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Abstract

This paper addresses various questions about pairs of similarity classes of matrices which contain

commuting elements. In the case of matrices over finite fields, we show that the problem of

determining such pairs reduces to a question about nilpotent classes; this reduction makes use

of class types in the sense of Steinberg and Green. We investigate the set of scalars that arise as

determinants of elements of the centralizer algebra of a matrix, providing a complete description

of this set in terms of the class type of the matrix.

Several results are established concerning the commuting of nilpotent classes. Classes which

are represented in the centralizer of every nilpotent matrix are classified—this result holds over

any field. Nilpotent classes are parametrized by partitions; we find pairs of partitions whose

corresponding nilpotent classes commute over some finite fields, but not over others. We conclude

by classifying all pairs of classes, parametrized by two-part partitions, that commute. Our results

on nilpotent classes complement work of Košir and Oblak.
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1. General introduction

Let Fq be a finite field, and let C and D be classes of similar matrices in Matn(Fq). We

say that C and D commute if there exist commuting matrices X and Y such that X ∈ C

and Y ∈ D. In this paper we are concerned with the problem of deciding which similarity

classes commute.

A matrix is determined up to similarity by its rational canonical form. This however is usually

too sharp a tool for our purposes, and many of our results are instead stated in terms of the class

type of a matrix. This notion, which seems first to have appeared in the work of Steinberg [14],

is important in Green’s influential paper [8] on the characters of finite general linear groups.

Lemma 2.1 of that paper implies that the type of a matrix determines its centralizer up to

isomorphism; this fact is also implied by our Theorem 2.7, which says that two matrices with

the same class type have conjugate centralizers.

The main body of this paper is divided into three sections. In §2 we develop a theory of

commuting class types; the results of this section reduce the general problem of determining

commuting classes to the case of nilpotent classes. A key step in this reduction is Theorem 2.8,

which states that if similarity classes C and D commute, then any class of the type of C

commutes with any class of the type of D.

Relationships between class types and determinants are discussed in §3. We provide a

complete account of those scalars which appear as determinants in the centralizer of a matrix

of a given type; this result, stated as Theorem 3.1, has appeared without proof in [2, §3.4], and

as we promised there, we present the proof here. We also discuss the problem of determining

which scalars appear as the determinant of a matrix of a given type. This problem appears

intractable in general, and we provide only a very partial answer. But we identify a special

case of the problem which leads to a difficult but highly interesting combinatorial problem, to

which we formulate Conjecture 3.14 as a plausible solution.

In §4 we make several observations concerning the problem of commuting nilpotent classes;

this is a problem which has attracted attention in several different contexts over the years,

and there is every reason to suppose that it is hard. Among other results, we determine
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in Theorem 4.6 the nilpotent classes which commute with every other nilpotent class of

the same dimension, and in Theorem 4.10 we classify all pairs of commuting nilpotent

classes of matrices whose nullities are at most 2. We describe a construction on matrices

which produces interesting and non-obvious examples of commuting nilpotent classes. This

construction motivates Theorem 4.8, which says that for every prime p and positive integer r,

there exists a pair of classes of nilpotent matrices which commute over the field Fpa if and

only if a > r. As far as the authors are aware, it has not previously been observed that the

commuting of nilpotent classes, as parameterized by partitions, is dependent on the field of

definition.

More detailed outlines of the results of §2, §3 and §4 are to be found at the beginnings of

those sections.

1.1. Background definitions

We collect here the main prerequisite definitions concerning partitions, classes and class

types that we require.

Partitions. We define a partition to be a weakly decreasing sequence of finite length whose

terms are positive integers; these terms are called the parts of the partition. We shall denote

the j-th part of a partition λ by λ(j). The sum of the parts of λ is written as |λ|.
Given partitions λ and µ, we write λ + µ for the partition of |λ|+ |µ| whose multiset of parts

is the union of the multisets of parts of λ and of µ. We shall write 2λ for λ + λ, and similarly

we shall define tλ for all integers t ∈ N0. A partition µ will be said to be t-divisible if it is

expressible as tλ for some partition λ; if sλ = tµ then we may write µ = s
t λ.

We shall require the dominance order D on partitions. For two partitions λ and µ we say

that λ dominates µ, and write λ D µ (or µ E λ) if

j∑
i=1

λ(i) ≥
j∑

i=1

µ(i)

for all j ∈ N. (If i exceeds the number of parts in a partition, then the corresponding part is

taken to be 0.)

Let λ be a partition with largest part λ(1) = a. The conjugate partition λ is defined to be

(λ(1), . . . , λ(a)), where λ(j) is the number of parts of λ of size at least j. It is a well-known fact

(see for instance [11, 1.11]) that the conjugation operation on partitions reverses the dominance

order; that is, λ D µ if and only if µ D λ.

A geometric interpretation of the dominance order is developed by Gerstenhaber in [5]

and [6]; the issues with which the latter paper is concerned are similar in many respects to

those considered in §4 of the present paper, although Gerstenhaber’s approach using algebraic

varieties is very different.
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Similarity classes. Let K be a field. A class of similar matrices in Matn(K) is determined

by the following data: a finite set F of irreducible polynomials over K, and for each f ∈ F a

partition λf of a positive integer, such that

n =
∑
f∈F

|λf |deg f.

The characteristic polynomial of a matrix M in this class is
∏

f f |λf |. There is a decomposition

of V given by

V =
⊕

f

⊕
j

Vf (j),

where M acts indecomposably on the subspace Vf (j) with characteristic polynomial fλf (j).

This decomposition is, in general, not unique. By a change of basis, we may express M as⊕
f

⊕
j Pf (j), where Pf (j) is a matrix representing the action of M on Vf (j); we say that Pf (j)

is a cyclic block of M .

If F = {f1, . . . , ft} and the associated partitions are λ1, . . . , λt respectively, then we shall

define the cycle type of M to be the formal expression

cyc(M) = fλ1
1 · · · fλt

t .

The order in which the polynomials appear in this expression is, of course, unimportant.

Nilpotent classes. We shall denote by N(λ) the similarity class of nilpotent matrices with

cycle type fλ
0 , where f0(x) = x. We denote by J(λ) the unique matrix in upper-triangular

Jordan form in the similarity class N(λ).

If λ = (λ(1), . . . , λ(k)) we shall omit unnecessary brackets by writing N(λ(1), . . . , λ(k)) for

N(λ) and J(λ(1), . . . , λ(k)) for J(λ).

Class types. More general than the notion of similarity class is that of class type. If M is

a matrix of cycle type fλ1
1 · · · fλt

t , where for each i the polynomial fi has degree di, then the

class type of M is the formal string

ty(M) = dλ1
1 · · · dλt

t .

Here too, the order of the terms is unimportant.

Any string of this form will be called a type. The dimension of the type dλ1
1 · · · dλt

t is defined

to be d1|λ1|+ · · ·+ dt|λt|. We shall say that the type T is representable over a field K if there

exists a matrix of class type T with entries in K; the dimension of such a matrix is the same as

the dimension of the type. Clearly not all types are representable over all fields; for instance the

type 1λ1µ1ν is not representable over F2 since there are only two distinct linear polynomials

over this field; similarly 3λ is not representable over R since there are no irreducible cubics

over R.

Similar matrices have the same cycle type and the same class type, and so we may

meaningfully attribute types of either kind to similarity classes.
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We shall say that a class type T is primary if it is dλ for some d and λ. Otherwise T is

compound. If dλ appears as a term in the type T , we say that dλ is a primary component of T .

We may also say that a matrix, a similarity class of matrices, or a cycle type is primary or

compound, according to its class type, and we may refer to its primary components.

We have already defined what it means for two similarity classes to commute. We generalise

this idea to types, as follows.

Definition. Let S and T be class types. We say that S and T commute over a field K if

there are matrices X and Y over K such that X has class type S, and Y has class type T , and

X and Y commute.

The field K will not always be mentioned explicitly if it is clear from the context.

