
MT454 / 5454 Combinatorics: Sheet 1

Do questions 3, 4 and 5 and at least two other questions.

To be returned to McCrea 240 by noon on Tuesday 15th October or handed in at the
Tuesday lecture.

Parts of questions marked (?) are optional and harder than average.

1. Prove that

r

(
n

r

)
= n

(
n− 1

r − 1

)

for n, r ∈ N in two ways:

(a) using the formula for a binomial coefficient;

(b) by reasoning with subsets.

2. Prove that
n∑

k=0

k

(
m

k

)(
n

k

)
= n

(
m + n− 1

n

)
.

[Hint: use Question 1 and then aim to apply Vandermonde’s convolution.]

3. Let n, r ∈ N. Prove that

(
r

r

)
+

(
r + 1

r

)
+

(
r + 2

r

)
+ · · ·+

(
n

r

)
=

(
n + 1

r + 1

)

in two ways:

(a) by induction on n (where r is fixed in the inductive argument);

(b) by reasoning with subsets of {1, 2, . . . , n + 1}.

4. Read from page 1 up to the end of Section 1.2 in generatingfunctionology and do
parts (a), (b) and (c) of questions 1 and 3, and question 6(b) from the end of
chapter exercises.

5. A lion tamer has n cages in a row. Let g(n, k) be the number of ways is which she
may accommodate k indistinguishable lions so that no cage contains more than
one lion, and no two lions are housed in adjacent cages.

(a) Show that g(n, k) = g(n− 2, k − 1) + g(n− 1, k) if n ≥ 2 and k ≥ 1.

(b) Prove by induction that g(n, k) =
(
n−k+1

k

)
for all n ∈ N and k ∈ N0 such

that k ≤ n.

(?) Find a bijective proof of the formula for g(n, k).

6. Let n, k ∈ N. How many solutions are there to the equation x1 +x2 + · · ·+xn = k
if the xi are strictly positive integers, i.e. xi ∈ N for each i?



7. Define

bn =

(
n

0

)
+

(
n− 1

1

)
+

(
n− 2

2

)
+ · · ·

for n ∈ N0.

(a) Find the first few members of the sequence b0, b1, b2, b3, . . ..

(b) State and prove a recurrence relating bn+2 to bn+1 and bn.

8. (a) What is 114? Explain the connection to binomial coefficients.

(b) By considering a suitable binomial expansion prove that

4n

2n + 1
≤
(

2n

n

)
≤ 4n.

9. Let pn = dn/n! be the probability that a permutation of {1, 2, . . . , n}, chosen
uniformly at random, is a derangement. Using only the recurrence in Theorem 2.4,
prove by induction that pn − pn−1 = (−1)n/n!; hence give an alternative proof of
Corollary 2.5.

10. Here are some further results on derangements.

(a) Let an(k) be the number of permutations of {1, 2, . . . , n} with exactly k fixed
points. Note that dn = an(0). Use results from lectures to prove that

an(k) =
n!

k!

(
1− 1

1!
+

1

2!
− · · ·+ (−1)n−k

(n− k)!

)
.

Hence, or otherwise, give a simple expression for an(0)− an(1).

(b) Use part (a) to give an alternative proof of Theorem 2.6(ii), that the average
number of fixed points of a permutation of {1, 2, . . . , n} is 1.

(c) (?) Let en be the number of derangements of {1, 2, . . . , n} that are even permu-
tations, and let on be the number that are odd permutations. By evaluating
the determinant of the matrix




0 1 1 . . . 1
1 0 1 . . . 1
1 1 0 . . . 1
...

...
...

. . .
...

1 1 1 . . . 0




in two different ways, prove that en − on = (−1)n−1(n− 1).

11. Assume that any two people are either friends or enemies. Show that in any
room containing six people there are either three mutual friends, or three mutual
enemies. (Generalizations of this problem will be solved in Part C of the course.)



MT454 / 5454 Combinatorics: Sheet 2

Do questions 2, 3 and 4 and at least one other question.

To be returned to McCrea 240 by 3pm on Thursday 24th October or handed in at the
Thursday lecture.

Parts of questions marked (?) are optional and harder than average.

1. How many numbers between 1 and 2011 (inclusive) are not divisible by either 2
or 3? How many are not divisible by either 2, 3 or 5? Illustrate your answers with
Venn diagrams.

2. How many numbers in the interval {1, 2, . . . , 100} are not divisible by any of 2, 3,
5 or 7? Use the PIE, making it clear which sets you are using. Hence find the
number of primes ≤ 100.

3. Do question 3(e)–(h) and Question 11 from the end of chapter exercises from
Chapter 1 of Wilf generatingfunctionology. Please also read §1.3.

4. Euler’s ϕ function is important in number theory. It is defined by

ϕ(n) = |{a ∈ N : 1 ≤ a ≤ n, a is coprime to n}|.

For example, when n = 10, the integers a such that 1 ≤ a ≤ 10 and a is coprime
to 10 are 1, 3, 7, 9; note that these are precisely the numbers in {1, 2, . . . , 10} that
are not divisible either by 2 or by 5.

(a) Show that ϕ(p) = p− 1 if p is prime.

(b) Let p, q, r denote distinct primes. Give formulae for ϕ(pq) and ϕ(pqr) using
the PIE. (Define the sets you use in the PIE precisely.)

(c) Give a formula for ϕ(pe) where p is prime and e ∈ N.

