal’s Triangle, see Sheet 1, Question 3.
For the other diagonal sum, see Sheet 1, Question 7.

5. Principle of Inclusion and Exclusion

The Principle of Inclusion and Exclusion (PIE) is way to find the size
of a union of a finite collection of subsets of a finite universe set X.
The universe set we take will depend on the problem we are solving.
If A is a subset of X, we denote by Ā the complement of A in X; i.e.,

Ā = X\A = {x ∈ X : x 6∈ A}.

We start with the two smallest non-trivial examples of the Principle
of Inclusion and Exclusion.

Example 5.1. If A, B, C are subsets of a finite set X then

|A ∪B| = |A|+ |B| − |A ∩B|
|A ∪B| = |X| − |A| − |B|+ |A ∩B|

and

|A ∪B ∪ C| = |A|+ |B|+ |C|
− |A ∩B| − |B ∩ C| − |C ∩ A|+ |A ∩B ∩ C|

|A ∪B ∪ C| = |X| − |A| − |B| − |C|
+ |A ∩B|+ |B ∩ C|+ |C ∩ A| − |A ∩B ∩ C|

Example 5.2. The n-th (centred) hexagonal number is the number of
dots in the n-th digure below. The formula for |A∪B ∪C| gives a nice
way a formula for these numbers.

8

5. Principle of Inclusion and Exclusion

The Principle of Inclusion and Exclusion (PIE) is an elementary way
to find the sizes of unions or intersections of finite sets.

If A is a subset of a universe set X, we denote by Ā the complement
of A in X; i.e.,

Ā = {x ∈ X : x �∈ A}.

We start with the two smallest non-trivial examples of the principle.

Example 5.1. If A, B, C are subsets of a set X then |A ∪B| = |A| +
|B|− |A ∩B| and so

��A ∪B
�� = |X|− |A|− |B| + |A ∩B|.

Similarly, |A∪B ∪C| = |A|+ |B|+ |C|− |A∩B|− |B ∩C|− |C ∩A|+
|A ∩B ∩ C|, so

��A ∪B ∪ C
�� = |X|− |A|− |B|− |C|

+|A ∩B| + |B ∩ C| + |C ∩ A|− |A ∩B ∩ C|.

Example 5.2. The formula for |A ∪ B ∪ C| gives one of the easiest
ways to find the hexagonal numbers.

, , . . .

In the general setting we have a set X and subsets A1, A2, . . . , An

of X. Let I ⊆ {1, 2, . . . , n} be a non-empty index set. We define

AI =
�

i∈I

Ai.

Thus AI is the set of elements of X which belong to all of the sets Ai

for i ∈ I. By convention we set

A∅ = X.

Theorem 5.3 (Principle of Inclusion Exclusion). If A1, A2, . . . , An are
subsets of a finite set X then

��A1 ∪ A2 ∪ · · · ∪ An

�� =
�

I⊆{1,2,...,n}
(−1)|I| |AI |.

, . . .

It is easier to find the sizes of the intersections of the three rhombi
making up each hexagon than it is to find the sizes of their unions.
Whenever this situation occurs, the PIE is likely to work well.
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In the general setting we have a finite universe set X and subsets
A1, A2, . . . , An ⊆ X. For each non-empty subset I ⊆ {1, 2, . . . , n} we
define

AI =
⋂

i∈I
Ai.

Thus AI is the set of elements which belong to all the sets Ai for i ∈ I.
For example, if i, j ∈ {1, 2, . . . , n} then A{i} = Ai and A{i,j} = Ai ∩Aj.
By convention we set

A∅ = X.

Theorem 5.3 (Principle of Inclusion and Exclusion). If A1, A2, . . . , An
are subsets of a finite set X then

|A1 ∪ A2 ∪ · · · ∪ An| =
∑

I⊆{1,2,...,n}
(−1)|I||AI |.

Exercise: Check that Theorem 5.3 holds when n = 1 and check that it
agrees with Example 5.1 when n = 2 and n = 3.

Exercise: Deduce from Theorem 5.3 that

|A1 ∪ A2 ∪ · · · ∪ An| =
∑

I⊆{1,2,...,n}
I 6=∅

(−1)|I|−1|AI |.

Application to derangements. The Principle of Inclusion and Ex-
clusion gives a particularly elegant proof of the formula for the derange-
ment numbers dn first proved in Corollary 2.5:

dn = n!
(

1− 1

1!
+

1

2!
− · · ·+ (−1)n

n!

)
.

Recall from Definition 2.1 that a permutation

σ : {1, 2, . . . , n} → {1, 2, . . . , n}
is a derangement if and only if it has no fixed points. Let X be the set
of all permutations of {1, 2, . . . , n} and let

Ai = {σ ∈ X : σ(i) = i}
be the set of permutations which have i as a fixed point. To apply the
PIE we need the results in the following lemma.

Lemma 5.4. (i) A permutation σ ∈ X is a derangement if and only if

σ ∈ A1 ∪ A2 ∪ · · · ∪ An.
(ii) If I ⊆ {1, 2, . . . , n} then AI consists of all permutations of

{1, 2, . . . , n} which fix the elements of I. If |I| = k then

|AI | = (n− k)!.
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It is often helpful to think of each Ai as the set of all objects in X
satisfying a property Pi. Then the Principle of Inclusion and Exclu-
sion counts all the objects in X that satisfy none of the properties
P1, . . . , Pn. In the derangements example

Pi(σ) = ‘σ has i as a fixed point′

and we count the permutations σ such that Pi(σ) is false for all i ∈
{1, 2, . . . , n}.

Prime numbers and Euler’s φ function. Suppose we want to find
the number of primes less than some number M . One approach, which
is related to the Sieve of Eratosthenes, uses the Principle of Inclusion
and Exclusion.

Example 5.5. Let X = {1, 2, . . . , 48}. We define three subsets of X:

B(2) = {m ∈ X : m is divisible by 2}
B(3) = {m ∈ X : m is divisible by 3}
B(5) = {m ∈ X : m is divisible by 5}.

Any composite number ≤ 48 is divisible by either 2, 3 or 5. So

B(2) ∪B(3) ∪B(5) = {1} ∪ {p : 5 < p ≤ 48, p is prime}.
We will find the size of the left-hand side using the PIE, and hence
count the number of primes ≤ 48.

The example can be generalized to count numbers not divisible by
any of a specified set of primes. Recall that if x ∈ R then bxc denotes
the largest natural number ≤ x.

Lemma 5.6. Let r, M ∈ N. There are exactly bM/rc numbers in
{1, 2, . . . ,M} that are divisible by r.

Theorem 5.7. Let p1, . . . , pn be distinct prime numbers and let M ∈ N.
The number of natural numbers ≤ M that are not divisible by any of
primes p1, . . . , pn is

∑

I⊆{1,2,...,n}
(−1)|I|

⌊
M∏
i∈I pi

⌋
.

For M ∈ N, let π(M) be the number of prime numbers ≤ M . It is
possible to use Theorem 5.7 to show that there is a constant C such
that

π(M) ≤ CM

log logM

for all M ∈ N. This is a bit off-track for this course, but I would be
happy to go through the proof in an office-hour or supply a reference.
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The next example will be helpful for the questions on Sheet 2. In it,
we say that numbers n, M are coprime if n and M have no common
prime divisors. For example, 12 and 35 are coprime, but 7 and 14 are
not.

Example 5.8. Let M = pqr where p, q, r are distinct prime numbers.
The numbers of natural numbers less than or equal to pqr that are
coprime to M is

M
(

1− 1

p

)(
1− 1

q

)(
1− 1

r

)
.

6. Rook polynomials

Many enumerative problems can be expressed as problems about
counting permutations with some restriction on their structure. The
derangements problem is a typical example. In this section we shall
see a unified way to solve this sort of problem.

Recommended reading: Ian Anderson, A First Course in Combina-
torial Mathematics, §5.2 ([1] on the list on page 2) and Victor Bryant,
Aspects of Combinatorics, Chapter 12 (Cambridge University Press).
Examples 6.3 and 6.4 below are based on those in Bryant’s book.

Definition 6.1. A board is a subset of the squares of an n × n grid.
Given a board B, we let rk(B) denote the number of ways to place k
rooks on B, so that no two rooks are in the same row or column. Such
rooks are said to be non-attacking. The rook polynomial of B is defined
to be

fB(x) = r0(B) + r1(B)x+ r2(B)x2 + · · ·+ rn(B)xn.

Example 6.2. Let B be the board shown below.

7. (Problème des Ménages.) Let Bm denote the board with exactly m squares in the
sequence shown below.

, , , , , , . . .

