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It is asssumed that the reader is familiar with the linear and bilinear
algebra from the second year core algebra course. The main ‘extra’ that is
needed is the idea of a quotient vector space; this will be familiar to those
who have done B2a algebra, but maybe not to others, so I summarise it
below. It will also be useful to know the statement of Jordan normal form.
We really only need one result from bilinear algebra, with which I think
everyone will be familiar, but it’s repeated below just to make sure.

Highly recommended for alternating or additional reading is Halmos’
book, Finite-Dimensional Vector Spaces.

1 Quotient Spaces and isomorphism theorems

Suppose that W is a subspace of the vector space V . A coset of W is a set
of the form

v + W = {v + w : w ∈ W}.

It is important to realise that unless W = 0, each coset will have many
different labels; in fact, v + W = v′ + W if and only if v − v′ ∈ W .

The quotient space V/W is the set of all cosets of W . This becomes a
vector space, with zero element 0 + W = W , if addition is defined by

(v + W ) + (v′ + W ) = (v + v′) + W for v, v′ ∈ V

and scalar multiplication by

λ(v + W ) = λv + W for v, v′ ∈ V , λ ∈ F .

One must check that these operations are well-defined ; that is, they do
not depend on the choice of labelling elements. Suppose for instance that
v + W = v′ + W . Then, since v − v′ ∈ W , we have λv − λv′ ∈ W for any
scalar λ, so λv + W = λv′ + W .

The following diagram shows the elements of R2/W , where W is the
subspace of R2 spanned by

(
1
1

)
.

1



�
�

�
�

�
�

�
�

�
��

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

W(
1
0

)
+ W

(
0
1

)
+ W

. . .

. . .

The cosets R2/W are all the translations of the line W . One can choose a
standard set of coset representatives by picking any line through 0 (other
than W ) and looking at its intersection points with the cosets of W ; this
gives a geometric interpretation of the isomorphism R2/W ∼= R.

It is often useful to consider quotient spaces when attempting a proof
by induction on the dimension of a vector space. In this context, it can
be useful to know that if v1, . . . , vk are vectors in V such that the cosets
v1 +W, . . . , vk +W form a basis for the quotient space V/W , then v1, . . . , vk,
together with any basis for W , forms a basis for V .

We can now state the isomorphism theorems for vector spaces.

Theorem 1.1. (a) Let V and W be vector spaces and let x : V → W be a
linear map. Then ker x is a subspace of V , im x is a subspace of W , and

V/ ker x ∼= W.

Now let U and W be subspaces of V . (b) (U +W )/W ∼= U/(U∩W ). (c) The
quotient space W/U is a subspace of V/U and (V/U)/(W/U) ∼= V/W .

Proof. (a) Define a map φ : V/ ker x → im x by

φ(v + ker x) = x(v).

This map is well-defined since if v + kerx = v′ + kerx then v − v′ ∈ ker x,
so φ(v + kerx) = x(v) = x(v′) = φ(v′ + kerx). It is routine to check that φ
is linear, injective, and surjective, so it gives the required isomorphism.

For (b) consider the composite of the inclusion map U → U + W with
the quotient map U + W → (U + W )/W . This gives us a linear map
U → (U + W )/W . Under this map, x ∈ U is sent to 0 ∈ (U + W )/W if and
only if x ∈ W , so its kernel is U ∩W . Now apply part (a). Part (c) can be
proved similarly; we leave this to the reader.
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2 Interlude: The Diagonal Fallacy

Consider the following (fallacious) argument. Let V be a 2-dimensional
vector space, say with basis v1, v2. Let x : V → V be the linear map whose
matrix with respect to this basis is(

0 1
0 0

)
.

We claim that if U is an x-invariant subspace of V ; that is, x(U) ⊆ U , then
either U = 0, U = Span{v1}, or U = V . Clearly each of these subspaces is
invariant under x, so we only need to prove that there are no others. But
since x(v2) = v1, Span{v2} is not x-invariant. (QED?)

Here we committed the diagonal fallacy : We assumed that an arbitrary
subspace of V would contain one of our chosen basis vectors. This assump-
tion is very tempting — which perhaps explains why it is so often made1 —
but it is nonetheless totally unjustified. I suspect one reason why people end �

�
�

�

up committing this error is that they get confused with a good way to use
linearity, namely the fact that one can save time and space by only defining
a linear map on elements of a given basis.

3 Jordan Normal Form

Let V be a finite-dimensional complex vector space and let x : V → V be
a linear map. The exercise below outlines a proof that one can always find
a basis of V in which x is represented by an upper triangular matrix. For
many purposes, this result is sufficient. For example, since the eigenvalues
of a matrix in upper triangular form are its diagonal entries, it implies that
a nilpotent map may be represented by a strictly upper triangular matrix,
and so nilpotent maps have trace 0.

Exercise 3.1. Let V be an n-dimensional vector space where n ≥ 1, and let
x : V → V be a linear map.

(i) Show that x has an eigenvector, v say.

(ii) Let U = Span {v}. Show that x induces a linear transformation
x̄ : V/U → V/U . By induction, we know that there exists a basis
{v1 + U . . . vn−1 + U} of V/U in which x̄ has a upper triangular ma-
trix. Prove that {v, v1, . . . , vn−1} is a basis of V and that the matrix
of x in this basis is upper triangular.

1The author’s personal record is hearing the diagonal fallacy committed in three tu-
torials in a row, on two different courses. After reading Kafka’s The Penal Colony an
unpalatable but probably highly successful to the problem occured to him. (See marginal
diagram.)
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Sometimes, however, one needs the full strength of Jordan normal form.
A general matrix in Jordan normal form looks like

A1 0 . . . 0
0 A2 . . . 0
...

...
. . .

...
0 0 . . . Ar

 ,

where each Ai is a Jordan block matrix Jt(λ) for some t ∈ N and λ ∈ C:

Jt(λ) =



λ 1 0 . . . 0 0
0 λ 1 . . . 0 0
0 0 λ . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . λ 1
0 0 0 . . . 0 λ


t×t.

Any linear transformation of a complex vector space can be represented
by a matrix in Jordan normal form. One can successfully use Jordan normal
form without knowing anything about how to prove this; that said, if you
really want a proof you might see www.maths.ox.ac.uk/∼wildon/JNF.pdf.

4 Bilinear Algebra

Definition 4.1. A bilinear form on a vector space V is a map

(−,−) : V × V → F

such that

(λ1v1 + λ2v2, w) = λ1(v1, w) + λ2(v2, w),
(v, µ1w1 + µ2w2) = µ1(v, w1) + µ2(v, w2),

for all vi, wi ∈ V and λi, µi ∈ F .

For example, if F = R and V = Rn, then the usual dot product is a
bilinear form on V .

Given a subset U of a vector space V , we set

U⊥ = {v ∈ V : (u, v) = 0 for all u ∈ U}.

This is always a subspace of V . We say that the form (−,−) is non-
degenerate if V ⊥ = {0}.

There is an important connection between bilinear forms and dual spaces.
Let ϕ : V → V ? be the linear map defined by ϕ(v) = (−, v). That is, ϕ(v)
is the linear map sending u ∈ V to (u, v). If (−,−) is non-degenerate, then
ker ϕ = 0, so by dimension counting, ϕ is an isomorphism from V to V ?.
Hence every element of V ? is of the form (−, v) for a unique v ∈ V ; this is
a special case of the Riesz representation theorem.
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