(d) Recall that each integer n has a unique prime factorization n = pe11 . . . perr
where p1 < p2 < · · · < pr are primes and e1, e2, . . . , er ∈ N. Prove that

ϕ(n) = n
(

1− 1

p1

)(
1− 1

p2

)
. . .
(

1− 1

pr

)
.

5. How many non-decreasing sequences of length 3 can one make from the set
{1,2,...,8}? [Hint: one approach is first to count the sequences with 3 distinct
elements, then the sequences like (1, 1, 2) with 2 distinct elements, and finally the
sequences like (1, 1, 1) with 3 equal elements. There is also a quicker solution using
Theorem 3.7.]

6. Give a bijective proof of Theorem 4.5, that
∑n

k=0

(
n
k

)
bn−k = (1+b)n. [Hint: imagine

you have b colours of poster paint. Interpret the left-hand side as the number of
ways to perform monochromatic art-restoration on n paintings, bearing in mind
that some paintings might be best left unrestored.]



7. (a) Explain why there are (
11

4

)(
7

4

)(
3

2

)

different ways to arrange the letters of the word ‘mississippi’.

(b) How many ways are there to misspell ‘abracadabra’?

8. Let a, b ∈ N0 and let m ∈ N0. By finding the coefficient of xm in either side of

(1 + x)a(1 + x)b = (1 + x)a+b

give a generating function proof of Vandermonde’s convolution,

m∑

k=0

(
a

k

)(
b

m− k

)
=

(
a + b

m

)
.

9. Let X denote the set of all functions f : {1, 2, . . . , k} → {1, 2, . . . , n}. For each
i ∈ {1, 2, . . . , n} define

Ai =
{
f ∈ X : f(t) 6= i for any t ∈ {1, 2, . . . , k}

}
.

(a) What is |X|? What is |Ai|?
(b) Let I ⊆ {1, 2, . . . , n} be a non-empty subset and let AI = ∩i∈IAi. What

condition must a function f ∈ X satisfy to lie in AI? Hence find |AI |.
(c) Use the Principle of Inclusion and Exclusion to show that the number of

surjective functions from {1, 2, . . . , k} to {1, 2, . . . , n} is

n∑

r=0

(
n

r

)
(−1)r(n− r)k.

(d) Show that the above expression is the number of ways to put k numbered
balls into n numbered urns, so that each urn contains at least one ball.

10. For k, n ∈ N0, the Stirling number of the second kind
{
k
n

}
is defined to be the

number of set partitions of {1, 2, . . . , k} into n disjoint subsets. For example,{
4
3

}
= 6; one of the relevant set partitions is

{
{1}, {2}, {3, 4}

}
.

(a) Show that
{
k
1

}
= 1,

{
k
2

}
= 2k−1 − 1 and

{
k

k−1
}

=
(
k
2

)
for all k ∈ N.

(b) Explain why
{
k
n

}
is the number of ways to put k numbered balls into n

indistinguishable urns, so that each urn receives at least one ball.

(c) Find a formula for
{
k
n

}
using the previous question.

11. Recall that dn is the number of derangements of {1, 2, ..., n}. Use the formula for
dn to prove that if n > 0 then dn is the nearest integer to n!/e.



MT454 / 5454 Combinatorics: Sheet 3

Do questions 1, 2 and 4 and at least one other question. Please write your
answer to question 2 on a separate sheet: 2(d) is optional.

To be handed in at the lecture at 11am on Tuesday 5th November.

1. Find the rook polynomials of the boards below. (You may use any general lemmas
proved in lectures.)

(i) , (ii) , (iii) .

2. Let T be the set of all derangements σ of {1, 2, 3, 4, 5} such that

• σ(i) 6= i+ 1 if 1 ≤ i ≤ 4,

• σ(i) 6= i− 1 if 2 ≤ i ≤ 5.

(a) Explain why |T | is the number of ways to place 5 non-attacking rooks on the
board B formed by the unshaded squares below. (Give an explicit example
of how a permutation corresponds to a rook placement.)

MT4540 Combinatorics: Sheet 3

Do questions 1 and 2 and at least two other questions.
To be returned to McCrea 240 by 6pm on Monday 25th October 2010, or handed in at
the Monday lecture.

1. Find the rook polynomials of the boards below. For (ii) and (iii) use Lemma 7.6.

(i) (ii) (iii)

2. (a) Let T be the set of all derangements σ of {1, 2, 3, 4, 5} such that

• σ(i) �= i+ 1 if 1 ≤ i ≤ 4;

• σ(i) �= i− 1 if 2 ≤ i ≤ 5.

Explain why |T | is the number of ways to place 5 non-attacking rooks on the
board formed by the unshaded squares below. (Give an explicit example of
how a permutation corresponds to a rook placement.)

�

�

(b) Find the rook polynomial of this board, and hence find |T |. [Hint: consider
the four possibilities for the starred squares. For example, if both are occupied,
the contribution to the rook polynomial is x2f1(x)f2(x) where fn(x) is the rook
polynomial of the n× n square board.]

(c) Use Theorem 7.9 to find the number of ways to place 5 non-attacking rooks
on the shaded squares.

3. Let B be the board in Example 7.1. Show that the complement of B in the
4× 4 chessboard has the same rook polynomial as B. [Hint: for a calculation-free
proof, argue that permuting the rows or columns of a board does not change its
rook polynomial.]

4. Find the number of permutations σ of {1, 2, 3, 4, 5, 6} such that σ(m) �= m for any
even number m.

5. How many numbers between 100 and 300 can be formed from the digits 1, 2, 3, 4
if (i) repetition of digits is not allowed, (ii) repetition of digits is allowed?