(a) Prove that the rook polynomial of Bm is

�

k

�
m− k + 1

k

�
xk.

[Corrected from
�

m−k
k

�
on 3 November. Hint: there is a very short

proof using the result on lion caging in Problem 5 of Sheet 1. Alternatively
Lemma 7.6 can be used to give an inductive proof.]

(b) Find the number of ways to place 8 non-attacking rooks on the unshaded
squares of the board shown below.

(c) At a dinner party eight married couples are to be seated around a circular
table. Men and women must sit in alternate places, and no-one may sit next
to their spouse. In how many ways can this be done? [Hint: first seat the
women, then use (b) to count the number of ways to seat the men.]

(a) Number the squares in Bm from 1 in the top-left to m in the bottom-right. A
placement of k rooks on Bm is non-attacking if and only if no two rooks are put in
squares with consecutive numbers. The number of such placements is therefore given by
Question 5 on Sheet 1.

(b) Let B be the board formed from the shaded squares. The polynomial of B can be
found using Lemma 7.6, deleting the square in the bottom left: it is

rB(x) = rB15(x) + xrB13(x).

By (a) the coefficient of xk in rB(x) is
�

15 + 1− k

k

�
+

�
13 + 1− (k − 1)

k − 1

�
=

�
16− k

k

�
+

�
15− k

k − 1

�
.

By Problem 1, Sheet 1 we have (16− k)
�
15−k
k−1

�
= k

�
16
k

�
, hence

�
16− k

k

�
+

�
15− k

k − 1

�
=

�
16− k

k

�
+

k

16− k

�
16− k

k

�
=

�
16− k

k

�
16

16− k
.

7

The rook polynomial of B is 1 + 5x+ 6x2 + x3.

Exercise: Let B be a board. Convince yourself that r0(B) = 1 and
that r1(B) is the number of squares in B.

Example 6.3. After the recent spate of cutbacks, only four professors
remain at the University of Erewhon. Prof. W can lecture courses 1
or 4; Prof. X is an all-rounder and can lecture 2, 3 or 4; Prof. Y
refuses to lecture anything except 3; Prof. Z can lecture 1 or 2. If each
professor must lecture exactly one course, how many ways are there to
assign professors to courses?
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Example 6.4. How many derangements σ of {1,2,3,4,5} have the prop-
erty that σ(i) 6= i+ 1 for 1 ≤ i ≤ 4?

Lemma 6.5. The rook polynomial of the n× n board is

n∑

k=0

k!

(
n

k

)2

xk.

The two following lemmas are very useful when calculating rook
polynomials.

Lemma 6.6. Let B be a board. Suppose that the squares in B can be
partitioned into sets C and D so that no square in C lies in the same
row or column as a square of D. Then

fB(x) = fC(x)fD(x).

Rook polynomials are, in particular, generating functions. This is
the first of many times that multiplying generating functions will help
us to solve combinatorial problems.

Lemma 6.7. Let B be a board and let s be a square in B. Let C be
the board obtained from B by deleting s and let D be the board obtained
from B by deleting the entire row and column containing s. Then

fB(x) = fC(x) + xfD(x).

Example 6.8. The rook-polynomial of the boards in Examples 6.3
and 6.4 can be found using Lemma 6.7. For the board in Example 6.3
it works well to apply the lemma first to the square marked 1, then to
the square marked 2 (in the new boards).

12

Rook polynomials are, in particular, generating functions. This is
the first of many times that multiplying generating functions will help
us to solve problems.

Lemma 7.6. Let B be a board and let s be a square in B. Let

• C be the board obtained from B by deleting s;
• D be the board obtained from B by deleting the entire row and

column containing s.

Then fB(x) = fC(x) + xfD(x).

Example 7.7. The rook polynomial for the board in Example 7.1 can
be found by applying Lemma 7.6 to the two squares indicated below.

1

2

Our final technique for finding rook polynomials is often the most
useful in practice. We need the lemma below.

Lemma 7.8. Let I ⊆ {1, 2, . . . , n} be a subset of size k. If g : I → I is
a permutation then there are (n− k)! permutations f : {1, 2, . . . , n}→
{1, 2, . . . , n} such that f(x) = g(x) if x ∈ I.

We used a special case of this lemma to prove the part of Lemma 6.1
which says that there are (n− k)! permutations of {1, 2, . . . , k} which
fix a subset of size k.

Theorem 7.9. Let B be part of the n × n chessboard with rook poly-
nomial

r0(B) + r1(B)x + r2(B)x2 + · · · + rn(B)xn.

Let B̄ denote the board formed by all the squares in the n×n chessboard
that are not in B. The number of ways to place n non-attacking rooks
on B̄ is

n!− (n− 1)! r1(B) + (n− 2)! r2(B)− · · · + (−1)n r0(B).

As an easy corollary we get our third proof of the derangement for-
mula (Corollary 2.5), that

dn = n!− n!

1!
+

n!

2!
− · · · + (−1)n n!

n!
.

Our final result on rook polynomials is often the most useful in prac-
tice. The proof uses the Principle of Inclusion and Exclusion. The
following lemma isolates the key idea. Its proof needs the same idea
we used in Lemma 5.4(ii) to count permutations with a specified set of
fixed points.
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Lemma 6.9. Let B be a board contained in an n × n grid and let
0 ≤ k ≤ n. The number of ways to place k red rooks on B and n − k
blue rooks anywhere on the grid, so that the n rooks are non-attacking,
is rk(B)(n− k)!.

Theorem 6.10. Let B be a board contained in an n × n grid. Let B̄
denote the board formed by all the squares in the grid that are not in B.
The number of ways to place n non-attacking rooks on B̄ is

n!− (n− 1)!r1(B) + (n− 2)!r2(B)− · · ·+ (−1)nrn(B).

As an easy corollary we get our third proof of the derangements
formula (Corollary 2.5), that

dn = n!
(

1− 1

1!
+

1

2!
− · · ·+ (−1)n

n!

)
.

See Problem Sheet 3 for some other applications of Theorem 6.10.

Theorem 6.10 is one of the harder results in the course. If you find
the proof difficult, you may find the following exercise helpful.

Exercise: Let n = 3 and let B be the board formed by the shaded
squares below.

Draw the rook placements lying in each of the sets A∅, A{1}, A{2}, A{3},
A{1,2}, A{1,3}, A{2,3}, A{1,2,3} defined in the proof of Theorem 6.10, and
check the main claim in the proof for k = 0, 1, 2, 3. For instance, for
k = 1, you should find that |A{1}| + |A{2}| + |A{3}| is the number of
non-attacking placements with one red rook on B and two blue rooks
anywhere on the grid; according to Lemma 6.9 there are r1(B)(3− 1)!
such placements.



15

Part B: Generating Functions

7. Introduction to generating functions

Generating functions can be used to solve the sort of recurrence
relations that often arise in combinatorial problems. But better still,
they can help us to think about combinatorial problems in new ways
and suggest new results.

Definition 7.1. The ordinary generating function associated to the
sequence a0, a1, a2, . . . is the power series

∞∑

n=0

anx
n = a0 + a1x+ a2x

2 + · · · .

To indicate that F (x) is the ordinary generating function of the
sequence a0, a1, a2, . . . we may use the notation in §2.2 of Wilf gener-
atingfunctionology and write

(an)
ogf←−−→ F (x).

Usually we shall drop the word ‘ordinary’ and just write ‘generating
function’.

If there exists N ∈ N such that an = 0 if n > N , then the gen-
erating function of the sequence a0, a1, a2, . . . is a polynomial. Rook
polynomials (see Definition 6.1) are therefore generating functions.

Operations on generating functions. Let F (x) =
∑∞

n=0 anx
n and

G(x) =
∑∞

n=0 bnx
n be generating functions. From

F (x) +G(x) =
∞∑

n=0

(an + bn)xn

and

F (x)G(x) =
∞∑

n=0

cnx
n

where cn =
∑n

m=0 ambn−m. The derivative of F (x) is

F ′(x) =
∞∑

n=0

nxn−1.

Note that if (an)
ogf←−−→ F (x) and (bn)

ogf←−−→ G(x) then

(an + bn)
ogf←−−→ F (x) +G(x).

The sequence (cn) such that (cn)
ogf←−−→ F (x)G(x) often arises in com-

binatorial problems. This was seen for rook polynomials in Lemma 6.6,
and will be studied in §9.
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It is also possible to define 1/F (x) whenever a0 6= 0. By far the most
important case is the case F (x) = 1− x, when

1

1− x =
∞∑

n=0

xn

is the usual formula for the sum of a geometric progression.