2. Commuting types of matrices

This section proceeds as follows. In §2.1 we prove several results relating the class type of

a polynomial in a matrix M to the class type of M , leading up to Theorem 2.6: that two

similarity classes have the same class type if and only if they contain representatives which are

polynomial in one another. This result is then used in the proof of Theorem 2.8, which states

that two similarity classes commute if and only if their class types commute.

Using Theorem 2.8, we proceed to reduce our original problem of deciding which similarity

classes commute, first to the case of primary types in §2.2, and thence to the case of nilpotent

classes in §2.3. At the end of §2.3 we give examples illustrating both steps of this reduction.

2.1. Polynomials and commuting types

If M is a matrix of primary class type dλ then it has associated with it a single irreducible

polynomial f such that its cycle type is fλ. It is clear that f(M) is nilpotent. The following

lemma and proposition describe its associated partition.

Lemma 2.1. Let M be a matrix of cycle type fλ, where deg f = d. For each j, let mj be

the number of parts of λ of size j. Then

dmj = (null f(M)j − null f(M)j−1)− (null f(M)j+1 − null f(M)j).

Proof. Let P be a cyclic block of M . If the dimension of P is dh then the characteristic

polynomial of P is fh. If j ≥ h, then null f(P )j = dh; otherwise null f(P )j = dj.

Since M is a direct sum of cyclic blocks of dimensions dλ(1), dλ(2), . . ., it follows that

null f(M)j =
∑
h≤j

dhmh +
∑
h>j

djmh,
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and hence

null f(M)j+1 − null f(M)j =
∑
h>j

dmh.

This implies the lemma.

Proposition 2.2. Let M be a matrix of primary type dλ. If the cycle type of M is fλ

then f(M) is nilpotent of type 1dλ.

Proof. Since f(M) is nilpotent, it is primary and its associated polynomial, f0(x) = x, is

linear. The result is now immediate from Lemma 2.1.

We use the preceding proposition to give some information about the type of F (M), where M

is a primary matrix and F is any polynomial. The following lemma will be required.

Lemma 2.3. Let M and N be nilpotent matrices with associated partitions µ and ν

respectively. Then µ E ν if and only if rank M j ≤ rank N j for all j ∈ N.

Proof. The rank of M j is equal to the sum of the j smallest parts of the conjugate

partition µ. The rank of N j can be calculated similarly in terms of ν. It follows easily that

rank M j ≤ rank N j for all j if and only if µ D ν. The lemma now follows from the fact that

the dominance order D is reversed by conjugation of partitions.

Proposition 2.4. Let X be a primary matrix of class type dλ with entries from a field K,

and let F ∈ K[x] be any polynomial. The type of F (X) is eµ for some e dividing d, and some

partition µ such that e|µ| = d|λ| and eµ E dλ.

Proof. Let the cycle type of X be fλ where f is an irreducible polynomial of degree d.

If α is a root of f in a splitting field, then the eigenvalues of F (X) are the conjugates over K

of F (α). Hence F (X) is of primary type, and if g ∈ K[x] is the irreducible polynomial associated

with F (X), then the degree of g divides d. Let eµ be the type of F (X).

Let Y = F (X). We observe that g(Y ) = (g ◦ F )(X) is a nilpotent matrix, and hence f

divides g ◦ F ; let g ◦ F = kf . By Proposition 2.2, f(X) has type 1dλ, while g(Y ) has type 1eµ.

For each i ∈ N0 we have g(Y )i = k(X)if(X)i and hence im g(Y )i ⊆ im f(X)i. It follows that

rank g(Y )i ≤ rank f(X)i for every i ∈ N. Now from Lemma 2.3 we see that eµ E dλ, as

required.

When K is a finite field, Proposition 2.4 has the following partial converse.
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Proposition 2.5. If X is a primary matrix of class type dλ with entries from Fq, and D

is a similarity class of matrices also of this class type, then there is a polynomial F ∈ Fq[x]

such that F (X) ∈ D.

Proof. Let f ∈ Fq[x] be the irreducible polynomial associated with X. Suppose that the

additive Jordan–Chevalley decomposition of X is X + N , where X is semisimple and N is

nilpotent; recall that X and N can be expressed as polynomials in X. Without loss of generality,

we may suppose that

X = diag(P, . . . , P ),

where the cyclic block P has minimum polynomial f .

Let g be the irreducible polynomial associated with the similarity class D, and let α and β

be roots of f and g respectively in Fqd . There exists a polynomial G ∈ Fq[x], coprime with f ,

such that G(α) = β. If we define

Q = G(P ),

then Q has minimum polynomial g. Let

Y = diag(Q, . . . , Q).

Then Y = G(X), and since X is polynomial in X, it follows that Y is too. Moreover, if we set

Y = Y + N , then Y is polynomial in X, and it is clear that Y lies in the similarity class D.

Let C and D be similarity classes of Matn(Fq). We say that D is polynomial in C if there

exists a polynomial F with coefficients in Fq such that F (X) ∈ D for all X ∈ C.

Theorem 2.6. Let C and D be similarity classes of Matn(Fq). The classes C and D have

the same type if and only if C and D are polynomial in one another.

Proof. We observe that applying a polynomial to a matrix cannot increase its number of

primary components. So if C and D are polynomial in one another, then they have the same

number of components. Moreover there is a pairing between the primary components C1, . . . , Ct

of C and D1, . . . , Dt of D such that Ci and Di are polynomial in one another for all i. It will

therefore be sufficient to prove the result in the case that both C and D are primary. Suppose

that ty(C) = dλ for some d ∈ N and some partition λ. It follows from Proposition 2.4 that D

has class type eµ where e divides d and eµ E dλ. By symmetry we see that e = d and λ = µ,

as required.

For the converse, suppose that ty(C) = ty(D). Let T1, T2, . . . , Tt be the primary components

of ty(C), and let X = diag(X1, . . . , Xt) be an element of C such that ty(Xi) = Ti for all i. Let

the minimum polynomial of the block Xi be fai
i , where fi is irreducible. By Proposition 2.5,

there exist polynomials F1, . . . , Ft ∈ Fq[x] such that diag(F1(X1), . . . , Ft(Xt)) ∈ D. By the
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Chinese Remainder Theorem, there exists a polynomial F ∈ Fq[x] such that

F (x) ≡ Fi(x) mod fai
i (x) for all i.

And now we see that F (X) ∈ D, as required.

It was proved by Green [8, Lemma 2.1] that the type of a matrix determines its centralizer

up to isomorphism. Using Theorem 2.6 we may prove the following stronger result.

Theorem 2.7. Let X and Y be matrices in Matn(Fq) with the same class type. Let Cent X

and Cent Y be the centralizers in Matn(Fq) of X and Y respectively. Then Cent X and Cent Y

are conjugate by an element of GLn(Fq).

Proof. By Theorem 2.6 there exist polynomials F and G such that F (X) is conjugate to Y

and G(Y ) is conjugate to X. Now the centralizer Cent F (X) is a subalgebra of CentX which

is conjugate to Cent Y ; similarly the centralizer Cent G(Y ) is a subalgebra of Cent Y which is

conjugate to CentX. Since CentX and Cent Y are finite, it is clear that CentX = CentF (X)

and that Cent Y = CentG(Y ), which suffices to prove the theorem.

An obvious corollary of Theorem 2.6, which has been stated in [3, §3.2], is that classes of

the same type commute. We are now in a position to establish a stronger result. Recall that

types S and T are said to commute if there exist commuting matrices X and Y with types S

and T respectively.

Theorem 2.8. Let C and D be similarity classes of matrices over Fq. Then C and D

commute if and only if ty(C) and ty(D) commute.

Proof. One half of the double implication is trivial, since if the similarity classes commute

then by definition the class types do. For the other half, notice that if ty(C) and ty(D)

commute then there exist commuting similarity classes C ′ and D′ such that ty(C ′) = ty(C)

and ty(D′) = ty(D). Let X ′ and Y ′ be commuting matrices from C ′ and D′ respectively. Then

there exist polynomials F and G such that F (X ′) ∈ C and G(Y ′) ∈ D, and clearly F (X ′) and

G(Y ′) commute.

We remark that Theorems 2.6, 2.7 and 2.8 do not hold for matrices over an arbitrary field.