(b) Find the rook polynomial of B, and hence find |T |. [Hint: consider the four
possibilities for the starred squares. For example, if both are occupied, the
contribution to the rook polynomial is x2f1(x)f2(x) where fn(x) is the rook
polynomial of the n× n square board.]

(c) Use Theorem 6.10 to find the number of ways to place 5 non-attacking rooks
on the shaded squares.

(d) (?) By adapting the argument used to prove Theorem 6.10, find the number
of ways to place 4 non-attacking rooks on the shaded squares.

3. Let B be the board in Example 6.3. Show that the complement of B in the 4× 4
board has the same rook polynomial as B. [Hint: for a calculation-free proof, argue
that permuting the rows or columns of a board does not change its rook polynomial.]

4. Prove by induction that if n ∈ N then

1

(1− x)n
=
∞∑

k=0

(
n+ k − 1

k

)
xk.

[Hint: for the inductive step, try differentiating.]



5. Find the number of permutations σ of {1, 2, 3, 4, 5, 6} such that σ(m) 6= m for any
even number m.

6. (a) Prove that

r

(
n

r

)
= (n− r + 1)

(
n

r − 1

)

for n, r ∈ N by reasoning about the number of ways to choose a pair (x,A)
where A is an r-subset of {1, 2, . . . , n} and x ∈ A.

(b) Using (a), or otherwise, show that
(
2n
k

)
is maximized when k = n, and find

the maxima of
(
2n+1
k

)
.

7. How many numbers between 100 and 300 can be formed from the digits 1, 2, 3, 4
if (i) repetition of digits is not allowed, (ii) repetition of digits is allowed?

8. Use Theorem 6.10 to find the number of ways that eight non-attacking rooks can
be placed on the unshaded part of the board shown below. It may be helpful to
note that

(1 + 4x+ 2x2)4 = 1 + 16x+ 104x2 + 352x3 + 664x4 + 704x5 + 416x6 + 128x7 + 16x8.

6. Use Theorem 7.9 to find the number of ways that eight
non-attacking rooks can be placed on the unshaded part
of the board shown to the right. It may well be helpful
to note that

(1+4x+2x2)4 = 1+16x+104x2+352x3+664x4+704x5+416x6+128x7+16x8.

7. This question gives an alternative proof of the Principle of Inclusion and Exclusion
(Theorem 5.3). Fix a set X. For each A ⊆ X, define a function 1A : X → {0, 1}
by

1A(x) =

�
1 if x ∈ A

0 if x �∈ A.

We say that 1A is the indicator function of A.

(a) Show that if B,C ⊆ X then 1B∩C(x) = 1B(x)1C(x) for all x ∈ X, and so
1B∩C = 1B1C .

(b) Let A1, A2, . . . , An be subsets of X. Show that

1A1∪A2∪···∪An
= (1X − 1A1)(1X − 1A2) . . . (1X − 1An).

(c) By multiplying out the right-hand side and using (a), show that

1A1∪A2∪···∪An
=

�

I⊆{1,2,...,n}
(−1)|I|1AI

where, as usual, AI =
�

i∈I Ai if I �= ∅ and A∅ = X. [Hint: it may be helpful
to see how it works when n = 3.]

(d) Deduce the Principle of Inclusion and Exclusion by summing the previous
equation over all x ∈ X.

8. (For those who know about group homomorphisms.) Let G denote the set of
all permutations of {1, 2, . . . , n}, thought of as the symmetric group of degree n.
Given σ ∈ G, define an n× n matrix A(σ) by

A(σ)ij =

�
1 if σ(j) = i

0 otherwise.

Show that the map σ �→ A(σ) is an injective group homomorphism from G into
the group of all invertible n× n real matrices.

9. Recall that dn is the number of derangements of {1, 2, . . . , n}. Use the formula
for dn to prove that if n > 0 then dn is the nearest integer to n! / e.

2

9. Let X be a finite set and let A1, A2, . . . , An be subsets of X.

(a) Set C = A1 ∪ · · · ∪ An−1. Show that

|A1 ∪ A2 ∪ · · · ∪ An| = |X| − |C| − |An|+ |C ∩ An|.

(b) Use (a) to prove the Principle of Inclusion and Exclusion by induction on n.
[Hint: in the inductive step let A′i = Ai ∩ An and apply the PIE to the sets
A′1, . . . , A

′
n−1 inside the universe set An.]

10. (For those who know about group homomorphisms.) Let G denote the set of all
permutations of {1, 2, ..., n}, thought of as the symmetric group of degree n. Given
σ ∈ G, define an n× n matrix A(σ) by

{
Aij = 1 if σ(j) = i

Aij = 0 otherwise.

Show that the map σ 7→ A(σ) is an injective group homomorphism from G into
the group of all invertible n× n real matrices.



MT454 / 5454 Combinatorics: Sheet 4

Do questions 1, 2 and 3 at least one other question.

To be returned to McCrea 240 by 11am on Tuesday 12th November or handed in at the
Tuesday lecture.

1. (a) Suppose that 2an = an−1 + an−2 for n ≥ 2. Use generating functions to find
a formula for an in terms of a0 and a1.

(b) Let A ∈ N. Solve the recurrence an = 3an−1− 3an−2 +an−3 for n ≥ 3 subject
to the initial conditions a0 = 0, a1 = 1, a2 = A.