Analytic and formal interpretations. There are at least two ways
to think of a generating function

∑∞
n=0 anx

n. Either:

• As a formal power series with x acting as a place-holder. This is
the ‘clothes-line’ interpretation (see Wilf generatingfunctionol-
ogy, page 4), in which we regard the power-series merely as a
convenient way to display the terms in our sequence.

• As a function of a real or complex variable x convergent when
|x| < r, where r is the radius of convergence of

∑∞
n=0 anx

n.

The formal point of view is often the most convenient because it
allows us to define and manipulate power series by the operations on
the previous page without worrying about convergence. From this point
of view,

0! + 1!x+ 2!x2 + 3!x3 + · · ·
is a perfectly respectable formal power series, even thought it only
converges when x = 0. The analytic point of view is useful for proving
asymptotic results.1

All the generating functions one normally encounters have positive
radius of convergence, so in practice, the two approaches are equivalent.
For a more careful discussion of these issues and the general definition
of 1/F (x), see §2.1 of Wilf generatingfunctionology.

Examples of generating functions. We shall look at two typical
problems that can be solved using ordinary generating functions. In
each case, the generating function for the sequence is at least as useful
as an explicit formula for the terms in the sequence.

Example 7.2. How many ways are there to tile a 2 × n path with
bricks that are either 1× 2 or 2× 1?

The result in the next example has already been proved as Corol-
lary 3.8. We shall use generating functions to give an independent
approach.

1From the analytic perspective, the formula for the derivative F ′(x) on the previ-
ous page expresses a non-trivial theorem, namely that power series are differentiable
functions, with derivatives given by term-by-term differentiation. A similar remark
applies to the formulae for the sum F (x) + G(x) and product F (x)G(x).
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Example 7.3. Let k ∈ N0 How many n-tuples (x1, . . . , xn) are there
such that xi ∈ N0 for each i and x1 + · · ·+ xn = k? Such an n-tuple is
said to be a composition of k with n parts.

To complete Example 7.3 we used the power series

1

(1− x)n
=
∞∑

k=0

(
k + n− 1

k

)
xk

found on Question 5 of Sheet 3. A more general result is stated below.

Theorem 7.4 (Binomial Theorem for general exponent). If α ∈ R
then

(1 + y)α =
∞∑

n=0

α(α− 1) . . . (α− (n− 1))

n!
yn

for all y such that |y| < 1.

Exercise: Let α ∈ Z.

(i) Show that if α ≥ 0 then Theorem 7.4 agrees with the Binomial
Theorem for integer exponents, proved in Theorem 3.6.

(ii) Show that if α < 0 then Theorem 7.4 agrees with Question 5
on Sheet 3. (Substitute −x for y.)

We shall need the case α = 1/2 of the general Binomial Theorem to
find the Catalan Numbers in §9.

8. Recurrence relations and asymptotics

We have seen that combinatorial problems often lead to recurrence
relations. For example, in §2 we found the derangement numbers dn by
solving the recurrence relation in Theorem 2.4. See also Questions 5
and 7 on Sheet 1 for other examples.

Generating functions are very useful for solving recurrence relations.
The method is clearly explained at the end of §1.2 of Wilf generat-
ingfunctionology. Given a recurrence satisfied by the sequence a0, a1,
a2, . . . proceed as follows:

(a) Use the recurrence to write down an equation satisfied by the
generating function F (x) =

∑∞
n=0 anx

n;

(b) Solve the equation to get a closed form for the generating func-
tion;

(c) Use the closed form for the generating function to find a formula
for the coefficients.
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Step (a) may seem the most mysterious, but it will become routine
with practice. To obtain terms like nan−1, try differentiating F (x).
Powers of x will usually be needed to get everything to match up cor-
rectly. In Step (c) it is often necessary to use partial fractions.

Example 8.1. Will solve (i) using generating functions, and perform
step (a) of the three-step programme on (ii).

(i) an+2 = 5an+1 − 6an for n ∈ N0, a0 = A, a1 = B;

(ii) br = 3br−1 − 4br−3 for r ≥ 3.

Another way to deal with (i) is to first rewrite it as an = 5an−1−6an−2

for n ≥ 2; then the shifts are done by multiplication by x and x2 rather
than division.

The next theorem gives a general form for the partial fraction ex-
pressions needed to solve these recurrences. Recall that if f(x) =
bdx

d + bd−1x
d−1 + · · · + b0 and bd 6= 0 then f is said to have degree d;

we write this as deg f = d.

Theorem 8.2. Let f(x) and g(x) be polynomials with deg f < deg g.
(i) If g(x) = α(x−β1)(x−β2) . . . (x−βk) where α, β1, β2, . . . , βk are

non-zero complex numbers, then there exist C1, . . . , Ck ∈ C such that

f(x)

g(x)
=

C1

1− x/β1

+ · · ·+ Ck
1− x/βk

.

(ii) If g(x) = α(x−β1)d1(x−β2)d2 . . . (x−βk)dk where α, β1, β2, . . . , βk
are non-zero complex numbers and d1, d2, . . . , dk ∈ N, then there exist
polynomials P1, . . . , Pk such that degPi < di and

f(x)

g(x)
=
P1(1− x/β1)

(1− x/β1)d1
+ · · ·+ Pk(1− x/βk)

(1− x/βk)dk
where Pi(1− x/βi) is Pi evaluated at 1− x/βi.

Example 8.3. As an example of Theorem 8.2(ii), will finish steps (b)
and (c) of the three-step programme on the recurrence in Example 8.1,
br = 3br−1 − 4br−3 for r ≥ 3, with initial values b0 = 1, b1 = 1, b2 = 0.

The next exercise gives a similar example of Theorem 8.2.

Exercise: As in Example 7.2, let an be the number of ways to tile a a
2 × n path with bricks that are either 1 × 2 ( ) or 2 × 1 ( ). We

saw that an = an−1 + an−2, and that the generating function

F (x) =
∞∑

n=0

anx
n
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satisfies (1− x− x2)F (x) = 1. Show that

x2 + x− 1 = (x− β1)(x− β2)

where β1 = −1/2 +
√

5/2 and β2 = −1/2 −
√

5/2. Show that 1/β1 =
1/2 +

√
5/2 and 1/β2 = 1/2 −

√
5/2 and deduce from Theorem 8.2(i)

that

an = C1

(1 +
√

5

2

)n
+ C2

(1−
√

5

2

)n

for some C1, C2 ∈ C. Use a0 = a1 = 1 to show that

C1 =
1

2
+

1

2
√

5
and C2 =

1

2
− 1

2
√

5
.

In §2 we used the recurrence dn = (n − 1)(dn−1 + dn−2) for the
derangement numbers to prove Theorem 2.5 by induction on n. This
required us to already know the formula. Generating functions give a
more systematic approach. (You are asked to fill in the details in this
proof in Question 2 on Sheet 4.)

Theorem 8.4. Let pn = dn/n! be the probability that a permutation of
{1, 2, . . . , n}, chosen uniformly at random, is a derangement. Then

npn = (n− 1)pn−1 + pn−2

for all n ≥ 2 and

pn = 1− 1

1!
+

1

2!
− · · ·+ (−1)n

n!
.

The steps needed in this proof can readily be performed using com-
puter algebra packages. Indeed, Mathematica implements a more
refined version of our three step programme for solving recurrences
in its RSolve command. (See the discussion in Appendix A of Wilf
generatingfunctionology.)

Often it is possible to get some information about the asymptotic
growth of a sequence from its generating function. We shall need a
standard piece of notation.

Definition 8.5. Given a sequence a0, a1, a2, . . . of real numbers and
a function t : R→ R, we write an = O

(
t(n)

)
if there exists a constant

B ∈ R such that |an| < Bt(n) for all n ∈ N0.

Theorem 8.6. Let F (x) =
∑∞

n=0 anx
n be the generating function for

the sequence a0, a1, a2, . . .. Suppose that F (x) = f(x)/g(x) where f(x)
and g(x) are polynomials and deg f < deg g. If β is the root of g(x) of
minimum modulus then

an = O
(( 1

|β| + ε
)n)

for all ε > 0.
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More generally if F has no singularities in the complex plane with
modulus < |β| then F (z) converges for all z ∈ C such that |z| < |β|,
and the conclusion of Theorem 8.6 still holds. See §2.4 in Wilf gener-
atingfunctionology for a proof.

9. Convolutions and the Catalan numbers

Definition 9.1. The convolution of the sequences a0, a1, a2, . . . and
b0, b1, b2, . . . is the sequence c0, c1, c2,... defined by cn =

∑n
m=0 ambn−m.

Convolutions are closely related to generating functions. The next
lemma states that convolution of sequences correspond to products of
power series. It can be proved in one line using the definition of the
product of formal power series (see bottom of page 15).