There are counterexamples in Mat2(Q), for instance. Let Q(α) and Q(β) be distinct quadratic

extensions of Q. Let C and D be the similarity classes of rational matrices with characteristic

polynomials x2 − α and x2 − β respectively; then ty(C) = ty(D) = 2(1). Since the eigenvalues

α and β are not polynomial in one another, it is clear that neither are C and D. Moreover,
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the classes C and D do not commute. It is for this reason that our consideration of commuting

types is for the most part restricted to matrices with entries from a finite field.

2.2. Reduction to primary types

The next step in our strategy is to reduce the question of which class types commute to the

corresponding question about primary types. This is accomplished in Proposition 2.9 below.

We shall need the following two definitions.

Definition. A separation operation on a type T is the replacement of a primary component

dλ of T by dµdν , where λ = µ + ν. A separation of T is a type obtained from T by repeated

applications of separation operations.

Definition. Let S and T be types. We shall say that S and T commute componentwise

over a field K if the primary components of S and T can be ordered so that S = cλ1
1 · · · cλt

t

and T = dµ1
1 · · · dµk

t , where cλi
i commutes with dµi

i over K for each i.

This definition, it should be noted, does not preclude the possibility that types S and T

commute componentwise, even if one or both of them cannot be represented over the field K.

For example, 1(1,1,1) commutes componentwise with 1(1)1(1)1(1) over F2 according to the

definition, even though the latter type is not representable. The examples at the end of §2.3

illustrate why this freedom is desirable.

Proposition 2.9. Let S and T be types which are representable over a finite field Fq.

Then S and T commute over Fq if and only if there exist separations S? of S and T ? of T such

that S? and T ? commute componentwise.

Proof. Let X and Y be commuting matrices with entries from Fq, whose types are S

and T respectively. It is well known and easy to show that there exists a decomposition

V = V1 ⊕ · · · ⊕ Vt such that both X and Y act as transformations of primary type on each

of the summands Vi. Suppose that the action of X on Vi has type cλi
i , and the action of Y

has type dµi

i . Then it is clear that the primary types cλi
i and dµi

i commute, that cλ1
1 · · · cλt

t is

a separation of S and that dµ1
1 · · · dµt

t is a separation of T .

For the converse, suppose that the primary types cλi
i and dµi

i commute, that cλ1
1 · · · cλt

t is a

separation of S and that dµ1
1 · · · dµt

t is a separation of T . Then, from Theorem 2.8, it follows

that for any choice of irreducible polynomials fi of degree ci and gi of degree di, the classes

fλi
i and gµi

i commute. If Xi and Yi are commuting representatives of these respective classes,

then the matrices X = diag(X1, . . . , Xt) and Y = diag(Y1, . . . , Yt) commute. Now each primary

type cλi
i derives (under separation operations) from a particular component of S. If we select

our polynomials fi in such a way that blocks deriving from the same component of S have the
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same polynomial, then we find that ty(X) = S. Similarly we can choose the polynomials gi so

that ty(Y ) = T , and it follows that S and T commute.

2.3. Reduction to nilpotent classes

We now complete the reduction of our general problem of commuting classes to the case of

nilpotent classes. Recall that we denote by N(λ) the similarity class of nilpotent matrices with

cycle type fλ
0 , where f0(x) = x. Recall also that a partition is said to be t-divisible if it is tν

for some partition ν.

Theorem 2.10. Let S = cλ and T = dµ be primary types of the same dimension. Let

h = hcf(c, d) and ` = lcm(c, d). Then S and T commute over Fq if and only if λ is d
h -divisible,

µ is c
h -divisible, and the nilpotent classes N(h

d λ) and N(h
c µ) commute over Fq` .

Proof. Suppose that S and T commute over Fq. Let X and Y be commuting elements

of Matn(Fq) with cycle types fλ and gµ respectively, where deg f = c and deg g = d.

Let α1, . . . , αc be the roots of f and β1, . . . , βd the roots of g in the extension field Fq` .

Over this extension field, it is easy to see that the cycle types of X and Y are given by

cyc(X) = (x− α1)λ · · · (x− αc)λ,

cyc(Y ) = (x− β1)µ · · · (x− βd)µ.

Let W = Fn
q` , and let Wij denote the maximal subspace of W on which X − αiI and Y − βjI

are both nilpotent. (So W =
⊕

ij Wij .) Let λij and µij be the partitions such that the type

of X on Wij is 1λij and the type of Y on Wij is 1µij . Then clearly
∑d

j=1 λij = λ for all i, while∑c
i=1 µij = µ for all j.

Since X and Y have entries in Fq, it follows that the Frobenius automorphism ξ 7→ ξq

of Fq` induces an isomorphism between the Fq`〈X, Y 〉-modules Vij and Vi′j′ whenever

i− j ≡ i′ − j′ mod h. Hence

λij = λi′j′ and µij = µi′j′ whenever i− j ≡ i′ − j′ mod h.

Therefore the partitions λij for i ∈ {1, . . . , c} and j ∈ {1, . . . , d} are determined by the

partitions λ1k for k ∈ {1, . . . , h}, and since

λ =
d

h

h∑
k=1

λ1k,

it follows that λ is d
h -divisible. Similarly, µ is c

h -divisible.

Now clearly the actions of X and Y on the subspace
⊕h

k=1 V1k commute. The type of X on

this submodule (defined over Fq`) is 1λ11 · · · 1λ1h , which is a separation of 1
h
d λ. Similarly the

type of Y on the submodule is a separation of 1
h
c µ. Hence, by the ‘if’ direction of Proposition 2.9,
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the types 1
h
d λ and 1

h
c µ commute over Fq` . In particular, it follows from Theorem 2.8 that the

nilpotent classes N(h
d λ) and N(h

c µ) commute over this field.

For the converse, let λ′ = h
d λ and µ′ = h

c µ, and suppose that the nilpotent classes N(λ′)

and N(µ′) commute over Fq` . We shall denote by m the integer |λ′|, which of course is equal

to |µ′|. Let α and β be elements of Fq` whose degrees over Fq are c and d respectively. Since

N(λ′) and N(µ′) commute over Fq` , so do the classes with cycle types (x− α)λ′
and (x− β)µ′

.

Let X and Y be commuting elements of these respective classes. Let φ be an embedding of

the matrix algebra Matm(Fq`) into Mat`m(Fq); then it is not hard to see that φ(X) has class

type cλ and φ(Y ) has class type dµ. It follows that these types commute over Fq.

It is worth noting that Theorem 4.8 below implies that the references to particular fields

in the statement of Theorem 2.10 are essential. The following special case of the theorem,

however, does not depend on the field of definition.

Proposition 2.11. Let d, k ∈ N. The types d(k) and 1(k,...,k) commute over any field.

Proof. If the field in question is finite, then the proposition follows from Theorem 2.10. For

it suffices to show that the type 1
d (k, . . . , k) = (k) commutes with itself over Fqd , and certainly

this is the case.

A straightforward modification of the last paragraph of the proof of Theorem 2.10 would

allow us to deal with arbitrary fields; however we prefer the following short argument involving

tensor products. Let f be an irreducible polynomial of degree d and let P be the companion

matrix of f . The type d(k) is represented by the dk × dk matrix

P (k) =


P I

P I

. . . . . .

P

 .

Let J = J(k) be the k-dimensional Jordan block with eigenvalue 1. It is clear that P (k)

commutes with the tensor product I ⊗ J (which is obtained from the matrix above by

substituting I for each occurrence of P ). And I ⊗ J is conjugate to J ⊗ I = diag(J, . . . , J),

which has type 1(k,...,k). Hence the types d(k) and 1(k,...,k) commute.

We end this section with two examples of how the steps in our reduction can be carried out,

which illustrate the various results of this section.
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Example. Let p, q, r, s and t be the following irreducible polynomials over F2:

linear: p(x) = x, q(x) = x + 1;

quadratic: r(x) = x2 + x + 1;

cubic: s(x) = x3 + x + 1, t(x) = x3 + x2 + 1.