2. Write out a complete proof of Theorem 8.4 following the three-step programme.

3. Let n ∈ N be given. Let bk be the number of n-tuples (t1, . . . , tn) such that ti ∈ N
for each i and t1 + · · ·+ tn = k. [Notation improved from issued version.]

(a) Show that bk = 0 if k < n and give formulae for bn and bn+1.

(b) Let F (x) =
∑∞

k=0 bkx
k. By adapting the argument in Example 7.3 show that

F (x) =
( x

1− x

)n
.

(c) Deduce from Theorem 7.4 (or Question 4 on Sheet 3) that

F (x) =
∞∑

r=0

(
n + r − 1

r

)
xr+n.

Find the coefficient of xk in the right-hand side and show that bk =
(
k−1
n−1
)
.

4. Let a, b ∈ N0 and let m ∈ N0. By finding the coefficient of x2m [sorry, this was
misprinted as xm] in either side of (1− x)a(1 + x)a = (1− x2)a prove that

2m∑

k=0

(−1)k
(
a

k

)(
a

2m− k

)
= (−1)m

(
a

m

)
.

5. A Latin square is an n × n square in which every row and column contains each
of the numbers 1, 2, . . . , n exactly once. Let L be the incomplete Latin square
shown below

1 2 3 4 5
2 3 1 5 4

.

Let B be the board with a square in position (i, j) if and only if the number i can
be put in row 3 and column j of L. Find the rook polynomial of B [sorry, this
was misprinted as B, which makes the question a bit longer] and hence
find the number of ways to complete the third row of L.



6. Do part (ii) of the exercise below Theorem 7.4. Show that if c,m ∈ N then

m∑

k=0

(−1)k
(
c + k − 1

k

)(
c

m− k

)
= 0.

7. (Problème des Ménages.) Let Bm denote the board with exactly m squares in the
sequence shown below.

, , , , , . . .

(a) Prove that the rook polynomial of Bm is
∑

k

(
m−k+1

k

)
xk. [Hint: there is a very

short proof using Question 5 on Sheet 1.]

(b) Find the number of ways to place 6 non-attacking rooks on the unshaded
squares of the board shown below.

(c) At a dinner party six married couples are to be seated around a circular table.
Men and women must sit in alternate places, and no-one may sit next to their
spouse. In how many ways can this be done? [Hint: first seat the women,
then use (b) to count the number of ways to seat the men.]

8. This question gives an alternative proof of the Principle of Inclusion and Exclusion.
Fix a set X. For each A ⊆ X, define a function 1A : X → {0, 1} by

1A(x) =

{
1 if x ∈ A

0 if x 6∈ A.

We say that 1A is the indicator function of A.

(a) Show that if B, C ⊆ X then 1B∩C(x) = 1B(x)1C(x) for all x ∈ X.

(b) Let A1, A2, . . . , An be subsets of X. Show that

1A1∪A2∪···∪An
= (1X − 1A1)(1X − 1A2) . . . (1X − 1An).

(c) By multiplying out the right-hand side and using (a) show that

1A1∪A2∪···∪An
=

∑

I⊆{1,2,...,n}
(−1)|I|1AI

where AI is as defined just before Theorem 5.3.

(d) Prove Theorem 5.3 by summing the previous equation over all x ∈ X.



MT454 / 5454 Combinatorics: Sheet 5

Do questions 1, 2 and 3 and at least one other question.

To be handed in at the lecture on Tuesday 19th November.

1. Complete step (c) in the proof of Theorem 9.5 by using Theorem 7.5 to show that
the coefficient of xn+1 in

xF (x) =
1−
√

1− 4x

2

is
1

n+ 1

(
2n

n

)
.

2. Let a0, a1, a2, . . . be a sequence of real numbers and let F (x) =
∑∞

n=0 anx
n be the

associated generating function. Let c0, c1, c2, . . . be the convolution of a0, a1, a2, . . .
with the constant sequence 1, 1, 1, . . ..

(a) Write down a formula for cn.

(b) Express the generating function
∑∞

n=0 cnx
n in terms of F .

3. Let u0, u1, u2, . . . denote the sequence of Fibonacci numbers, as defined by u0 = 0,
u1 = 1 and un = un−1 + un−2 for n ≥ 2. Let F (x) =

∑∞
n=0 unx

n be the associated
generating function. You may assume that F (x) = x/(1− x− x2).

(a) Let vn = un+2−1. Find the generating function of v0, v1, v2, . . . in terms of F .

(b) Let cn =
∑n

k=0 uk. Find the generating function of c0, c1, c2, . . . in terms of F .

(c) Hence prove that
∑n

k=0 uk = un+2 − 1 for all n ≥ 0.

4. (a) Arguing directly from Definition 9.4 show that the Catalan numbers satisfy
the recurrence

Cn = C0Cn−1 + C1Cn−2 + · · ·+ Cn−2C1 + Cn−1C0

for all n ∈ N.

(b) Hence show that if F (x) =
∑∞

n=0Cnx
n then xF (x)2 = F (x)− 1.

5. The grocer sells apples, bananas, cantaloupe melons and dates. Find, in as simple
form as possible, the generating function for the number of ways to buy n pieces
of fruit, such that all of the following hold:

(i) the number of apples purchased is a multiple of 5;

(ii) at most 4 bananas are bought;

(iii) at most 1 melon is bought;

(iv) the number of dates purchased is odd.

Hence find the number of possible purchases of n pieces of fruit.