Lemma 9.2. Let a0, a1, a2, . . . and b0, b1, b2, . . . be sequences and let
c0, c1, c2, . . . be their convolution. Let F (x) =

∑∞
n=0 anx

n, G(x) =∑∞
n=0 bnx

n and H(x) =
∑∞

n=0 cnx
n. Then

F (x)G(x) = H(x).

Typically convolutions arise in combinatorial problems when we have
a combinatorial object that can be decomposed into two different sub-
objects of the same total size in different ways.

For example, in Lemma 6.6, we decomposed a placement of k rooks
on the board B into placements of j rooks on D and k − j rooks on
the board D.

Example 9.3. A resident of Flatland is given an enormous number of
indistinguishable 1× 1 unit squares for his birthday. How many ways
can he make a ‘T’ shape, using at least one brick for the vertical section
and at least two bricks for the horizontal section?

The canonical application of convolutions is to the Catalan numbers.
These numbers have many different combinatorial interpretations; we
shall define them using rooted binary trees drawn in the plane.

Definition 9.4. A rooted binary tree is either empty, or consists of a
root vertex together with a pair of rooted binary trees: a left subtree
and a right subtree. The Catalan number Cn is the number of rooted
binary trees on n vertices.
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For example, there are five rooted binary trees with three vertices,
so C3 = 5. Three of them are shown below, with the root vertex
circled. The other two can be obtained by reflecting the two asymmetric
diagrams.

18

10. Convolutions and the Catalan numbers

Definition 10.1. The convolution of the sequences a0, a1, a2, . . . and
b0, b1, b2, . . . is the sequence c0, c1, c2, . . . defined by

cn =
n�

k=0

akbn−k.

Keeping the notation from the definition, let F (x) =
�∞

n=0 anx
n,

let G(x) =
�∞

n=0 bnx
n and let H(z) =

�∞
n=0 cnx

n. By definition of the
product of formal power series, we have F (x)G(x) = H(x). This makes
generating functions ideal for finding sequences defined by convolutions.

Convolutions frequently arise in combinatorial problems. See Prob-
lem Sheet 4 for some more examples.

Example 10.2. Given a pile of indistinguishable building blocks, how
many ways are there to use n blocks to make an equilateral triangle
and a square?

The canonical application of convolutions is to the Catalan numbers.
These numbers have a huge number of combinatorial interpretations;
we shall define them using rooted binary trees drawn in the plane.

Definition 10.3. A rooted binary tree is either empty, or consists of a
root vertex together with a pair of rooted binary trees: a left subtree
and a right subtree. The Catalan number Cn is the number of rooted
binary trees on n vertices.

For example, there are five rooted binary trees with three vertices,
so C3 = 5. Corrected from the wrong C4 = 5. Three of them
are shown below, with the root vertex circled. The other two can be
obtained by reflection.

Lemma 10.4. If n ∈ N then

Cn = C0Cn−1 + C1Cn−2 + · · · + Cn−2C1 + Cn−1C0.

Theorem 10.5. If n ∈ N0 then Cn = 1
n+1

�
2n
n

�
.

Lemma 9.5. For each n ∈ N0 we have

Cn+1 = C0Cn + C1Cn−1 + · · ·+ Cn−1C1 + CnC0.

Theorem 9.6. If n ∈ N0 then Cn = 1
n+1

(
2n
n

)
.

We shall prove Theorem 9.6 using our usual three-step programme.
Let F (x) =

∑∞
n=0Cnx

n be the generating function for the Catalan
numbers. In outline the steps are:

(a) Use the recurrence relation in Lemma 9.5 to show that F (x)
satisfies the quadratic equation

xF (x)2 = F (x)− 1.

(b) Solve the quadratic equation to get the closed form

xF (x) =
1−
√

1− 4x

2
.

(c) Use the general version of the Binomial Theorem in Theorem 7.5
to deduce the formula for Cn.

Our final application of convolutions will give yet another proof (the
shortest yet!) of the formula for the derangement numbers dn.

Lemma 9.7. If n ∈ N0 then

n∑

k=0

(
n

k

)
dn−k = n!.

The sum in the lemma becomes a convolution after a small amount
of rearranging.

Theorem 9.8. If G(x) =
∑∞

n=0 dmx
m/m! then

G(x) exp(x) =
1

1− x.
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It is now easy to deduce the formula for dn; the argument needed is
the same as the final step in the proof of Theorem 9.7. The generat-
ing function G used above is an example of an exponential generating
function.

Exercise: Explain the unusual structure of the decimal expansion of

1
2
−
√

1
4
− 1

1000
= 0.001 001 002 005 014 042 . . . .

The Catalan Numbers have a vast number of combinatorial interpre-
tations. See Question 4 on Sheet 6 for one more. A further 64 (and
counting) are given in Exercise 6.19 in Stanley Enumerative Combina-
torics 2, CUP 2001.

10. Partitions

Definition 10.1. A partition of a number n ∈ N0 is a sequence of
natural numbers (λ1, λ2, . . . , λk) such that

(i) λ1 ≥ λ2 ≥ · · · ≥ λk ≥ 1.
(ii) λ1 + λ2 + · · ·+ λk = n.

The entries in a partition λ are called the parts of λ. Let p(n) be the
number of partitions of n.

By this definition the unique partition of 0 is the empty parti-
tion ∅, and so p(0) = 1. The sequence of partition numbers begins
1, 1, 2, 3, 5, 7, 11, 15, . . ..

Example 10.2. Let an be the number of ways to pay for an item
costing n pence using only 2p and 5p coins. Equivalently, an is the
number of partitions of n into parts of size 2 and size 5. Will find the
generating function for an.

This example suggests it is useful to encode a partition as a list of
multiplicities of its parts. For example, the partition (6, 3, 3, 2, 1, 1, 1)
of 17 can be encoded as the list of multiplicities (3, 1, 2, 0, 0, 1).

Theorem 10.3. The generating function for p(n) is

∞∑

n=0

p(n)xn =
1

(1− x)(1− x2)(1− x3) . . .
.

It is often useful to represent partitions by Young diagrams. The
Young diagram of (λ1, . . . , λk) has k rows of boxes, with λi boxes in
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row i. For example, the Young diagram of (6, 3, 3, 1) is

.

The next theorem has a very simple proof using Young diagrams. (See
also Question 9 on Sheet 5.)

Theorem 10.4. Let n ∈ N and let k ≤ n. The number of partitions
of n into parts of size ≤ k is equal to the number of partitions of n with
at most k parts.

While there are bijective proofs of the next theorem using Young
diagrams, it is much easier to prove it using generating functions. Note
how we adapt the proof of Theorem 10.3 to get the generating functions
for two special types of partitions.

Theorem 10.5. Let n ∈ N. The number of partitions of n with at
most one part of any given size is equal to the number of partitions of
n into odd parts.

For a generalization see Question 9 on Sheet 6.

There are many deep combinatorial and number-theoretic proper-
ties of the partition numbers. For example, in 1919 Ramanujan used
analytic arguments with generating functions to prove that

p(4), p(9), p(14), p(19), . . . , p(5m+ 4), . . .

are all divisible by 5. In 1944 Freeman Dyson found a bijective proof
of this result while still an undergraduate. A number of deep gener-
alizations of Ramanujan’s congruences have since been proved, most
recently by Mahlburg in 2005.

The problem of finding an estimate for the size of the partition num-
ber p(n) was solved in 1919 by Hardy and Ramanujan as the original
application of the circle method. The crudest version of their result is

p(n) ∼ ec
√
n

4n
√

3

where c = 2
√

π2

6
, and ∼ means that the ratio of the two sides tends

to 1 as n→∞.
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We end with a much more elementary result that helps to explain
the constant c in the Hardy–Ramanujan theorem. This is included
for interest only, and may be considered non-examinable. It will be
skipped if time is pressing.

Theorem 10.6 (Van Lint’s upper bound). If n ∈ N then p(n) ≤ ec
√
n

where c = 2
√

π2

6
.

Outline proof. Let P (x) =
∏∞

m=1 1/(1−xm) be the generating function
for the partition numbers found in Theorem 10.3. Taking logs we get

logP (x) = −
∞∑

m=1

log(1− xm).

Using the power series − log(1− y) =
∑∞

r=1 y
r/r we get

logP (x) =
∞∑

r=1

xr

r(1− xr) .

Substitute x = e−y where y > 0 gives

logP (e−y) ≤
∞∑

r=1

e−ry

r(1− e−ry)
.

Now rewrite each summand as 1/r(ery − 1) and use the inequality
ery − 1 ≥ ry to get

logP (e−y) ≤
∞∑

r=1

1

r2y
.