Let C be the similarity class of matrices over F2 with cycle type p(12,12)q(2,2,2)r(3)s(1) and let D

be the similarity class with cycle type r(7,5)t(2,2,1). We shall prove that C commutes with D.

By Theorem 2.8, this is equivalent to showing that the types

S = 1(12,12)1(2,2,2)2(3)3(1),

T = 2(7,5)3(2,2,1)

commute. This, in turn, will follow from Proposition 2.9, if we can show that S commutes

componentwise with the separation T ? = 2(7,5)3(2)3(2)3(1) of T . (This example was chosen to

make the point that it is not necessary that the separated types can be represented over F2.) By

Theorem 2.10 we see that 1(12,12) commutes with 2(7,5) over F2 if and only if 1(6,6) commutes

with 1(7,5) over F4; that this is the case follows from Proposition 4.7 below, which implies that

the nilpotent classes N(6, 6) and N(7, 5) commute over F4. It is immediate from Theorem 2.10

that 1(2,2,2) commutes with 3(2), and that 2(3) commutes with 3(2). Hence S and T ? commute

componentwise, and so C and D commute.

The converse directions of Proposition 2.9 and Theorem 2.10 can in principle be used as part

of a argument that two similarity classes do not commute; again, results about commuting of

nilpotent classes will generally be needed to complete such an argument. The following example

is illustrative.

Example. Let the polynomials p, q, r, s and t, the class C, and the type S be as in the

previous example. Let D be the similarity class over F2 with cycle type r(8,4)t(2,2,1). The class

type of D is

T = 2(8,4)3(2,2,1).

Suppose that a separation T ∗ of T commutes componentwise with a separation S∗ of S; then

one of 2(8) or 2(8,4) is a component of T ∗. The first possibility is ruled out since S∗ can

have no component of dimension 16. The only possible component of S∗ of dimension 24 is

1(12,12), and so if our supposition is correct, then the primary types 2(8,4) and 1(12,12) must

commute over F2. By Theorem 2.10, this is the case only if 1(8,4) and 1(6,6) commute. But by

Proposition 4.9 below, the nilpotent classes N(8, 4) and N(6, 6) do not commute over any field.

It follows that C and D do not commute.
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3. Types and determinants

The main object of this section is to establish Theorem 3.1, concerning determinants of

elements of centralizer algebras. The following definition is key.

Definition. Let M be a matrix with class type dλ1
1 · · · dλt

t . The part-size invariant of M

is defined to be the highest common factor of all of the parts of the partitions λ1, . . . , λt.

Theorem 3.1. Let M ∈ Matn(Fq) have part-size invariant k. The determinants which

occur in the centralizer of M in Matn(Fq) are precisely the k-th powers in Fq.

Part of the motivation for this investigation comes from the authors’ paper [2] on the

distribution of conjugacy classes of a group G across the cosets of a normal subgroup H,

where G/H is abelian. The centralizing subgroup of a class C with respect to H was defined

to be the subgroup CentG(g) ·H, where g ∈ C may be chosen arbitrarily. It was proved that

if G is finite and G/H is cyclic, then the classes with centralizing subgroup K are uniformly

distributed across the cosets of H in K.

Theorem 3.1 treats the case where G = GLn(Fq) and H = SLn(Fq). It is clear that the

subgroups K lying in the range H ≤ K ≤ G may be defined in terms of the determinants

of their elements; specifically, the index |K : H| is equal to the order of the subgroup of F×
q

generated by the determinants of the matrices in K. Hence, in order to calculate the centralizing

subgroup of a matrix, we must decide which determinants occur in its centralizer. The following

corollary of Theorem 3.1 shows that the answer to this question depends only on the class type

of the matrix concerned.

Corollary 3.2. Let M ∈ GLn(Fq) have part-size invariant k, and let c = hcf(q − 1, k).

The centralizing subgroup of the conjugacy class of M is the unique index c subgroup of

GLn(Fq) containing SLn(Fq).

In §3.1 below we prove a special case of Theorem 3.1, namely that the determinants in the

centralizer of a nilpotent matrix are k-th powers, where k is the part-size invariant. The proof

of Theorem 3.1 is completed in §3.2. We end in §3.3 by discussing the natural—but surprisingly

hard—question of which scalars can appear as the determinant of a matrix of a given type.

3.1. Determinants in the centralizer of a nilpotent matrix

In this section we let M ∈ Matn(Fq) be a nilpotent matrix lying in the similarity class N(λ).

Let A = CentM be the subalgebra of Matn(Fq) consisting of the matrices that centralize M .

We shall find the composition factors of V = Fn
q as a right A-module; using this result we
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describe the determinants of the matrices of A. For some related results on the lattice of

A-submodules of V , the reader is referred to [7, Chapter 14].

Definition. For v ∈ V we define the height of v, written ht(v), to be the least integer h

such that v ∈ ker Mh.

Definition. We shall say that a vector u ∈ V is a cyclic vector for M if u is not in the

image of M .

The proof of the following well-known lemma is straightforward, and is omitted.

Lemma 3.3. An element Y ∈ A is uniquely determined by its effect on the cyclic vectors

of M . If u1, . . . , ut are linearly independent cyclic vectors and v1, . . . , vt are any vectors such

that ht(vi) ≤ ht(ui) for every i, then there is an element Y ∈ A such that uiY = vi for each i.

As in Lemma 2.1, we let mh be the number of parts of λ of size h. For h ∈ N0, we shall

write Vh for kerMh.

Proposition 3.4. For each h ∈ N, the subspace Vh is an A-submodule of V containing

Vh+1M + Vh−1 as an A-submodule. Moreover if mh 6= 0 then

Vh / (Vh+1M + Vh−1)

is a simple A-module of dimension mh.

Proof. The proof of the first statement is straightforward, and we omit it; we shall outline

a proof of the second statement.

Let u1, . . . , umh
be a maximal set of linearly independent cyclic vectors each of height h.

It is not hard to see that u1, . . . , umh
span a complement in Vh to Vh+1M + Vh−1. By the

previous lemma, for any vectors v1, . . . , vmh
in Vh, there exists Y ∈ A such that uiY = vi for

each i. This implies that A acts as a full matrix algebra in its action on the quotient module

Vh/(Vh+1M + Vh−1). Hence the quotient module is simple.

For h such that mh 6= 0, let Sh = Vh/(Vh+1M + Vh−1) be the simple A-module constructed

in Proposition 3.4. If h 6= h′ and both Sh and Sh′ are defined, then by Lemma 3.3, it is possible

to define a matrix Y ∈ A such that Y acts as the identity on the cyclic vectors spanning Sh,

and as the zero map on the cyclic vectors spanning Sh′ . The simple modules Sh and Sh′ are

therefore non-isomorphic as A-modules.
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Proposition 3.5. The A-module V has a composition series in which the simple

A-module Sh appears with multiplicity h.

Proof. The action of the nilpotent matrix M on Vh induces a non-zero homomorphism of

simple A-modules

VhM i−1

Vh+1M i + Vh−1M i−1
−→ VhM i

Vh+1M i+1 + Vh−1M i

for each i such that 1 ≤ i ≤ h− 1. This gives us h distinct composition factors of Vh, each

isomorphic to Sh. It now follows from the Jordan–Hölder theorem that in any composition

series of V , the simple module Sh appears at least with multiplicity h. Finally, by comparing

dimensions using the equation

dim V = n =
∑

h

hmh =
∑

h

h dim Sh,

we see that equality holds for each h, and that the A-module V has no other composition

factors.

Proposition 3.6. If M is nilpotent, and has part-size invariant k, then the determinants

that appear in Cent M are k-th powers in Fq.

Proof. Given Y ∈ Cent M let Yh denote the matrix in Matmh
(Fq) which gives the action

of Y on the simple A-module Sh. Using the composition series given by the previous theorem

to compute detY we get

detY =
∏

h
mh 6=0

(detYh)h.

Since the part-size invariant of m is the highest common factor of the set {h | mh 6= 0}, we see

that detY is a k-th power.

