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Abstract. The k-majority game is played with n numbered balls, each

coloured with one of two colours. It is given that there are at least k

balls of the majority colour, where k is a fixed integer greater than

n/2. On each turn the player selects two balls to compare, and it is

revealed whether they are of the same colour; the player’s aim is to

determine a ball of the majority colour. It has been correctly stated by

Aigner that the minimum number of comparisons necessary to guarantee

success is 2(n − k) − B(n − k), where B(m) is the number of 1s in the

binary expansion of m. However his proof contains an error. We give an

alternative proof of this result, which generalizes an argument of Saks

and Werman.

1. Introduction

Fix n and k ∈ N with k > n/2. The k-majority game is played with n

numbered balls which are each coloured with one of two colours. It is given

that there are at least k balls of the majority colour. On each turn the player

selects two balls to compare, and it is revealed whether they are of the same

colour, or of different colours. The player’s objective is to determine a

ball of the majority colour. We write K(n, k) for the minimum number of

comparisons that will guarantee success. We write B(m) for the number of

digits 1 in the binary representation of m ∈ N0. The object of this paper is

to prove the following theorem.

Theorem 1. If n, k ∈ N and k ≤ n then K(n, k) = 2(n− k)−B(n− k).

This theorem has been stated previously, as Theorem 3 of [1, page 14].

We believe, however, that there is a flaw in the proof offered there of the

lower bound for K(n, k), i.e. the fact that 2(n− k)−B(n− k) comparisons

are necessary. The error arises in Case (ii) of the proof of Lemma 1, in which

it is implicitly assumed that if it is optimal at some point for the player to

compare balls i and t, then there exist two balls j and ` which it is optimal

to compare on the next turn, irrespective of the answer received when balls

i and t are compared. The proof of Theorem 3 requires an analogue of

Lemma 1, stated as Lemma 3, which inherits the same error. The argument
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for Lemma 1 of [1] is based on Lemma 5.1 in [9], which contains the same

flaw; the authors are grateful to Prof. Aigner and Prof. Wiener for confirming

these errors.1

In [8], Saks and Werman have shown that K(2m+1,m+1) = 2m−B(m).

(An independent proof, using an elegant argument on the game tree, was

later given by Alonso, Reingold and Schott [3].) The original contribution

of this paper is to supply a correct proof that 2(n− k)−B(n− k) questions

are necessary in the general case, by generalizing the argument of Saks and

Werman [8].

We remark that an alternative setting for the majority problem replaces

the n balls with a room of n people. Each person is either a knight, who

always tells the truth, or a knave, who always lies. The question ‘Person i,

is person j a knight?’ corresponds to a comparison between balls i and j.

(The asymmetry in the form of the questions is therefore illusory.) In [1,

Theorem 6], Aigner gives a clever questioning strategy which demonstrates

that 2(n − k) − B(n − k) questions suffice, even when knaves are replaced

by spies (Aigner’s unreliable people), who may answer as they see fit. He

subsequently uses his Lemma 3 to show that 2(n− k)−B(n− k) questions

are also necessary; our Theorem 1 can be used to replace this lemma, and

so repair the gap in the proof of Theorem 6 of [1].

We refer the reader to [1] and the recent preprint [4] for a number of

results on further questions that arise in this setting. Many variants of

the problem have been studied, for instance involving balls of more than

two colours (see [2]), or with comparisons involving more than two balls

(see [6]).

2. Preliminary reformulation

We begin with a standard reformulation of the problem that follows

[1, §2]. In the special case n = 2m + 1 and k = m + 1, it may also be

found in [8, §4] and [9, §2, §3]. A position in a k-majority game corresponds

to a graph on n vertices, in which there is an edge, labelled either ‘same’

or ‘different’, between vertices i and j if balls i and j have been compared.

Each connected component of this graph admits a unique bipartition into

parts corresponding to balls of the same colour. If C is a component with

bipartition {X,Y } where |X| ≥ |Y | then we define the weight of C to be

|X| − |Y |.
The weights of the distinct components of the graph contain all of the

essential information about the position, and we may therefore reformulate

the k-majority game as a two player adversarial game played on multisets of

non-negative integers. We shall call these multisets positions and their ele-

ments weights. The players will be known as the Selector and the Assigner.