Since
∑∞

r=1 1/r2 = π2/6, we have logP (e−y) ≤ π2/6y. The result now
follows by making a strategic choice of y: see Question 10 on Sheet 6
for the remaining steps. �
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Part C: Ramsey Theory

11. Introduction to Ramsey Theory

A typical result in Ramsey Theory says that any sufficiently large
combinatorial structure always contain a substructure with some reg-
ular pattern. For example, any infinite sequence of real numbers con-
tains either an increasing or a decreasing subsequence (the Bolzano–
Weierstrass theorem). The finite version of this result will appear on
Problem Sheet 7.

Most of the results in Ramsey Theory are naturally stated in terms
of graphs. We concentrate on the finite case.

Definition 11.1. A graph consists of a set V of vertices together with
a set E of 2-subsets of V called edges. The complete graph with vertex
set V is the graph whose edge set is all 2-subsets of V .

For example, the complete graph on V = {1, 2, 3, 4, 5} is drawn be-
low. Its edge set is

{
{1, 2}, {1, 3}, . . . , {4, 5}

}
.
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Part C: Ramsey Theory

13. Introduction to Ramsey Theory

The idea behind Ramsey theory is that any sufficiently large struc-
ture should contain a substructure with some regular pattern. For
example, any infinite sequence of real numbers contains either an in-
creasing or a decreasing subsequence (the Bolzano–Weierstrass theo-
rem).

Most of the results in this area concern graphs: we shall concentrate
on the finite case.

Definition 13.1. A graph is a set X of vertices together with a set E
of 2-subsets of X called edges. The complete graph on X is the graph
whose edge set is all 2-subsets of X.

For example, the complete graph on 5 vertices is drawn below. Its
edge set is

�
{1, 2}, {1, 3}, . . . , {4, 5}

�
.

1

2

3 4

5

We denote the complete graph with n vertices by Kn. The graph K3

is often called a triangle.

Exercise: Find the number of edges in Kn.

Definition 13.2. Let c ∈ N and let G be a complete graph, with edge
set E. A c-colouring of G is a function from E to {1, 2, . . . , c}. If Y is
an r-set of vertices of G such that all edges between vertices in Y have
the same colour, then we say that Y is a monochromatic Kr.

Note that it is the edges that are coloured, not the vertices.

In practice we shall specify graphs and colourings rather less formally.
It seems to be a standard convention that colour 1 is red, colour 2 is
blue and colour 3 (which we won’t need for a while) is green.

Example 13.3. In any two-colouring of the edges of K6, there is either
a red triangle, or a blue triangle.

We denote the complete graph on {1, 2, . . . , n} by Kn.

Definition 11.2. Let c, n ∈ N. A c-colouring of the complete graphKn

is a function from the edge set of Kn to {1, 2, . . . , c}. If S is an s-subset
of the vertices of Kn such that all the edges between vertices in S have
the same colour, then we say that S is a monochromatic Ks

A monochromatic K3 is usually said to be a monochromatic triangle.
Note that it is the edges of the complete graph Kn that are coloured,
not the vertices.

In practice we shall specify graphs and colours rather less formally.
It seems to be a standard convention that colour 1 is red and colour 2
is blue. In these notes, red will be indicated by solid lines and blue by
dashed lines.
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Exercise: Show that in the colouring of K6 below there is a unique
blue K4 and exactly two red triangles. Find all the blue triangles.

1

2 3

4

56

Example 11.3. In any red-blue colouring of the edges of K6 there is
either a red triangle or a blue triangle.

Definition 11.4. Given s, t ∈ N, with s, t ≥ 2, we define the Ramsey
number R(s, t) to be the smallest n (if one exists) such that in any
red-blue colouring of the complete graph on n vertices, there is either
a red Ks or a blue Kt.

For example, we know from Example 11.3 that R(3, 3) ≤ 6.

Exercise: Show that if N ≥ R(s, t) then in any red-blue colouring
of KN there is either a red Ks or a blue Kt.

By Question 2 on Sheet 6 there is a red-blue colouring of K5 with
no monochromatic triangle. Hence, by the exercise R(3, 3) > 5. It now
follows from Example 11.3 that R(3, 3) = 6.

We will prove in Theorem 12.3 that all the two-colour Ramsey num-
bers R(s, t) exist, and that R(s, t) ≤

(
s+t−2
s−1

)
. (But please do not as-

sume this result when doing Sheet 6.) One family of Ramsey numbers
is easily found.

Lemma 11.5. For any s ∈ N we have R(2, s) = s.

The main idea need to prove Theorem 12.3 appears in the next ex-
ample.

Example 11.6. In any two-colouring of K10 there is either a red K3

or a blue K4. Hence R(3, 4) ≤ 10.

This bound can be improved; to do this we shall need a result from
graph theory. Recall that if v is a vertex of a graph G then the degree
of v is the number of edges of G that meet v.
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Lemma 11.7 (Hand-Shaking Lemma). Let G be a graph with vertex
set {1, 2, ..., n} and exactly e edges. If di is the degree of vertex i then

2e = d1 + d2 + · · ·+ dn.

In particular, the number of vertices of odd degree is even.

Theorem 11.8. R(3, 4) = 9.

The proof of the final theorem is left to you: see Question 3 on
Sheet 6.

Theorem 11.9. R(4, 4) ≤ 18.

There is a red-blue colouring of K17 with no red K4 or blue K4 so
R(4, 4) = 18. The construction will appear on Sheet 7.

It is a very hard problem to find the exact values of Ramsey numbers
for larger s and t. For a survey of other known results on R(s, t) for
small s and t, see Stanislaw Radziszowski, Small Ramsey Numbers,
Electronic Journal of Combinatorics, available at www.combinatorics.
org/Surveys. For example, it was shown in 1965 that R(4, 5) = 25,
but all that is known about R(5, 5) is that it lies between 43 and 49.
It is probable that no-one will ever know the exact value of R(6, 6).

12. Ramsey’s Theorem

Since finding the Ramsey numbers R(s, t) exactly is so difficult, we
settle for proving that they exist, by proving an upper bound for R(s, t).
We work by induction on s+ t. The following lemma gives the critical
inductive step.

Lemma 12.1. Let s, t ∈ N with s, t ≥ 3. If R(s− 1, t) and R(s, t− 1)
exist then R(s, t) exists and

R(s, t) ≤ R(s− 1, t) +R(s, t− 1).

Theorem 12.2. For any s, t ∈ N with s, t ≥ 2, the Ramsey number
R(s, t) exists and

R(s, t) ≤
(
s+ t− 2

s− 1

)
.

We now get a bound on the diagonal Ramsey numbers R(s, s). Note
that because of the use of induction on s+t, we could not have obtained
this result without first bounding all the Ramsey numbers R(s, t).
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Corollary 12.3. If s ∈ N and s ≥ 2 then

R(s, s) ≤
(

2s− 2

s− 1

)
≤ 4s−1.

One version of Stirling’s Formula states that if m ∈ N then
√

2πm
(m

e

)m ≤ m! ≤
√

2πm
(m

e

)m
e1/12m.

These bounds lead to the asymptotically stronger result that

R(s, s) ≤ 4s√
s

for all s ∈ N.

Corollary 12.3 was proved by Erdös and Szekeres in 1935. We have
followed their proof above. The strongest improvement known to date
is due to David Conlon, who showed in 2004 that, up to a rather
technical error term, R(s, s) ≤ 4s/s. In 1947 Erdös proved the lower
bound R(s, s) ≥ 2(s−1)/2. His argument becomes clearest when stated
in probabilistic language: we will see it in Part D of the course.

To end this introduction to Ramsey Theory we give two results re-
lated to Theorem 12.2.

Pigeonhole Principle. The Pigeonhole Principle states that if n pigeons
are put into n − 1 holes, then some hole must contain two or more
pigeons. See Question 8 on Sheet 6 for some applications of the Pi-
geonhole Principle.

In Examples 11.3 and 11.6, and Lemma 12.1, we used a similar result:
if r+s−1 objects (in these cases, edges) are coloured red and blue, then
either there are r red objects, or s blue objects. This is probably the
simplest result that has some of the general flavour of Ramsey theory.

Multiple colours. It is possible to generalize all the results proved so
far to three or more colours.

Theorem 12.4. There exists n ∈ N such that if the edges of Kn

are coloured red, blue and yellow then there exists a monochromatic
triangle.

There are (at least) two ways to prove Theorem 12.4. The first adapts
our usual argument, looking at the edges coming out of vertex 1 and
concentrating on those vertices joined by edges of the majority colour.
The second uses a neat trick to reduce to the two-colour case.
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Part D: Probabilistic Methods

13. Revision of Discrete Probability

This section is intended to remind you of the definitions and language
of discrete probability theory, on the assumption that you have seen
most of the ideas before. These notes are based on earlier notes by
Dr Barnea and Dr Gerke; of course any errors are my responsibility.