It is worth remarking that it is also possible to prove Proposition 3.5 in a way that gives

the required composition series in an explicit form. We have avoided this approach in order to

keep the notation as simple as possible. The following example indicates how to construct a

suitable basis of V in a small case.

Example. Let M ∈ Mat5(Fq) be a nilpotent matrix in the similarity class N(2, 2, 1). Let

u1, u2 be cyclic vectors of M of height 2, and let v be a cyclic vector of M of height 1. Then

with respect to the basis u1, u2, v, u1M,u2M of F5
q, the centralizer of M consists of all matrices
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of the form 

α β ? ? ?

γ δ ? ? ?

ζ ? ?

α β

γ δ


where gaps denote zero entries, and ? is used to denote an entry we have no need to specify

explicitly. The key to obtaining this matrix in the required form is to order the elements of the

basis correctly. The following principles determine a suitable ordering on the basis: elements

come in decreasing order of height; cyclic vectors come first among elements of the same height;

if bi comes before bj then biM comes before bjM .

3.2. Proof of Theorem 3.1

The proof has two steps. We first show that if M is a matrix with entries in Fq and part-size

invariant k, then every k-th power in Fq appears as the determinant of a matrix in Cent M .

In the second, we use Proposition 3.6 to show that no other powers can appear.

We begin with the following lemma.

Lemma 3.7. Let S(k) be the set of k-th powers in Fq. Let d ∈ N and ϑ ∈ F×
q . Then the

number of irreducible polynomials of degree d over Fq with constant term ϑ is

1
d(q − 1)

∑
k|d

S(k)3ϑ

µ(k) hcf(q − 1, k)(qd/k − 1).

This number is non-zero for all choices of d and ϑ and for all q.

Proof. We give an elementary proof of the existence of a polynomial with degree d and

constant term ϑ. For the number of polynomials, see for instance [1, §5.2].

Let α be a generator of the multiplicative group F×
qd , and let β = n(α) where n : F×

qd → F×
q

is the norm homomorphism. It is clear that β generates F×
q . Let c be such that 0 < c < q and

(−1)dϑ = βc. Since Fqd has no proper subfield of index less than q, and since the multiplicative

order of αc is at least (qd − 1)/c, it is easy to see that αc cannot lie in a proper subfield of Fqd .

It follows that the minimum polynomial of αc over Fq has degree d and constant term ϑ, as

required.

Proposition 3.8. Let P be a matrix with class type d(j). Then for any ϑ ∈ Fq, there

exists a matrix in Cent P with determinant ϑj .
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Proof. We may assume that ϑ is non-zero. By Lemma 3.7 there exists an irreducible

polynomial f over Fq with degree d and constant term (−1)dϑ. Let C be the similarity class

containing P , and let D be the class of matrices with cycle type f (j). Since C and D have the

same class type, it follows from Theorem 2.6 that they commute. Therefore P commutes with

an element of D. It is clear from the construction of D that its elements have determinant ϑj ,

as required.

We now extend Proposition 3.8 to a general matrix.

Proposition 3.9. If M is a matrix with part-size invariant k, then for any ζ ∈ Fq, there

exists a matrix in Cent M with determinant ζk.

Proof. Let P1, . . . , Ps be the distinct cyclic blocks of M ; so M is conjugate to
⊕

i Pi.

For each i let the class type of the block Bi be dhi
i . By Proposition 3.8, for any scalars ϑi

that we choose, there exist matrices X1, . . . , Xs such that Xi ∈ Cent Bi for all i, and

detXi = ϑhi
i . Thus M commutes with a conjugate of the matrix diag(X1, . . . , Xs), which has

determinant
∏

i ϑhi
i .

It will therefore be enough to show that there exist non-zero scalars ϑ1, . . . , ϑs such

that
∏

i ϑhi
i = ζk. But we know that k = hcf(h1, . . . , hs), and so there exist integers ai such

that k =
∑

i aihi; it follows that we can simply take ϑi = ζai for all i.

We now turn to the second step in the proof of Theorem 3.1.

Proposition 3.10. Let M be a matrix with part-size invariant k. The determinant of an

element of Cent M is a k-th power in Fq.

Proof. Let M act on V = Fn
q . For each irreducible polynomial f over Fq which divides the

minimal polynomial of M , let Vf be the largest subspace of V on which f(M) acts nilpotently.

Then V =
⊕

Vf , and each summand Vf is invariant under Cent M . It follows that if Y ∈
Cent M then detY =

∏
detYf , where Yf is the restriction of Y to Vf . Therefore, it will be

sufficient to show that det Y is a k-th power for each f .

Let λ = (h1, . . . , hs) be the partition associated with a given f in the rational canonical

form of M . From the definition of the part-size invariant, each of the parts hi is divisible by k.

Let Mf be the restriction of M to Vf , and let Yf ∈ Cent Mf .

By Proposition 2.2, f(Mf ) is nilpotent with associated partition dλ, where d is the degree

of f . It is clear, then, that the part-size invariant of f(Mf ) is k. Since Yf is in the centralizer

of f(Mf ), it follows from Proposition 3.6 that detYf is a k-th power in Fq, as required.

Combining the results of Propositions 3.9 and 3.10 gives Theorem 3.1.
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3.3. Determinants in classes of a given type

It is natural to ask which determinants are represented among matrices of a given type. This

question leads to a hard problem in arithmetic combinatorics, to which we have been able to

find only a partial solution.

It is clear that if T is a type representable over the field Fq, then there is a matrix of type T

with zero determinant if and only if T has a primary component 1λ for some λ. This leaves

us to decide which non-zero determinants can arise. For primary types this question is easily

answered.

Lemma 3.11. Let λ be a partition of k ∈ N, let d ∈ N, and let ϑ ∈ F×
q . There is an

invertible matrix over Fq with type dλ and determinant ϑ if and only if ϑ is a k-th power

in F×
q .

Proof. If M is a matrix of type dλ then M has characteristic polynomial fk. The

determinant of M is therefore a k-th power. That every k-th power in F×
q is obtained in

this way follows easily from Lemma 3.7.

The following pair of propositions establish a sufficient condition on a type for it to represent

all non-zero determinants.

Proposition 3.12. Let d ∈ N be coprime with q − 1, and let T = dλ1 · · · dλt be a type

representable over Fq. If L = |λ1|+ · · ·+ |λt| is also coprime to q − 1, then every element

of F×
q is the determinant of a matrix of type T .

Proof. It is an easy consequence of Lemma 3.7 that if d is coprime with q − 1, then there

are the same number of irreducible polynomials of degree d with any non-zero constant term.

It follows that, for a generator ϑ of the cyclic group F×
q , there exists a permutation σ of the

set of irreducible polynomials of degree d, such that fσ(0) = ϑf(0) for all f .

Let C be a similarity class of type T , whose members have determinant α. Consider the

class C ′ obtained from C by applying the permutation σ to the irreducible polynomials which

appear in its cycle type. It is easy to see that C ′ has the same type as C, and that the members

of C ′ have determinant αϑL, where L is as in the statement of the proposition. Now ϑL is a

generator of F×
q since L is coprime with q − 1, and so it is clear that by repeated applications

of the permutation σ we can obtain any non-zero determinant of our choice.

Proposition 3.13. Let T be a type representable over a finite field Fq. For each d let Ld

be the sum of the sizes of the partitions associated with the components of degree d in T .
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If dLd is coprime with q − 1 for any d, then every element of F×
q is a determinant of a matrix

of type T .

Proof. This follows immediately from Proposition 3.12.

It should be noted that Proposition 3.13 does not come close to giving a necessary condition

for a type to contain all non-zero determinants. Finding conditions which are both necessary

and sufficient appears to be a highly intractable problem.

A special case of considerable interest is that of linear types, of the form 1λ1 · · · 1λt . (These

are precisely the types of triangular matrices over Fq.) We make use of the following definition.

Definition. Let A be an abelian group of order m (written multiplicatively) and let

π = (π1, . . . , πm) ∈ Zm. We say that an element x ∈ A is π-expressible if there exists an

ordering g1, . . . , gm of the elements of G such that x = gπ1
1 · · · gπm

m .