1Personal communications.
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The starting position is the multiset {1, . . . , 1} containing n elements, cor-

responding to the n trivial connected components of the null graph on n

vertices.

In each turn, the Selector selects two distinct multiset elements w and w′,

with w ≥ w′, and the Assigner chooses to replace them with either w + w′

or w − w′. This corresponds to the situation in the original game when a

ball from a component C of weight w is compared to a ball from a different

component C ′ of weight w′; the components C and C ′ become connected

by an edge, and the new component thus formed has weight either w + w′

or w − w′ depending on the result of the comparison. Since comparisons

of balls in the same component give no information, we need only consider

comparisons of this type.

We require a victory condition for the Selector. Let e = k − (n − k)

be the minimum possible excess of the majority colour over the minority

colour, and let w1, . . . , wc be the weights in a given position. (We shall

always assume that the weights are listed in non-increasing order, so that

wi ≥ wi+1.) We remark that
∑

iwi ≡ n mod 2, since this is true of the

initial position, and since the parity of the sum of weights is preserved at

each turn. Hence w1 + · · ·+ wc = 2s+ e for some s ∈ N0.

Suppose that the balls in the larger part of the component of (largest)

weight w1 are of the minority colour. Then we see that w1 ≤ s, since we

must have −w1 + w2 + . . . + wc ≥ e. (This observation is equivalent to

equation (14) in [1].) It follows that the Selector wins as soon as a position

M = {w1, . . . , wc} is reached such that

w1 ≥ s+ 1,

where s is determined by 2s+ e = w1 + · · ·+ wc, since in this situation the

balls in the larger part of the largest weight component are known to have

the majority colour. Following [8], we say that such a position M is final.

Our concern is with the number of turns required for victory. We observe

that the cardinality of the multiset is reduced by 1 at each turn, and so if the

position is M = {w1, . . . , wc}, then the number of turns that have elapsed

is n − c. We define the value of a general position M to be the number of

elements in a final position reached from M , assuming, as ever, optimal play

by both sides. We denote the value of M by V (M).

The result we require, that 2(n−k)−B(n−k) questions are necessary to

identify a ball of the majority colour in the k-majority game, is equivalent

to the following proposition.

Proposition 2. Let n ∈ N and let k > n/2. The value of the starting

position in the k-majority game is at most B(n− k) + k − (n− k).
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3. Generalized Saks–Werman statistics

If M is a position in a majority game and N is a submultiset of M then

we shall say that N is a subposition of M . Let N̄ denote the complement

of N in M and let ||M || denote the sum of all the elements of M . Let

εM (N) = ||N̄ || − ||N ||. For e ∈ N and a position M such that ||M || and e

have the same parity, we define

δe(M) =
∑
N

εM (N)≥e

(−1)||N ||.

Thus a subposition of M contributes to δe(M) if and only if it corresponds

to a colouring of the balls in which the excess of the majority colour over

the minority colour is at least e. We note that when e = 1 we have δ1(M) =

−fM (−1) where fM is the polynomial defined in [8, page 386]. (The reason

for working with minority subpositions rather than majority subpositions,

as in [8], will be seen in the proof of Lemma 6.)

The following lemma is a generalization of [8, Lemma 4.2].

Lemma 3. Let M be a position and let e have the same parity as ||M ||.
Let w,w′ ∈M be two elements of M with w ≥ w′. Let M+ and M− be the

positions obtained from M if w and w′ are replaced with w+w′ and w−w′,
respectively. Then

δe(M) = δe(M
+) + (−1)w

′
δe(M

−).

Proof. Let N be a subposition of M such that εM (N) ≥ e and let N? =

N\{w,w′}. We consider four possible cases for N .

(a) If w ∈ N and w′ ∈ N then ||N || = ||N?∪{w,w′}|| = ||N?∪{w+w′}||
and εM (N) = εM+(N? ∪ {w + w′}).

(b) If w 6∈ N and w′ 6∈ N then ||N || = ||N?|| and εM (N) = εM+(N?).

(c) If w ∈ N and w′ 6∈ N then ||N || = ||N?∪{w}|| = ||N?∪{w−w′}||+w′

and εM (N) = εM−(N? ∪ {w − w′}).
(d) If w 6∈ N and w′ ∈ N then ||N || = ||N? ∪ {w′}|| = ||N?|| + w′ and

εM (N) = εM−(N?).