For further background see any basic textbook on probability, for
example Sheldon Ross, A First Course in Probability, Prentice Hall
2001.

Definition 13.1.

• A probability measure p on a finite set Ω assigns a real number
pω to each ω ∈ Ω so that 0 ≤ pω ≤ 1 for each ω and

∑

ω∈Ω

pω = 1.

We say that pω is the probability of ω.

• A probability space is a finite set Ω equipped with a probability
measure. The elements of a probability space are sometimes
called outcomes.

• An event is a subset of Ω.

• The probability of an event A ⊆ Ω, denoted P[A] is the sum of
the probability of the outcomes in A; that is

P[A] =
∑

ω∈A
pω.

It follows at once from this definition that P[{ω}] = pω for each
ω ∈ Ω. We also have P[∅] = 0 and P[Ω] = 1.

Example 13.2

(1) To model a throw of a single unbiased die, we take

Ω = {1, 2, 3, 4, 5, 6}
and put pω = 1/6 for each outcome ω ∈ Ω. The event that
we throw an even number is A = {2, 4, 6} and as expected,
P[A] = p2 + p4 + p6 = 1/6 + 1/6 + 1/6 = 1/2.

(2) To model a throw of a pair of dice we could take

Ω = {1, 2, 3, 4, 5, 6} × {1, 2, 3, 4, 5, 6}
and give each element of Ω probability 1/36, so p(i,j) = 1/36
for all (i, j) ∈ Ω. Alternatively, if we know we only care about
the sum of the two dice, we could take Ω = {2, 3, . . . , 12} with
p2 = 1/36, p3 = 2/36, . . . , p6 = 5/36, p7 = 6/36, p8 = 5/36,
. . . , p12 = 1/36. The former is natural and more flexible.
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(3) A suitable probability space for three flips of a coin is

Ω = {HHH,HHT,HTH,HTT, THH, THT, TTH, TTT}
where H stands for heads and T for tails, and each outcome
has probability 1/8. To allow for a biased coin we fix 0 ≤ q ≤ 1
and instead give an outcome with exactly k heads probability
qk(1− q)3−k.

(4) Let n ∈ N and let Ω be the set of all permutations of {1, 2, . . . , n}.
Set pσ = 1/n! for each permutation σ ∈ Ω. This gives a suit-
able setup for Theorem 2.6. Later we shall use the language
of probability theory to give a shorter proof of part (ii) of this
theorem.

It will often be helpful to specify events (i.e. subsets of Ω) a little
informally. For example, in (3) above we might write P[at least two
heads], rather than P[{HHT,HTH, THH,HHH}].

Unions, intersections and complements. Let Ω be a probability
space. If A, B ⊆ Ω then

P[A ∪B] =
∑

ω∈A∪B
pω =

∑

ω∈A
pω +

∑

ω∈B
pω −

∑

ω∈A∩B
pω

= P[A] + P[B]−P[A ∩B].

In particular, if A and B are disjoint, i.e. A∩B = ∅, then P [A∪B] =
P[A] + P[B]. The complement of an event A ⊆ Ω is defined to be

Ā = {ω ∈ Ω : ω 6∈ A}.
Since

1 = P[Ω] = P[A ∪ Ā] = P[A] + P[Ā]

we have P[Ā] = 1−P[A].

Exercise: Show that if A1, . . . , An ⊆ Ω then

P[A1 ∪ · · · ∪ An] ≤ P[A1] + · · ·+ P[An].

Condition probability and independence.

Definition 13.3. Let Ω be a probability space, and let A, B ⊆ Ω be
events.

• If P[B] 6= 0 then we define the conditional probability of A
given B by

P[A|B] =
P[A ∩B]

P[B]
.

• The events A, B are said to be independent if P[A ∩ B] =
P[A]P[B].
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Suppose that each element of Ω has equal probability p. Then

P[A|B] =
|A ∩B|p
|B|p =

|A ∩B|
|B|

is the proportion of elements of B that also lie in A; informally, if we
know that the event B has occurred, then the probability that A has
also occurred is P[A|B].

Exercise: Show that if A and B are events in a probability space such
that P[A], P[B] 6= 0, then P[A|B] = P[A] if and only if A and B are
independent.

Conditional probability can be quite subtle.

Exercise: Let Ω = {HH,HT, TH, TT} be the probability space for
two flips of a fair coin, so each outcome has probability 1

4
. Let A be

the event that both flips are heads, and let B be the event that at
least one flip is a head. Write A and B as subsets of Ω and show that
P[A|B] = 1/3.

Example 13.4 (The Monty Hall Problem). On a game show you are
offered the choice of three doors. Behind one door is a car, and behind
the other two are goats. You pick a door and then the host, who knows
where the car is, opens another door to reveal a goat. You may then
either open your original door, or change to the remaining unopened
door. Assuming you want the car, should you change?

Most people find the answer to the Monty Hall problem a little sur-
prising. The Sleeping Beauty Problem, stated below, is even more
controversial.

Example 13.5. Beauty is told that if a coin lands heads she will be
woken on Monday and Tuesday mornings, but after being woken on
Monday she will be given an amnesia inducing drug, so that she will
have no memory of what happened that day. If the coin lands tails she
will only be woken on Tuesday morning. At no point in the experiment
will Beauty be told what day it is. Imagine that you are Beauty and
are awoken as part of the experiment and asked for your credence that
the coin landed heads. What is your answer?

The related statistical issue in the next example is also widely mis-
understood.

Example 13.6. Suppose that one in every 1000 people has disease X.
There is a new test for X that will always identify the disease in anyone
who has it. There is, unfortunately, a tiny probability of 1/250 that
the test will falsely report that a healthy person has the disease. What
is the probability that a person who tests positive for X actually has
the disease?
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Random variables.

Definition 13.7. Let Ω be a probability space. A random variable
on Ω is a function X : Ω→ R.

Definition 13.8. If X, Y : Ω→ R are random variables then we say
that X and Y are independent if for all x, y ∈ R the events

A = {ω ∈ Ω : X(ω) = x} and

B = {ω ∈ Ω : Y (ω) = y}
are independent.

The following shorthand notation is very useful. If X : Ω → R is
a random variable, then ‘X = x’ is the event {ω ∈ Ω : X(ω) = x}.
Similarly ‘X ≥ x’ is the event {ω ∈ Ω : X(ω) ≥ x}. We mainly use
this shorthand in probabilities, so for instance

P[X = x] = P
[
{ω ∈ Ω : X(ω) = x}

]
.

Exercise: Show that X, Y : Ω→ R are independent if and only if

P[(X = x) ∩ (Y = y)] = P[X = x]P[Y = y]

for all x, y ∈ R. (This is just a trivial restatement of the definition.)

Example 13.9. Let Ω = {HH,HT, TH, TT} be the probability space
for two flips of a fair coin. Define X : Ω → R to be 1 if the first coin
is heads, and zero otherwise. So

X(HH) = X(HT ) = 1 and X(TH) = X(TT ) = 0.

Define Y : Ω→ R similarly for the second coin.

(i) The random variables X and Y are independent.
(ii) Let Z be 1 if exactly one flip is heads, and zero otherwise. Then

X and Z are independent, and Y and Z are independent.
(iii) There exist x, y, z ∈ {0, 1} such that

P[X = x, Y = y, Z = z] 6= P[X = x]P[Y = y]P[Z = z].

This shows that one has to be quite careful when defining indepen-
dence for a family of random variables. (Except in the Lovász Local
Lemma, we will be able to manage with the pairwise independence
defined above.)

Given random variables X, Y : Ω → R we can define new random
variables by taking functions such as X + Y , aX for a ∈ R and XY .
For instance (X + Y )(ω) = X(ω) + Y (ω), and so on. Notice that if
z ∈ R then

{ω ∈ Ω : (X + Y )(ω) = z} =
⋃

x+y=z

{ω ∈ Ω : X(ω) = x, Y (ω) = y}.
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The events above are disjoint for different x, y, so we get

P[X + Y = z] =
∑

x+y=z

P[(X = x) ∩ (Y = y)].

If X and Y are independent then

P[(X = x) ∩ (Y = y)] = P[X = x]P[Y = y]

and so
P[X + Y = z] =

∑

x+y=z

P[X = x]P[Y = y].

(Note that all of these sums have only finitely many non-zero sum-
mands, so they are well-defined.)

Exercise: Show similarly that if X, Y : Ω → R are independent ran-
dom variables then

P[XY = z] =
∑

xy=z

P[X = x]P[Y = y].