The relevance of this definition to our problem is easily explained. Let T be the linear type

1λ1 · · · 1λt where t ≤ q − 1. Let π ∈ Zq−1 be defined by

π = (|λ1|, . . . , |λt|, 0, . . . , 0).

Then we observe that the non-zero determinants represented in T are precisely the π-expressible

elements of F×
q .

If A is an abelian group of exponent n then we observe that adding multiples of n to the

entries of π does not affect π-expressibility in A; we may therefore assume that all of the entries

of π satisfy 0 ≤ πi ≤ n− 1. Similarly, reordering the entries of π cannot affect π-expressibility,

and so we may suppose that they appear in decreasing order.

Numerical evidence obtained by the authors supports the following conjecture.

Conjecture 3.14. Let A be a cyclic group of order m. Let π = (π1, . . . , πm) ∈ (Z/mZ)m,

where π1 ≥ · · · ≥ πm. Let π′ be the partition obtained from π by subtracting πm from each

part (thereby ensuring that the last part is 0). Then every element of A is π-expressible unless

one of the following holds:

(i) π′ = (m− r, r, 0, . . . , 0) for some r, or

(ii) There exists an integer p > 1 which divides each part of π′, and which also divides m.

This conjecture is known to be true in the case that m is a prime (see [4, Theorem 1.2]).

For our purposes, we would like it to be true for A = F×
q for all q; that is, whenever m + 1 is a

power of a prime. This would provide a complete classification of the determinants occurring

in linear types. In the very special case when q = 2r and |F×
q | = 2r − 1 is a Mersenne prime,

the result of [4] already gives such a classification.
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4. Commuting nilpotent classes

In §2 the question of which similarity classes of matrices over a finite field commute was

reduced to the analogous problem for nilpotent classes. The question of which nilpotent classes

commute with a given nilpotent class N(λ) appears to be a very hard problem, and we shall

not attempt to answer it in any generality. We shall, however, treat a variety of special cases,

and make a number of observations which, so far as we have been able to determine, do not

appear in the existing literature. Our approach is elementary, and leads to results which, for

the most part, apply to matrices defined over an arbitrary field. (For some other recent results

on the problem of commuting nilpotent classes over algebraically closed fields, obtained by the

methods of Lie theory, the reader is referred to [10] and [13].)

Our results may be summarized as follows. Proposition 4.1 describes the nilpotent classes

that commute with N(λ) when λ has a single part. This result has appeared previously in [12];

our Proposition 4.2 is similar to, but slightly stronger than, the result which appears there as

Proposition 2.

Similarly, we deal in Proposition 4.4 with the case that λ = (n− 1, 1) for some n, and in

Proposition 4.5 with the case that λ = (2, . . . , 2). Using these results we are able to classify

those nilpotent classes that commute with every nilpotent class of the same dimension; this is

Theorem 4.6.

We next establish a condition for the nilpotent classes N(n, n) and N(n + 1, n− 1) to

commute; these classes are found to commute over any infinite field, and over the finite field Fpr

provided that p(p2r − 1)/e does not divide n, where e = 1 if p = 2 and e = 2 otherwise. As well

as augmenting our list of commuting classes, this result is particularly significant, since it

demonstrates that commuting of classes is in some cases dependent on the field of definition.

Finally, we use the results just mentioned to classify those commuting nilpotent classes whose

associated partitions have no more than two parts; this result, stated as Theorem 4.10, is valid

over any field.

The following definition will be useful in what follows.

Definition. Let M be a nilpotent transformation of a space V . A cyclic basis for M is a

basis B of V with the property that for each v ∈ B, either vM = 0, or else vM ∈ B.

Earlier in §3.1 we defined a cyclic vector for M to be a vector which is not in the image

of M . Let M ∈ N(h1, . . . , hk), and let B be a cyclic basis for M . Then B contains cyclic vectors

v1, . . . , vk, where ht vi = hi for all i; in fact

B = {viM
j | 1 ≤ i ≤ k, 0 ≤ j < hi}.

By Lemma 3.3, an element of CentM is determined by its action on v1, . . . , vk.
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4.1. Cyclic nilpotent classes and partition refinements

Recall that J(λ) is the unique upper-triangular matrix in Jordan form in the similarity

class N(λ). The next proposition describes which classes commute with J(n). We shall use

the well-known fact that the elements of the centralizer algebra Cent J(n) are the polynomials

in J(n)—see for example [9, Ch. III, Corollary to Theorem 17].

Proposition 4.1. Let λ = (h1, . . . , hk) be a partition of n. Then J(n) commutes with a

conjugate of J(λ) if and only if h1 − hk ≤ 1.

Proof. Write Ei for the matrix whose (x, y)-th entry is 1 if k = y − x, and 0 otherwise. The

matrices E0, E1, . . . , En−1 form a basis for the centralizer algebra of J(n). Let M be a non-zero

nilpotent element of this algebra; then for some d in the range 0 < d ≤ n− 1 we can write

M =
∑
i≥d

αiEi,

for scalars αi, with αd 6= 0.

It is easy to check that nullMs = min(sd, n) for all integers s. Let h be the least integer such

that hd ≥ n. Then it follows from Lemma 2.1 that M is conjugate to J(λ), where

λ = (h, . . . , h, h− 1, . . . , h− 1)

is the partition with n− hd parts of size h− 1 and (h + 1)d− n parts of size h. This establishes

the proposition.

The terminology in the first of the following definitions is borrowed from [10, §3].

Definition. A partition is almost rectangular if its largest part differs from its smallest

part by at most 1.

Definition. Let λ and µ be partitions. We say that µ is a refinement of λ if µ is the

disjoint union of subpartitions whose sizes are the parts of λ. We say that a refinement of λ is

almost rectangular if all of the subpartitions involved are almost rectangular.

For instance, (5, 3, 1) = (3 + 2, 2 + 1, 1) has (3, 2, 2, 1, 1) as an almost-rectangular refinement.

It is worth noting that while the relation given by “µ is a refinement of λ” is clearly transitive,

the relation given by “µ is an almost rectangular refinement of λ” is not.

Proposition 4.2. Let µ1 and µ2 be partitions of n. If there exists a partition λ which has

both µ1 and µ2 as almost rectangular refinements, then the conjugacy classes represented by

the Jordan blocks J(µ1) and J(µ2) commute.
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Proof. Consider the subpartitions ν1 of µ1 and ν2 of µ2 whose parts combine to create a

single part of λ of size h. Since ν1 and ν2 are almost rectangular, they yield Jordan blocks whose

classes commute with that of J(h). But the centralizer of J(h) consists of polynomials in J(h),

and it follows that the classes of J(ν1) and J(ν2) have representatives which are polynomials

in J(h). So these representatives commute, and hence J(µ1) and J(µ2) have conjugates which

commute.

The preceding proposition is slightly more general than [12, Proposition 2], which states that

the nilpotent classes N(λ) and N(µ) commute if µ is an almost rectangular refinement of λ. It

is noted in [12] that there exist examples of classes commuting that cannot be explained in this

way. We remark that our Proposition 4.2 does not account for all commuting between classes,

either. We illustrate this fact with the example and the proposition below; other examples will

be seen in subsequent sections.

Example. There is no partition which has both (2, 2) and (3, 1) as an almost rectangular

refinement, but the classes N(2, 2) and N(3, 1) commute over any field. We leave the proof of

this to the reader, while remarking that it is a special case of any one of Propositions 4.4, 4.5

and 4.7 below.

Proposition 4.3. Let λ be a partition, and let λ be its conjugate partition. Then the

nilpotent classes with partitions λ and λ commute.

Proof. Let λ = (h1, . . . , hk), where h1 ≥ · · · ≥ hk. Let N be nilpotent of type λ, and let

u1, . . . , uk be cyclic vectors for N , such that ui has height hi for all i. By Lemma 3.3 there is

a unique matrix M ∈ Cent N such that uiM = ui+1 for all i, with ukM = 0.