Thus δe(M
+) =

∑
N (−1)||N || where the sum is over all subpositions N of M

such that εM (N) ≥ e and either (a) or (b) holds, and (−1)w
′
δe(M

−) =∑
N (−1)||N || where the sum is over all subpositions N of M such that

εM (N) ≥ e and either (c) or (d) holds. �

We now define a family of further statistics. For e ∈ N and a position M

such that ||M || and e have the same parity, define δ
(1)
e (M) = δe(M), and

for b ∈ N such that b ≥ 2 define recursively

δ(b)e (M) =
∑
t∈N0

δ
(b−1)
e+2t (M).
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For an alternative expression for δ
(b)
e (M) see Lemma 6.

We note that if e+2t > ||M || then δ
(b−1)
e+2t (M) = 0, and so the sum defining

δ
(b−1)
e (M) is finite. Since we only need positions whose sum of elements is at

most n, it follows by induction on b that δ
(b)
e is a linear combination of the

statistics δd for d ≥ e. Hence, if M , M+, M− and w, w′ are as in Lemma 3,

we have

(?) δ(b)e (M) = δ(b)e (M+) + (−1)w
′
δ(b)e (M−).

For r ∈ N let P (r) denote the highest power of 2 dividing r and let

P (0) =∞. Let

SW (b)
e (M) = e+ P

(
δ(b)e (M)

)
where, as expected, we set e+∞ =∞. Our key statistic is now

SWe(M) = SW (e)
e (M).

We remark that if ||M || is odd then SW1(M) = Φ(M) where Φ(M) is as

defined in [8, page 386].

In §5 below we prove Proposition 2 by using SWe(M) to prove an upper

bound on the value V (M) of a position M . The key properties of SWe(M)

we require are (?) and the values of SWe(M) at starting and final positions.

Starting positions are dealt with in the following lemma, whose proof uses

the basic identity
∑s

r=0(−1)r
(
n
r

)
= (−1)s

(
n−1
s

)
; see [5, Equation 5.16].

Lemma 4. Let Mstart be the multiset containing 1 with multiplicity n. Sup-

pose that n = 2s + e where s, e ∈ N. Then for any b ∈ N such that b ≤ n

we have

δ(b)e (Mstart) = (−1)s
(
n− b
s

)
.

Proof. When b = 1 we have δ
(1)
e = δe. A subposition N of Mstart contributes

to the sum defining δe(M) if and only if ||N || ≤ s. Therefore

δ(1)e (M) =
s∑

r=0

(−1)r
(
n

r

)
= (−1)s

(
n− 1

s

)
.

If b ≥ 2 then, by induction, we have

δ(b)e (M) =
∑
t∈N0

δ
(b−1)
e+2t (M) =

s∑
t=0

(−1)s−t
(
n− (b− 1)

s− t

)
= (−1)s

(
n− b
s

)
again as required. �

It follows that if Mstart, s and e are as in Lemma 4, then SWe(Mstart) =

e + P
((

2s
s

))
. It is well known that P

((
2t
t

))
= B(t) for any t ∈ N. (Two

different proofs are given in [2] and [4].) Hence

(†) SWe(Mstart) = e+B(s).
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4. Final positions

Let e = k − (n− k). In this section we show that if M is a final position

containing exactly c elements then SWe(M) ≥ c. The proof uses the hyper-

derivative on the ring Z[x, x−1] of integral Laurent polynomials, defined on

the monomial basis for Z[x, x−1] by

D(r)xp =

(
p

r

)
xp−r

for p ∈ Z and r ∈ N0. (This extends the usual definition of the hyper-

derivative for polynomial rings, given in [7, page 303].) The key property

we require is the following small generalization of [7, Lemma 6.47].

Lemma 5. Let f, g ∈ Z[x, x−1] be Laurent polynomials. Let r ∈ N. Then

D(r)(fg) =

r∑
t=0

D(t)(f)D(r−t)(g).

Proof. By bilinearity it is sufficient to prove the lemma when f = xp and

g = xq where p, q ∈ Z. In this case the lemma follows from(
p+ q

r

)
=

r∑
t=0

(
p

t

)(
q

r − t

)
which is the Chu–Vandermonde identity; see [5, Equation 5.22]. �

We also need an alternative expression for δ
(b)
e (M). Let αr(M) be the

number of subpositions N of a position M such that ||N || = r. The proof of

the next lemma uses the basic identity
∑n

d=r

(
d
r

)
=
(
n+1
r+1

)
; see [5, Table 174].