6. Define the sequence of Fibonacci numbers as in Question 3. Let G(x) =∑∞
n=0 unx

n/n!. Show that G′′(x) = G′(x) + G(x) and hence find a formula for un
without making any use of partial fractions.



7. For each n ≥ 3 let Tn denote the number of ways in which a regular n-gon can
be divided into triangles. For example, four of the 14 possible divisions of a
hexagon are shown below. (Note that the n-gon sits in a fixed position in the
plane: rotations and reflections should not be considered in this question.)

MT4540 Combinatorics: Sheet 5

Do questions 1 and 6 and at least two other questions.
To be returned to McCrea 240 by 6pm on Monday 15th November 2010, or handed in
at the Monday lecture.

1. Complete the last stage of the proof of Theorem 10.5 by using Theorem 8.5 to
show that the coefficient of xn+1 in −1

2

√
1− 4x is

�
2n
n

�
/(n + 1). Corrected sign

10th November.

2. Solve the following recurrence relations:

(a) an = an−1 − an−2 + an+3;

(b) an = b+
�n−1

k=0 ak where b ∈ N0 and a0 = 0.

[Hint: to prove (b) using generating functions, try taking a convolution of
a0, a1, a2, . . . with the constant sequence 1, 1, 1, . . .. What is the generating function
of the resulting sequence? ]

3. Let r ∈ N and let ζ = exp(2πi/r). Show that if F (x) =
�∞

n=0 anx
n then

F (x) + F (ζx) + F (ζ2x) + · · ·+ F (ζr−1x) = r

∞�

n=0

anrx
nr.

4. Prove that
1√

1− 4x
=

∞�

n=0

�
2n

n

�
xn.

By squaring both sides prove that

n�

m=0

�
2m

m

��
2n− 2m

n−m

�
= 4n.

5. For each n ≥ 3, let Tn denote the number of ways in which a regular n-gon
can be divided into triangles. For example, four of the 14 possible divisions of
a hexagon are shown below. (Note that the n-gon sits in a fixed position in the
plane: rotations and reflections should not be considered in this question.)

(a) Find T3, T4 and T5.

(b) Prove that

Tn+1 = Tn + Tn−1T3 + Tn−2T4 + · · ·+ T3Tn−1 + Tn

for all n ≥ 3. Hence prove that Tn = Cn−2.

(a) Find T3, T4 and T5.

(b) Prove that

Tn+1 = Tn + Tn−1T3 + Tn−2T4 + · · ·+ T3Tn−1 + Tn

for all n ≥ 3. Hence prove that Tn = Cn−2. [Hint: use the recurrence proved
in Question 4.]

8. Let r ∈ N and let ζ = exp(2πi/r). Show that if F (x) =
∑∞

n=0 anx
n then

F (x) + F (ζx) + F (ζ2x) + · · ·+ F (ζr−1x) = r
∞∑

n=0

anrx
nr.

9. Prove that
1√

1− 4x
=
∞∑

n=0

(
2n

n

)
xn.

By squaring both sides deduce the identity

n∑

m=0

(
2m

m

)(
2n− 2m

n−m

)
= 4n.

10. The conjugate of a partition is obtained by reflecting its Young diagram in its
major diagonal. For example (4, 2, 2, 1) has conjugate (4, 3, 1, 1) since

reflects to .

We write λ′ for the conjugate of a partition λ.

(a) Show that λ has exactly k parts if and only if k is the largest part of λ′.

(b) Show that the number of partition λ of n such that λ = λ′ is equal to the
number of partitions of n into odd distinct parts.

(c) Hence find the generating function for the number of partitions of n that are
equal to their conjugate partition.
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Do questions 1, 2 and 4 and at least one other.

To be returned to McCrea 240 by 3pm on Tuesday 26th November or handed in at the
Tuesday lecture.

1. Let an be the number of partitions of n ∈ N into parts of size 3 and 5.

(a) Show that a15 = 2 and find a14 and a16.

(b) Explain why
∞∑

n=0

anx
n =

1

(1− x3)(1− x5) .

(c) Let cn be the number of partitions with parts of sizes 3 and 5 whose sum of
parts is at most n. Find the generating function of cn.

2. Show that there is a red-blue colouring of K5 with no monochromatic triangle.

3. Let G be a graph with vertex set {1, 2, ..., n} and edge set E(G). Let G′ be the
graph on {1, 2, ..., n} with edge set E(G′) defined by {i, j} ∈ E(G′) if and only if
{i, j} 6∈ E(G).

(a) Show that at least one of G and G′ is connected.

(b) Can both G and G′ be connected?

(c) Show that in red-blue colouring of Kn either the red edges or the blue edges
form a connected graph.

4. Suppose you are given an unlimited supply of indistinguishable 1×1 square bricks.
Use Theorem 9.1 to find the generating functions for the number of ways to make

(a) a ‘T’ shape at least three bricks high and at least two bricks across;

(b) a ‘C’ shape at least three bricks high and at least two bricks across, having
reflective symmetry.

How would your answers change if bricks are available in c different colours?

5. Let s, t ≥ 2. By constructing a suitable red-blue colouring of K(s−1)(t−1) prove that
R(s, t) > (s − 1)(t − 1). [Hint: start by partitioning the vertices into s − 1 blocks
each of size t− 1. Colour edges within each block with one colour . . . ]

6. Let s, t ≥ 2.

(a) Prove that if R(s, t) exists then R(t, s) exists and R(s, t) = R(t, s).