If λ = (5, 5, 3, 2), for instance, then the actions of N and M on the cyclic basis can be

represented as follows:

N M

u1 • // • // • // • // •

u2 • // • // • // • // •

u3 • // • // •

u4 • // •

u1 •

��

•

��

•

��

•

��

•

��
u2 •

��

•

��

•

��

• •

u3 •

��

•

��

•

u4 • •

It is easy to check that M is nilpotent, with associated partition λ.

In general there does not exist a partition which has both λ and λ as almost rectangular

refinements, as is shown by the example illustrating the proof above, or by the case λ = (4, 1, 1).
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4.2. Universally commuting classes

The object of this section is to classify, in Theorem 4.6, the partitions to which the following

definition refers.

Definition. A partition λ of n is universal with respect to a field K if N(λ) commutes

with N(µ) over K for every partition µ of n.

The reference to the field in this definition is in fact redundant; it is a consequence of

Theorem 4.6 that a partition which is universal with respect to one field is universal with

respect to any field. To prove the theorem, we shall require the following two propositions.

Proposition 4.4. Let λ be a partition of n. The matrix J(n− 1, 1) commutes with a

conjugate of J(λ) if and only if one of the following holds:

(i) λ has a part of size 1, and if λ− is obtained from λ by removing this part, then J(n− 1)

commutes with a conjugate of J(λ−); Proposition 4.1 provides a classification in this

case.

(ii) n is even, and all of the parts of λ are of size 2.

(iii) λ has a part of size 3, and its other parts are of size 1 or 2, with at least one part of

size 1.

(iv) n = 3 and λ = (3).

Proof. The centralizer algebra of J(n− 1, 1) has the basis

{Ei | 0 ≤ i ≤ n− 2} ∪ {F,G, H},

where

∑
i

αiEi + βF + γG + δH =



α0 α1 α2 . . . αn−2 β

0 α0 α1 αn−3 0

0 0 α0 αn−4 0
...

. . .
...

0 0 0 α0 0

0 0 0 . . . γ δ


.

A nilpotent element of this algebra must have α0 = δ = 0. We suppose that M is such an

element, and that M is non-zero. By Lemma 2.1 the partition λ associated with M is determined

by the sequence of ranks of powers of M .

If αi = 0 for all i < n− 2, then αn−2, β and γ are the only entries that are possibly non-

zero. It is easy to see that the rank sequence (rank I, rank M, rank M2, rank M3) must be either

(n, 2, 1, 0) or (n, 1, 0, 0). In the first case the partition associated with M is (3, 1n−3), which
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is covered by either part (iii) or part (iv) of the lemma. In the second case the partition is

(2, 1n−2), which is covered by part (i) or part (ii).

Now suppose that there exists i < n− 2 such that αi 6= 0. Let m be the least such i. If

m < (n− 2)/2 then it is not hard to see that the rank sequence is

(n, n−m− 1, n− 2m− 1, . . . , 0).

The partition λ given by this data has one more part of size 1 than the partition λ− given by

the data

(n− 1, n−m− 1, n− 2m− 1, . . . , 0).

But λ− corresponds to the rank sequence for an element of the centralizer algebra of J(n−
1), and so this case is covered by case (i) of the lemma. If m > (n− 2)/2 then the same

situation occurs if βγ = 0. But if β and γ are both non-zero then the rank sequence obtained

is (n−m− 1, 1, 0). The corresponding partition λ is covered by part (iii) of the lemma.

The final case to analyse occurs when n is even and m = (n− 2)/2. If M2 6= 0 then the

situation of the previous paragraph applies. Otherwise the rank sequence is (n, n/2, 0) and all

of the parts of λ have size 2, as in part (ii) of the lemma.

Proposition 4.5. Let λ be the partition of 2s which has s parts of size 2, and let µ be

any partition of 2s. Then J(λ) commutes with a conjugate of J(µ).

Proof. By a straightforward inductive argument, we may suppose that µ has no subpartition

of even size. If µ has only one part then the result follows from Proposition 4.1; so we may

assume that µ has exactly two parts, s + t and s− t.

A cyclic basis for N = J(λ) has the form B = {e1, . . . , es, f1, . . . , fs}, where the vectors fi

are in the kernel of N , and eiN = fi for all i. Let M be the matrix whose action is defined by

eiM = ei+1, fiM = fi+1 for 1 ≤ i < s, and

esM =

fs−t+1 if t > 0,

0 otherwise,

fsM = 0.

It is easy to see that M commutes with N , hence it suffices to show that M ∈ N(µ). A basis for

ker M is given by {fs, es − fs−t}, so nullM = 2. It follows that the partition associated with M

has two parts, and since e1 is a cyclic vector of height s + t, this partition must be (s + t, s− t),

as required.

Theorem 4.6. The universal partitions are precisely those with no part greater than 2,

together with λ = (3).
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Proof. Suppose that λ has no part of size greater than 2. If all of the parts of λ have

size 2, then J(λ) commutes with all nilpotent classes, by Proposition 4.5. Otherwise λ has a

subpartition λm of m for every m ≤ n. Let µ be a partition of n with largest part m. Then

since λm is an almost rectangular refinement of m, it follows from Proposition 4.1 that J(λm)

commutes with a conjugate of J(m). Now if λ′ denotes the partition obtained by deleting

the parts of λm from λ, and if µ′ is obtained by deleting a part of size m from µ, then we

may suppose inductively that J(λ′) commutes with a conjugate of J(µ′). It follows that J(λ)

commutes with a conjugate of J(µ).

Conversely, suppose that λ has largest part h > 2. If J(λ) commutes with J(n) then by

Proposition 4.1 all of its parts have size h or h− 1. Then we see from Proposition 4.4 that J(λ)

does not commute with a conjugate of J(n− 1, 1), except in the single case that λ = (3).

4.3. Commuting of classes N(n, n) and N(n + 1, n− 1)

The main object of this section is to prove Proposition 4.7 below, which gives a necessary

and sufficient condition for the classes N(n, n) and N(n + 1, n− 1) to commute. This case is

of particular interest because the field enters in an essential way. In Theorem 4.8 we use this

proposition to show that for every prime p and positive integer r, there exists a pair of classes

of nilpotent matrices which commute over the field Fpr if and only if s > r.

Proposition 4.7 is motivated by a natural construction on matrices. Suppose that X and Y

are commuting matrices over a field K, and let

D =

(
X 0

0 X

)
, E =

(
Y I

0 Y

)
.

Clearly the matrices D and E commute. We may assume that X and Y (and hence D and E)

are nilpotent; then this construction (and other similar ones) may in principal be used to find

new cases of commuting nilpotent classes. The partition labelling the class of D is clearly 2λ,

where λ labels the class of X. The partition labelling the class of E is harder to calculate, and

depends on the characteristic of K.

We have no occasion to make systematic use of this construction in the present paper, but the

following example is illustrative. Let X = Y = J(n). Then D ∈ N(n, n). The partition labelling

the class of E is (n + 1, n− 1) except in the case that char K divides n, in which case it is

(n, n). It follows that N(n, n) and N(n + 1, n− 1) commute over fields of all but finitely many

characteristics, the exceptions being the prime divisors of n. We note, however, that the present

method gives no information about whether the classes commute in fields of these exceptional

characteristics; this gives an indication that the following proposition is non-trivial.
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Proposition 4.7. Let p be a prime, and let

e =

{
1 if p = 2,

2 otherwise.

Then the nilpotent types (n, n) and (n + 1, n− 1) commute over Fpr if and only if n is not

divisible by p(p2r − 1)/e.

Proof. Let M be nilpotent of type (n + 1, n− 1), acting on a space V over Fpr . Take

a cyclic basis {ui, wj | 0 ≤ i ≤ n, 1 ≤ j ≤ n− 1} for V , with uiM = ui−1 and wjM = wj−1

for all i and j. Let Uk and Wk denote the subspaces 〈uj | 0 ≤ j ≤ k〉 and 〈wj | 1 ≤ j ≤ k〉
respectively—we take W0 = {0} and Wn = Wn−1. Let Vk denote Uk ⊕Wk for all k. For each

pair (x, y) with x ∈ Vn−1 and y ∈ Vn−2, there is an unique nilpotent element Y of CentM such

that unY = x and wn−1Y = y; it follows from Lemma 3.3 that all of the nilpotent elements of

Cent M can be obtained in this way.