Expectation and linearity.

Definition 13.10. Let Ω be a probability space with probability mea-
sure p. The expectation E[X] of a random variable X : Ω → R is
defined to be

E[X] =
∑

ω∈Ω

X(ω)pw.

Intuitively, the expectation of X is the average value of X on ele-
ments of Ω, if we choose ω ∈ Ω with probability pω. We have

E[X] =
∑

ω∈Ω

X(ω)pω =
∑

x∈R

∑
ω

X(ω)=x

xpω =
∑

x∈R
xP[X = x].

A critical property of expectation is that it is linear. Note that we do
not need to assume independence in this lemma.

Lemma 13.11. Let Ω be a probability space. If X1, X2, . . . , Xk : Ω→ R
are random variables then

E[a1X1 + a2X2 + · · ·+ akXk] = a1E[X1] + a2E[X2] + · · ·+ akE[Xk]

for any a1, a2, . . . , ak ∈ R.

Proof. By definition the left-hand side is
∑

ω∈Ω

pω
(
a1X1 + · · ·+ akXk)(ω) =

∑

ω∈Ω

pω
(
a1X1(ω) + · · ·+ akXK(ω)

)

= a1

∑

ω∈Ω

pωX1(ω) + · · ·+ ak
∑

ω∈Ω

Xk(ω)

which is the right-hand side. �
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When X, Y : Ω → R are independent random variables, there is a
very useful formula for E[XY ].

Lemma 13.12. If X, Y : Ω → R are independent random variables
then E[XY ] = E[X]E[Y ].

Exercise: Prove Lemma 13.11 by arguing that

E[XY ] =
∑

z∈R
zP[XY = z] =

∑

z∈R
z
∑

xy=z

P[(X = x) ∩ (Y = y)]

and using independence.

Variance.

Definition 13.13. Let Ω be a probability space. The variance Var[X]
of a random variable X : Ω→ R is defined to be

Var[X] = E
[
(X − E[X])2

]
.

The variance measures how much X can be expected to depart from
its mean value E[X]. So it is a measure of the ‘spread’ of X.

It is tempting to define the variance as E
[
X−E[X]

]
, but by linearity

this expectation is E[X] − E[X] = 0. One might also consider the
quantity E

[ ∣∣X −E[X]
∣∣ ], but the absolute value turns out to be hard

to work with. The definition above works well in practice.

Lemma 13.14. Let Ω be a probability space.
(i) If X : Ω→ R is a random variable then

Var[X] = E[X2]− (E[X])2.

(ii) If X, Y : Ω→ R are independent random variables then

Var[X + Y ] = Var[X] + Var[Y ].

Exercise: Show that (ii) can fail if X and Y are not independent. [Hint:
usually a random variable is not independent of itself.]
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14. Introduction to probabilistic methods

In this section we shall solve some problems involving permutations
(including, yet again, the derangements problem) using probabilistic
arguments. We shall use the language of probability spaces and random
variables recalled in §13. It will be particularly important for you to
ask questions if the use of anything from this section is unclear.

Throughout this section we fix n ∈ N and let Ω be the set of all
permutations of the set {1, 2, . . . , n}. We define a probability measure
q : Ω → R by qσ = 1/n! for each permutation σ of {1, 2, . . . , n}. This
makes Ω into a probability space in which all the permutations have
equal probability. We say that the permutations are chosen uniformly
at random.

Recall that, in probabilistic language, events are subsets of Ω.

Exercise: Let x ∈ {1, 2, . . . , n} and let Ax = {σ ∈ Ω : σ(x) = x}.
Then Ax is the event that a permutation fixes x. What is the proba-
bility of Ax?

Building on this we can give a better proof of Theorem 2.6(ii).

Theorem 14.1. Let F : Ω→ N0 be defined so that F (σ) is the number
of fixed points of the permutation σ ∈ Ω. Then E[F ] = 1.

To give a more general result we need cycles and the cycle decom-
position of a permutation.

Definition 14.2. A permutation σ of {1, 2, . . . , n} acts as a k-cycle
on a k-subset S ⊆ {1, 2, . . . , n} if S has distinct elements x1, x2, . . . , xk
such that

σ(x1) = x2, σ(x2) = x3, . . . , σ(xk) = x1.

If σ(y) = y for all y ∈ {1, 2, . . . , n} such that y 6∈ S then we say that σ
is a k-cycle, and write

σ = (x1, x2, . . . , xk).

Note that there are k different ways to write a k-cycle. For example,
the 3-cycle (1, 2, 3) can also be written as (2, 3, 1) and (3, 1, 2).

Definition 14.3. We say that cycles (x1, x2, . . . , xk) and (y1, y2, . . . , y`)
are disjoint if

{x1, x2, . . . , xk} ∩ {y1, y2, . . . , y`} = ∅.

Lemma 14.4. A permutation σ of {1, 2, . . . , n} can be written as
a composition of disjoint cycles. The cycles in this composition are
uniquely determined by σ.
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The proof of Lemma 14.4 is non-examinable and will not be given
in full in lectures. What is more important is that you can apply the
result. We shall use it below in Theorem 14.5

Exercise: Write the permutation of {1, 2, 3, 4, 5, 6} defined by σ(1) = 3,
σ(2) = 4, σ(3) = 1, σ(4) = 6, σ(5) = 5, σ(6) = 2 as a composition of
disjoint cycles.

Given a permutation σ of {1, 2, . . . , n} and k ∈ N, we can ask: what
is the probability that a given x ∈ {1, 2, . . . , n} lies in a k-cycle of σ?
The first exercise in this section shows that the probability that x lies
in a 1-cycle is 1/n.

Exercise: Check directly that the probability that 1 lies in a 2-cycle of
a permutation of {1, 2, 3, 4} selected uniformly at random is 1/4.

Theorem 14.5. Let 1 ≤ k ≤ n and let x ∈ {1, 2, . . . , n}. The proba-
bility that x lies in a k-cycle of a permutation of {1, 2, . . . , n} chosen
uniformly at random is 1/n.

Theorem 14.6. Let pn be the probability that a permutation of {1, 2, . . . , n}
chosen uniformly at random is a derangement. Then

pn =
pn−2

n
+
pn−3

n
+ · · ·+ p1

n
+
p0

n
.

It may be helpful to compare this result with Lemma 9.7: there we
get a recurrence by considering fixed points; here we get a recurrence
by considering cycles.

We now use generating functions to recover the usual formula for pn.

Corollary 14.7. For all n ∈ N,

pn = 1− 1

1!
+

1

2!
− 1

3!
+ · · ·+ (−1)n

n!
.

We can also generalize Theorem 14.1.

Theorem 14.8. Let Ck : Ω→ R be the random variable defined so that
Ck(σ) is the number of k-cycles in the permutation σ of {1, 2, . . . , n}.
Then E[Ck] = 1/k for all k such that 1 ≤ k ≤ n.

Note that if k > n/2 then a permutation can have at most one k-
cycle. So in these cases, E[Ck] is the probability that a permutation of
{1, 2, . . . , n}, chosen uniformly at random, has a k-cycle.
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15. Ramsey Numbers and the First Moment Method

The grandly named ‘First Moment Method’ is nothing more than
the following simple observation.

Lemma 15.1 (First Moment Method). Let Ω be a probability space
and let M : Ω → N0 be a random variable taking values in N0. If
E[M ] = x then

(i) P[M ≥ x] > 0, so there exists ω ∈ Ω such that M(ω) ≥ x.
(ii) P[M ≤ x] > 0, so there exists ω′ ∈ Ω such that M(ω′) ≤ x.

Exercise: Check that the lemma holds in the case when

Ω = {1, 2, 3, 4, 5, 6} × {1, 2, 3, 4, 5, 6}
models the throw of two fair dice (see Example 13.2(2)) and if (α, β) ∈ Ω
then M(α, β) = α + β.

The kth moment of a random variable X is defined to be E[Xk].
Sometimes stronger results can be obtained by considering higher mo-
ments. We shall concentrate on first moments, where the power of the
method is closely related to the linearity property of expectation (see
Lemma 13.11).

Our applications will come from graph theory.

Definition 15.2. Let G be a graph with vertex set V . A cut (S, T )
of G is a partition of V into subsets A and B. The capacity of a cut
(S, T ) is the number of edges of G that meet both S and T .

Note that T = V \S and S = V \T , so a cut can be specified by giving
either of the sets making up the partition. The diagram below shows
the cut in the complete graph on {1, 2, 3, 4, 5} where S = {1, 2, 3} and
T = {4, 5}. The capacity of the cut is 6, corresponding to the 6 edges
{x, y} with x ∈ S and y ∈ T shown with thicker lines.
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18. Ramsey Numbers and the First Moment Method

The grandly named ‘First Moment Method’ is nothing more than
the following observation.