(b) Prove that if s′ ≥ s, t′ ≥ t and R(s′, t′) exists, then R(s, t) exists and R(s, t) ≤
R(s′, t′).



7. Three applications of the Pigeonhole Principle.

(a) Making any reasonable assumptions, prove that there are two students at
British universities whose bank balances agree to the nearest penny.

(b) Prove that if five points are chosen inside an equilateral triangle of size 1 then
there are two points whose distance is ≤ 1/2.

(c) (?) Show that in any sequence of n integers, there is a consecutive subsequence
whose sum is divisible by n. (For example, in 1, 4, 5, 1, 2, 2, 1, the sum of
4, 5, 1, 2, 2 is divisible by 7.)

8. Let ` ≥ 2. A partition is said to be `-regular if it has at most ` − 1 parts of any
given size.

(a) Show that the generating function for `-regular partitions is

∞∏

j=1

(
1 + xj + x2j + · · ·+ x(`−1)j

)
.

(b) Show that for each n ∈ N, the number of `-regular partitions of n is equal to
the number of partitions of n into parts not divisible by `.

9. Let P (x) =
∑∞

n=0 p(n)xn.

(a) Use Theorem 10.3 to prove that

logP (x) =
∞∑

r=1

xr

r(1− xr) .

(b) Hence show that if y ≥ 1 then logP (e−y) ≤ π2/6y.

(c) Using the inequality p(n)e−yn ≤ P (y) and taking logs, show that

log p(n) ≤ ny +
π2

6y
.

(d) By making a strategic choice of y, prove that p(n) ≤ ec
√
n where c = 2

√
π2

6
.

10. Given a non-empty partition λ, let r(λ) denote the greatest r ∈ N such that λr ≥ r.
For example, if λ = (7, 5, 3, 3, 2) then r(λ) = 3. The Durfee square of λ consists of
all the boxes in the Young diagram of λ that are in both its first r(λ) rows and its
first r(λ) columns. Use Durfee squares to prove the identity

∞∏

j=1

1

1− qj = 1 +
∞∑

r=1

qr
2

(1− q)2(1− q2)2 . . . (1− qr)2 .
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Do at least questions 1, 4, 7 and 11.

To be returned to McCrea 240 by 11am on Tuesday 3th December 2013 or handed in at
the Tuesday lecture. Question 4(d) is optional.

1. Prove that R(4, 4) ≤ 18. You may assume Theorem 11.9.

2. Suppose that the edges of K17 are coloured red, blue and green. By adapting
the argument used in Examples 11.3, 11.6 and Lemma 12.1, show that there is a
monochromatic triangle. [Hint: to get started, show that there are 6 edges of the
same colour meeting vertex 1.]

3. Given t ∈ N, let Gt denote the complete graph on {1, 2, . . . , 3(t−1)−1}, coloured
so that the edge {x, y} with x < y is red if y− x ≡ 1 mod 3, and blue if y− x ≡ 0
or 2 mod 3.

(a) Draw G2 and G3.

(b) Prove that Gt has no red K3.

(c) Suppose that S ⊆ {1, 2, . . . , n} is a blue Kt in G(t). Let S = {x1, x2, . . . , xt}
where x1 < x2 < · · · < xt. By considering the differences xj − xi for 1 ≤ i <
j ≤ t, get a contradiction.

(d) Deduce that R(3, t) ≥ 3(t− 1).

4. (a) Use Lemma 12.1 to prove that R(3, s) ≤ s(s + 1)/2 for all s ∈ N.

(b) Give a self-contained proof that if t ≤ t′ then R(3, t) ≤ R(3, t′).

(c) Use parts (a) and (b) together with the result of Question 3 [corrected
from 2] to give upper and lower bounds for R(3, 6) and R(3, R(3, 6)).

(d) (?) Prove the stronger result that if t < t′ then R(3, t) < R(3, t′).

5. Find an explicit n such that if the edges of Kn are coloured red, blue, green and
yellow, then there exists a monochromatic K4. (You may use any known bounds
on the two-colour Ramsey Numbers.)

6. Given s, t ∈ N, let D(s, t) denote the smallest n (if one exists) such that whenever
the 3-subsets of {1, 2, . . . , n} are coloured red and blue then either there is an
s-subset S ⊆ {1, 2, . . . , n} such that all the 3-subsets of S are red; or there is
a t-subset T ⊆ {1, 2, . . . , n} such that all the 3-subsets of T are blue.

(a) Prove that D(3, s) = D(s, 3) = s for all s ∈ N.

(b) Prove that D(4, 4) ≤ R(4, 4) + 1 = 19. [Hint: consider the colouring on the
2-subsets of {2, 3, . . . , 19} induced by giving {x, y} the colour of {1, x, y}.]

(c) Give an explicit upper bound for D(5, 5).



7. Let x1, x2, . . . , xN be a sequence of distinct integers. Prove that, provided N is
sufficiently large, there is either an increasing subsequence of length 2010 or a de-
creasing subsequence of length 2010. [Hint: given i and j such that 1 ≤ i < j ≤ N ,
colour the edge {i, j} of KN red if xi < xj and blue if xi > xj.]

8. Let V = {0, 1, 2, . . . , 16} and let G be the complete graph on V . Given x, y ∈ V
with x < y, colour the edge {x, y} red if y− x is a square number modulo 17, and
blue otherwise. For example {2, 10} is red because 10− 2 ≡ 52 mod 17.