Let Y ∈ Cent M be nilpotent, and define α, β, γ, δ by

unY ∈ αun−1 + γwn−1 + Vn−2,

wn−1Y ∈ βun−2 + δwn−2 + Vn−3.

The reader may find helpful the following diagrammatic representation of Y .

un
• α //

γ

  A
AA

AA
AA

AA
A

un−1

• α //

γ

""E
EEEEEEEE

un−2

• α //

γ

""E
EEEEEEEE

un−3

•
u3
• α //

γ

��?
??

??
??

??

u2
• α //

γ

��?
??

??
??

??

u1
• α //

u0
•

•
wn−1

δ
//

β

<<yyyyyyyyy
•

wn−2
δ
//

β

<<yyyyyyyyy
•

wn−3

•
w3

δ
//

β

??���������
•
w2

δ
//

β

??���������
•
w1

β

@@���������

The matrix A =

(
α β

γ δ

)
describes the maps induced by Y ,

Y k :
Vk

Vk−1
−→ Vk−1

Vk−2
,

where k is in the range 1 < k < n. Outside of this range, the map Y n has domain 〈 un + Vn−1 〉
of dimension 1, while Y 1 has codomain 〈u0〉 of dimension 1. These maps are represented by

the first row and the first column of A respectively.
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Claim. The kernel of Y has dimension 2 if and only if A is non-singular.

Proof of Claim. If A is invertible, then the maps Y k are injective for k > 1. It follows easily

that if v ∈ ker Y then v ∈ V1. It is now easy to check that v ∈ 〈u1, βu2 − αw1〉 and so null Y = 2

in this case.

Conversely, suppose that A is singular. If α = β = 0 then V1 ⊆ ker Y , and so null Y ≥ 3. So

let us suppose that α and β are not both 0. Then there exists z ∈ V1 such that zY = u0. Since A

is singular, the map Y 2 has a non-trivial kernel, and it follows that there exists v ∈ V2 \ V1

such that vY ∈ V0 = 〈u0〉. Say that vY = σu0; now we have a set of three kernel vectors,

{u0, βu1 − αw1, v − σz}, which is linearly independent since v − σz /∈ V1. So null Y ≥ 3 in

this case as well.

The dimension of kerY tells us the number of parts in the partition associated with the

class of Y . This partition therefore has two parts if and only if the matrix A is non-singular.

Note that since Y n+1 = 0, no part can be larger than n + 1, and therefore the only possible

partitions are (n + 1, n− 1) and (n, n). The former corresponds to the class of M itself, while

the latter case occurs when Y n = 0, which is the case if and only if un ∈ ker Y n.

Now we observe that

unY n = Y 1 ◦ Y 2 ◦ · · · ◦ Y n(vn + Vn−1)

= u0R1A
n−2C1 ,

where R1 and C1 are, respectively, the first row and the first column of A. So the partition

of Y is (n, n) precisely when R1A
n−2C1 = (0), or equivalently, when the matrix An has a zero

for its top left-hand entry.

Claim. Every element of GL2(Fpr ) is either a scalar matrix, or else is conjugate to a matrix

with a zero for its top left-hand entry.

Proof of Claim. Every quadratic polynomial over Fpr is the characteristic polynomial

of a unique similarity class of non-scalar matrices. Thus if X is a non-scalar matrix with

characteristic polynomial x2 + σx + τ , then X is conjugate to0B@ 0 1

−τ −σ

1CA,

as required.

Now suppose that GL2(Fpr ) contains a non-scalar element X which is an n-th power in the

group. Then X has a conjugate X ′ with a zero for its top left-hand entry. Clearly X ′ is also

an n-th power; by choosing a, b, c, δ to be the entries of an n-th root of X ′, we can construct a

matrix Y in Cent M whose type is (n, n).
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There exist non-scalar n-th powers in GL2(Fpr ) provided that n is not divisible by the

exponent of PGL2(Fpr ). This exponent is p(p2r − 1)/e, and the proof of Proposition 4.7 is

complete.

Remark. This argument also goes to show that the nilpotent types (n, n) and

(n− 1, n + 1) commute over any infinite field K, since the exponent of PGL2(K) is infinite.

Theorem 4.8. Let p be a prime, and r ≥ 1. There exist partitions λ and µ, such that N(λ)

commutes with N(µ) over the fields Fpa for a > r, but not for a ≤ r.

Proof. We use a famous theorem of Zsigmondy [15] which states that if k ≥ 2, t ≥ 3, and

(k, t) 6= (2, 6), then there is a prime divisor of kt − 1 which does not divide ks − 1 for any s

such that 1 ≤ s < t.

Let L = lcm({p2s − 1 | 1 ≤ s ≤ r}), and let n = pL/e. We observe that p(p2a − 1)/e divides n

whenever a ≤ r. When a > r we invoke Zsigmondy’s Theorem with (k, t) = (p, 2a), or with

(k, t) = (4, 3) if p = 2 and t = 3; this tells us that p2a − 1 has a prime divisor q which does not

divide p2s − 1 for s < a. Clearly q does not divide n, and so p(p2a − 1)/e does not divide n. It

now follows from Proposition 4.7 that the partitions (n, n) and (n + 1, n− 1) have the property

stated in the theorem.

Remark. The authors have found no case where the commuting of nilpotent classes

depends on the field of definition in dimension less than 12. This is the dimension of the

smallest example given by Proposition 4.7: that of N(6, 6) and N(7, 5), which commute over

every field except F2.

4.4. Classes corresponding to two-part partitions

We end by establishing a result which, together with results already presented, will allow us

to classify, over any field K, pairs of partitions (λ, µ) with at most two parts, such that N(λ)

and N(µ) commute over K. We note that classes with at most 2 parts are precisely those whose

elements have nullity at most 2.

Proposition 4.9. Let λ = (a, b) and µ = (c, d), where a + b = c + d and a > c ≥ d > b. If

N(λ) and N(µ) commute over a field K then c = d and a− b = 2.

Proof. The case that c = d and a− b = 2 has been dealt with in Proposition 4.7 and

the ensuing remark. We may therefore suppose that a− b > 2. Let M ∈ N(λ), and let

{v, vM, . . . , vMa−1, w, wM, . . . , wM b−1} be a cyclic basis for M . Let W = kerMa−2; so W
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is the span of all the basis vectors apart from v and vM . Suppose that Y is nilpotent and

commutes with M ; then it is not hard to see that W ⊆ ker Y a−2. Since Y is nilpotent we have

vY ∈ αvM + W for some α ∈ K.

Suppose first that α 6= 0; then we see that vY a−1 = αa−1vMa−1, while vY a = 0. Hence v is

a cyclic vector for Y of height a. It follows that if the partition associated with Y has only 2

parts then it must be λ.

Suppose alternatively that α = 0, so vY ∈ W . We shall show that nullY ≥ 3, and so the

partition associated with Y has more than 2 parts. First observe that vMa−2 and vMa−1

are in ker Y , since vMa−2Y = vY Ma−2 ∈ WMa−2 = {0}. Furthermore it is easy to show that

vMa−3Y and wM b−1Y both lie in 〈vMa−1〉, and hence a non-zero linear combination of these

two vectors lies in ker Y . We have therefore found three linearly independent vectors in ker Y ,

as required.

The following theorem simply collects together elements of Propositions 4.1, 4.7 and 4.9; it

requires no further proof.

Theorem 4.10. Suppose that λ and µ are partitions of n with at most two parts, and that

N(λ) and N(µ) commute over a field K. Assume without loss of generality that the largest

part of λ is at least as large as the largest part of µ. Then one of the following holds.

(i) λ = µ.

(ii) n = 2m, λ = (n) and µ = (m,m).

(iii) n = 2m, λ = (m + 1,m− 1), µ = (m,m) and, if K is finite then the exponent of

PGL2(K) does not divide m.

(iv) n = 2m + 1, λ = (n) and µ = (m + 1,m).
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