Lemma 18.1 (First Moment Method). Let Ω be a probability space
and let X : Ω→ N0 be a random variable. If E[X] = x then

(i) P[X ≥ x] > 0, so there exists ω ∈ Ω such that X(ω) ≥ x.
(ii) P[X ≤ x] > 0, so there exists ω� ∈ Ω such that X(ω�) ≤ x.

Exercise: check that the lemma holds in the case where

Ω = {1, 2, 3, 4, 5, 6}× {1, 2, 3, 4, 5, 6}
models the throw of two fair dice and X(x, y) = x + y.

More generally, the k-th moment of X is E[Xk]. Sometimes stronger
results can be obtained by considering these higher moments. We shall
concentrate on first moments, where the power is the method is closely
related to the linearity property of expectation (see Lemma 16.8).

Our applications will come from graph theory.

Definition 18.2. Let G be a graph with vertex set V . A cut of G is a
partition of V into two disjoint subsets A and B. The capacity of the
cut is the number of edges of G that meet both A and B.

Note that B = V \ A and A = V \ B, so a cut can be specified by
giving either of the sets in the partition.

For example, the diagram below shows the cut in the complete graph
on {1, 2, 3, 4, 5} where A = {1, 2, 3} and B = {4, 5}. The capacity of
this cut is 6, corresponding to the 6 edges {x, y} for x ∈ A, y ∈ B
shown with thicker lines.

1

2

3 4

5

Theorem 18.3. Let G be a graph with n vertices and m edges. There
is a cut of G with capacity ≥ m/2.

Theorem 15.3. Let G be a graph with vertex set {1, 2, . . . , n} and
exactly m edges. There is a cut of G with capacity ≥ m/2.
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In 1947 Erdös proved a lower bound on the Ramsey Numbers R(s, s)
that is still almost the best known result in this direction. Our ver-
sion of his proof will use the First Moment Method in the following
probability space.

Lemma 15.4. Let n ∈ N and let Ω be the set of all red-blue colourings
of the complete graph Kn. Let pω = 1/|Ω| for each ω ∈ Ω. Then

(i) each colouring in Ω has probability 1/2(n
2);

(ii) given any m edges in G, the probability that all m of these edges
have the same colour is 21−m.

Theorem 15.5. Let n, s ∈ N. If
(
n

s

)
21−(s

2) < 1

then there is a red-blue colouring of the complete graph on {1, 2, . . . , n}
with no red Ks or blue Ks.

Corollary 15.6. For any s ∈ N we have

R(s, s) ≥ 2(s−1)/2.

For example, since
(

42

8

)
21−(8

2) ≈ 0.879 < 1,

if we repeatedly colour the complete graph on {1, 2, ..., 42} at random,
then we will fairly soon get a colouring with no monochromatic K8.
However, to check that we have found such a colouring, we will have
to look at all

(
42
8

)
≈ 1.18 × 108 subsets of {1, 2, . . . , 42}. Thus Theo-

rem 15.5 does not give an effective construction.

It is a major open problem to find, for each s ≥ 2, an explicit colour-
ing of the complete graph on 1.01s vertices with no monochromatic Ks.
(Here 1.01 could be replaced with 1 + ε for any ε > 0.

The bound in Corollary 15.6 can be slightly improved by the Lovász
Local Lemma: see the final section.

16. Lovász Local Lemma

The section is non-examinable, and is included for interest only.

In the proof of Theorem 15.5, we considered a random colouring
of the complete graph on {1, 2, . . . , n} and used Lemma 15.1 to show

that, provided
(
n
s

)
21−(s

2) < 1 there was a positive probability that this
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colouring had no monochromatic Ks. As motivation for the Lovász Lo-
cal Lemma, consider the following alternative argument, which avoids
the use of Lemma 15.1.

Alternative proof of Theorem 15.5. As before, let Ω be the probability
space of all colourings of the complete graph on {1, 2, . . . , n}, where
each colouring gets the same probability. For each s-subset

S ⊆ {1, 2, . . . , n},
let ES be the event that S is a monochromatic Ks. The event that
no Ks is monochromatic is then

⋂
S ĒS, where the intersection is taken

over all s-subsets S ⊆ {1, 2, . . . , n} and ĒS = Ω\ES. So it will suffice
to show that P[

⋂
ĒS] > 0, or equivalently, that P[

⋃
ES] < 1.

In lectures we used Lemma 15.4 to show that if S is any s-subset of
{1, 2, . . . , n} then

P[ES] = 21−(n
s).

By the exercise on page 30, the probability of a union of events is at
most the sum of their probabilities, so

P[
⋃

S

ES] ≤
(
n

s

)
21−(n

s).

Hence the hypothesis implies that P
[⋃

S ES
]
< 1, as required. �

If the events ES were independent, we would have

P
[⋂

S

ĒS
]

=
∏

S

P[ĒS].

Since each event ES has non-zero probability, it would follow that their
intersection has non-zero probability, giving another way to finish the
proof. However, the events are not independent, so this is not an ad-
missible strategy. The Lovász Local Lemma gives a way to get around
this obstacle.

We shall need the following definition.

Definition 16.1. An event E is mutually independent of a collection A
of events, if for all U ⊆ A and U ′ ⊆ A\U we have

P
[
E
∣∣∣
(⋂

C∈U
C
)
∩
( ⋂

D∈U ′
D̄
)]

= P[E]

whenever
(⋂

C∈U C
)
∩
(⋂

D∈U ′ D̄
)

is non-empty.

For example, if the events ES are as defined above, then ES is inde-
pendent of the events {ET : |S ∩ T | ≤ 1}. This can be checked quite
easily: informally the reason is that since each S ∩ T has at most one
vertex, no edge is common to both S and T , and so knowing whether
or not T is monochromatic gives no information about S.
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Lemma 16.2 (Symmetric Lovász Local Lemma). Let d ∈ N. Let A
be a collection of events such that P[E] ≤ p for all E ∈ A. Suppose
that for each event E ∈ A, there is a subset AE of A such that

(i) |AE| ≥ |A| − d;
(ii) E is independent of AE.

If ep(d+ 1) ≤ 1 then

P
[ ⋂

E∈A
E
]
> 0

For a proof of the lemma, see Chapter 5 of Noga Alon and Joel H.
Spencer The Probabilistic Method, 3rd edition. A simpler proof of a
very similar result, where ep(d+1) is replaced with 4pd, is given in §6.7
of Michael Mitzenmacher and Eli Upfal Probability and Computing
(see [6] in the list of page 2).

The Lovász Local Lemma can be used to prove a slightly stronger
version of Theorem 15.5.

Theorem 16.3. Let n, s ∈ N. If

e
((s

2

)(
n− 2

s− 2

)
+ 1
)

21−(s
2) < 1

then there is a red-blue colouring of the complete graph Kn with no
red Ks or blue Ks.

Proof. Define the events ES as at the start of this section. We remarked
that if S is an s-subset of {1, 2, . . . , n} then the event ES is independent
of the events ET for those s-subsets T such that S ∩ T ≤ 1. There are
at most (

s

2

)(
n− 2

s− 2

)

s-subsets T such that S ∩ T ≥ 2, since we can choose two common
elements in

(
s
2

)
ways, and then choose any s− 2 of the remaining n− 2

elements of {1, 2, . . . , n} to complete T . (There is some over-counting
here, so this is only an upper bound.)

Therefore we let d =
(
s
2

)(
n−2
s−2

)
. Since

P[ES] = 21−(n
s).

for all S, we take p = 21−(n
s). Then we can apply the Lovász Local

Lemma, provided that ep(d+ 1) ≤ 1, which is one of the hypotheses of
the theorem. Hence

P
[⋂

S

ES

]
> 0

and so there is a red-blue colouring with no monochromatic Ks, as
required. �
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Theorem 16.2 is stronger than Theorem 15.5 when s is reasonably
large.

Example 16.4. When s = 15, the largest n such that(
n

15

)
21−(15

2 ) < 1

is n = 792. So Theorem 15.5 tells us that R(15, 15) > 792. But

e
((15

2

)(
n− 2

15− 2

)
+ 1
)

21−(15
2 ) < 1

provided n ≤ 947. Theorem 16.2 therefore gives the stronger result
that R(15, 15) > 947.

A more general version of the Lovász Local Lemma can be used to
get the bound

R(s, 3) ≥ Cs2

(log s)2

for some constant C. For an outline of the proof and references to
further results, see Alon and Spencer, Chapter 5.