(a) Show if x, y, u ∈ V and u 6= 0 then {x + u, y + u} and {xu2, yu2} have the
same colour as {x, y}. (Here x + u etc. should be taken modulo 17.)

(b) Prove that G has no monochromatic set of size 4. [Hint: use symmetry
and (b) to reduce the number of cases that have to be considered.]

(c) Hence prove that R(4, 4) = 18. You may assume Theorem 11.10.

9. By comparing
∫ n

1
log x dx with log n! prove that

(n
e

)n
≤ n! ≤

(n
e

)n
en

for all n ∈ N. (These bounds are crude, but often useful in practice.)

10. At the University of Erewhon, whenever any of its n employees has a birthday,
the university closes and everyone takes the day off. Apart from this there are no
holidays whatsoever. Local laws require that people are appointed without regard
to their date of birth (and there are no leap years).

(a) Show that the probability that the university is open on 25th December is(
1− 1

365

)n
.

(b) Prove, using linearity of expectation, that the expected number of days of the
year when the university is open is 365

(
1− 1

365

)n
.

(c) The Pro-Vice Chancellor for Administrative Affairs wishes to maximize the
number of person-days worked over the year. Advise him on an optimal choice
for n.

11. Let 0 ≤ p ≤ 1 and let n ∈ N. Suppose that a coin biased to land heads with
probability p is tossed n times. Let X be the number of times the coin lands
heads.

(a) Describe a suitable probability space Ω and probability measure p : Ω → R
and define X as a random variable Ω→ R.

(b) Find E[X] and Var[X]. [Hint: write X as a sum of n independent random
variables and use linearity of expectation and Lemma 13.14(ii).]

(c) Find a simple closed form for the generating function
∑∞

k=0P[X = k]xk.
(Such power series are called probability generating functions.)
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Do questions 2, 3 and 6 and at least one other.

The questions marked (?) are a little harder than average. To be returned to McCrea
240 by 11am on Tuesday 10th December 2013 or handed in at the Tuesday lecture.

1. (a) Show, by counting permutations, that the probability 1 and 2 lie in the same
cycle of a permutation of {1, 2, 3, 4}, chosen uniformly at random, is 1/2.

(b) Let σ = (1, 2, 3, 4, 5, 6) and let τ = (3, 5). Write τ ◦ σ and τ ◦ σ ◦ τ as
compositions of disjoint cycles.

2. Let n ≥ 2 and let 1 ≤ x < y ≤ n. Let τ be the transposition (x, y).

(a) Show that if σ is a permutation of {1, 2, . . . , n} then x and y lie in the same
cycle of σ if and only if x and y lie in different cycles of τ ◦ σ.

(b) Hence find the probability that x and y lie in the same cycle of a permutation
of {1, 2, . . . , n} chosen uniformly at random.

3. A lion-tamer has n numbered cages, arranged in a line, and k indistinguishable
lions. Each cage can accommodate at most one lion.

(a) Let 1 ≤ r < n. If the lion-tamer puts the lions into the cages at random,
what is the probability that both cages r and r + 1 are occupied?

(b) On average, how many pairs of adjacent cages will both contain lions? [Hint:
use linearity of expectation.]

For another example of a problem where linearity of expectation gives a very neat
solution, you could search for ‘Buffon’s Needle Linearity’ on the web.

4. Let Ω be the probability space of all permutations of {1, 2, 3, 4, 5, 6} in which each
permutation has probability 1/6!. Define

A = {σ ∈ Ω : σ(2) < σ(1) < σ(4)}
B = {σ ∈ Ω : σ(6) < σ(1) < σ(2)}
C = {σ ∈ Ω : σ(6) < σ(1) < σ(4)}.

(a) Show that P[A] = P[B] = P[C] = 1/3!. [Hint: in a permutation of
{1, 2, . . . , 6}, there are 3! possible relative orders for σ(2), σ(1), σ(4).]

(b) Show that P[A ∩B] = 0 and that P[A ∩ C] = P[B ∩ C] = 2/4!.

(c) Using the Principle of Inclusion and Exclusion, find the number of ways in
which the letters A, B, C, D, E, F may be arranged so that none of the words
BAD, FAB, FAD can be obtained by crossing out some of the letters.

5. Let F be the number of fixed points of a permutation of {1, 2, . . . , n}, chosen
uniformly at random. By adapting the argument used to prove Theorem 14.1, find
E[F 2]. Hence find Var[F ].



6. Describe each of the proofs you have seen that the number of derangements of
{1, 2, ..., n} is

n!− n!

1!
+
n!

2!
− · · ·+ (−1)n

n!
.

(One or two lines per proof is ample.) Which proof is your favourite?

7. Let Ω be a probability space and let X : Ω → N0 be a random variable. Prove,
using the formula after Definition 13.10, that

E[X] =
∞∑

k=1

P[X ≥ k].

Deduce Markov’s inequality, that P[X ≥ k] ≤ E[X]/k for each k ∈ N.

8. (?) In a room there are 100 numbered lockers. Each locker contains a piece of
paper numbered between 1 and 100 so that each number is used exactly once. A
team of 100 numbered people are let into the room, one at a time in numerical
order. Each person is allowed to open up to 50 lockers before leaving the room.
If every team member finds the piece of paper with his or her number on it, the
team succeeds, otherwise they fail. (After each visit the room is returned to its
original state, and once someone has visited the room, they cannot communicate
with their colleagues.)

Find a strategy that gives the team a probability of success ≥ 1/10.

9. In an election there are two candidates A and B, each of whom gets exactly n
votes. Let cn be the number of ways in which the votes may be counted so that
candidate A is never behind candidate B. (For example, c3 = 5; the corresponding
ballot sequences are AAABBB, AABABB, AABBAB, ABAABB, ABABAB.)

(a) Show that cn =
∑n

j=1 cj−1cn−j for each n ∈ N.

(b) Hence show that cn is equal to the nth Catalan Number Cn.

(c) Find the probability that when the votes are counted, A is never behind B.

10. Let m,n ∈ N. A platoon of mn soldiers is arranged in m rows of n soldiers. The
sergeant orders the soldiers in each row to rearrange themselves in decreasing order
of height and then issues the same order for the columns.

(a) Show that the tallest soldier is now in the first row and the first column.

(b) Show that the rows are still arranged in decreasing order of height. [Hint:
there is an argument using the pigeonhole principle.]

11. (?) Let n ∈ N. Let f ∈ N be such that f ≤ n. Show that the number of
permutations of {1, 2, . . . , n} with at least f fixed points is

n!

(f − 1)!

n∑

r=f

(−1)r−f

r(r − f)!
.
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Do at least questions 2, 5 and 6.

The question marked (?) is harder than average. To be returned to McCrea 240 by 5pm
Tuesday on the first week of next term.

1. Let σ be a permutation of {1, 2, ..., n}, chosen uniformly at random. Find the
average length of the cycle of σ containing 1.

2. Let en be the expected number of cycles in a permutation of {1, 2, . . . , n} chosen
uniformly at random. Show, using linearity of expectation, that en =

∑n
k=1 1/k.

(You may use Theorem 14.8.)

3. Let tn be the probability that a permutation of {1, 2, . . . , n}, chosen uniformly at
random, has a cycle of length > n/2.

(a) Use Theorem 14.8 to show that tn =
∑

n/2<k≤n 1/k.

(b) Hence show that tn → log 2 as n→∞.

4. Suppose that the edges of the complete graph on {1, 2, ..., n} are coloured red, blue
and green. Adapt the proof of Theorem 15.5 to show that if

31−(s
2)
(
n

s

)
< 1

then there is a colouring with no monochromatic Ks. What is the resulting bound
on the three-colour Ramsey number for s = 10?

5. Let n ∈ N and let G be the complete graph on {1, 2, . . . , 9}. Suppose that a
subset A of {1, 2, . . . , 9} is chosen uniformly at random. Let B = {1, 2, . . . , 9}\A.
What is the probability that the cut (A,B) has capacity ≥ m/2, where m is the
number of edges of G?

6. Let K denote the complete graph on N, so {x, y} is an edge of K for all distinct
x, y ∈ N. Show that if the edges of K are coloured red and blue then there is an
infinite subset S of N such that all the edges {x, y} for x, y ∈ S have the same
colour.

7. (?) Let Ak be the set of permutations of {1, 2, . . . , n} in which 1 lies in a k cycle.
Find a bijective proof that |Ak| = |Ak+1| for all k such that 1 ≤ k < n.

8. An aircraft has exactly 100 seats. The 100 people due to travel on it are lined up,
in a random order. The first person in the queue has forgotten his seat number,
and so sits in one of the seats at random. The remaining 99 people all know their
seat numbers and so if their seat is not taken, they sit in it. If their seat is taken,
they are too shy to complain and so they sit in a free seat which they choose at
random.

Find the probability that person 100 sits in his or her own seat.



9. This question gives an alternative proof of Theorem 6.10 using ideas from gener-
ating functions. Let B be a board contained in an n × n grid. Let cm(B) be the
number of ways to place n non-attacking rooks on the n × n grid so that exactly
m rooks are on B.

(a) Show that the number of ways to place k red rooks on B and n − k
blue rooks anywhere on the grid, so that all n rooks are non-attacking, is∑n

m=k

(
m
k

)
cm(B).

(b) Deduce from Lemma 6.9 that
∑n

m=k

(
m
k

)
cm(B) = rk(B)(n− k)!.

(c) Hence show that if N(x) =
∑n

m=0 cm(B)xm then

N(x+ 1) =
n∑

k=0

rk(B)(n− k)!xk.

(d) By substituting x = −1 in the above equation, prove Theorem 6.10.

10. Prove that if n, r ∈ N then

r(r − 1)

(
n

r

)
= 2

(
n

2

)(
n− 2

r − 2

)

by interpreting each side as the number of ways to choose a committee of r people,
one of whose members is the secretary and another is the chairperson.

11. Use generating functions to find formulae for the nth term of the sequences defined
by the recurrence relations: (a) an = 6an−2−an−1; (b) mbm = (m+ 2)bm−1, b0 = 1.

12. By adapting the argument used in Wilf generatingfunctionology, Example 4,
page 37, find a formula for

∑n
k=1 k

3. (You may wish to use computer algebra
for the routine calculations.)

13. There are 10 pirates who have recently acquired a bag containing 100 coins. The
leader, number 1, must propose a way to divide up the loot. For instance he might
say ‘I’ll take 91 coins and the rest of you can have one each’. A vote is then taken.
If the leader gets half or more of the votes (the leader getting one vote himself),
the loot is so divided. Otherwise he is made to walk the plank by his dissatisfied
subordinates, and number 2 takes over, with the same responsibility to propose an
acceptable division.

Assuming that the pirates are all greedy, untrustworthy, and capable mathemati-
cians, what happens? [Hint: try thinking about a smaller 2 or 3 pirate problem to
get started.]