Lemma 6. Let M be a position such that ||M || = 2s+ e. Then

δ(b)e (M) =

s∑
r=0

(
s+ b− 1− r

b− 1

)
(−1)rαr(M).

Proof. When b = 1, we have δ
(1)
e (M) = δe(M) =

∑s
r=0(−1)rαr(M). If

b ≥ 2, then by induction, we have

δ(b)e (M) =
∑
t∈N0

δ
(b−1)
e+2t (M)

=
s∑

t=0

s−t∑
r=0

(
s− t+ b− 2− r

b− 2

)
(−1)rαr(M)

=
s∑

r=0

s−r∑
t=0

(
s− t+ b− 2− r

b− 2

)
(−1)rαr(M)

=

s∑
r=0

(
s+ b− 1− r

b− 1

)
(−1)rαr(M)

as claimed. �
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Now let M = {w1, . . . , wc} be a final position in the k-majority game

where w1 ≥ . . . ≥ wc. Let ||M || = 2s+ e. As remarked in §2, we have

w1 ≥ s+ 1.

Let

g = xs+e−1(1 + x−w2) . . . (1 + x−wc).

and note that, since w2 + · · ·+ wc ≤ s+ e− 1, g is a polynomial. Let

g =
s+e−1∑
r=0

α′r(M)xs+e−1−r.

If r ≤ s then a subposition N of M such that ||N || = r cannot contain

w1. Therefore α′r(M) = αr(M) whenever r ≤ s. It follows that

(D(e−1)g)(−1) =

s∑
r=0

(
s− r + e− 1

e− 1

)
(−1)s−rαr(M).

Hence, by Lemma 6, we have

(D(e−1)g)(−1) = δ(e)e (M).

(The normal derivative would introduce an unwanted (e−1)! at the point.) It

follows from Lemma 5, applied to the original definition of g, that D(e−1)(g)

is a linear combination, with coefficients in Z, of Laurent polynomials of the

form

h = xs+e−1−a1
∏
i∈A

x−wi−ai
∏
j∈B

(1 + x−wj )

where A is a subset of {2, . . . , c}, B = {2, . . . , c}\A, ai ∈ N0 for each i, and

a1 +
∑

i∈A ai = e − 1. It is clear that h(−1) = 0 unless wj is even for all

j ∈ B, in which case h(−1) = ±2|B|. Since |B| ≥ (c− 1)− (e− 1) = c− e,
it follows that P

(
h(−1)

)
≥ c− e for all such Laurent polynomials h. Hence

(‡) SWe(M) = e+ P
(
δ(e)e (M)

)
= e+ P

(
(D(e−1)g)(−1)

)
≥ c

as claimed at the start of this section.

5. Proof of Proposition 2

We are now ready to prove Proposition 2. Let e = k − (n − k) be the

minimum excess of the majority colour over the minority colour in the k-

majority game with n balls.

Let M be a position. Suppose that an optimal play for the Selector is to

choose w and w′ ∈ M . Since the Assigner wishes to minimize the number

of elements in the final position, we have

V (M) = min
(
V (M+), V (M−)

)
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where M+ and M− are as defined in Lemma 3. If x, y ∈ Z then P (x+ y) ≥
min

(
P (x), P (y)

)
. Hence (?) in §3 implies that

SWe(M) ≥ min
(
SWe(M

+), SWe(M
−)
)
.

By (‡) at the end of §4, if M is a final position containing c elements then

SWe(M) ≥ c. In this case V (M) = c, so we have SWe(M) ≥ V (M). It

therefore follows by induction that

SWe(M) ≥ V (M)

for all positions M . It was seen in (†) at the end of §3 that if Mstart is the

starting position then SWe(Mstart) = B(n− k) + e and so

B(n− k) + e ≥ V (Mstart)

as required.

6. Final remark

We end by showing that the statistics SWe(M) do not predict all optimal

moves for the Assigner. We need the following lemma in the case when n

is odd; it can be proved in a similar way to Lemma 4. We use exponential

notation for multiplicities in multisets; so for instance, {1n} denotes the

multiset containing the element 1 with multiplicity n.

Lemma 7. For any m ∈ N we have

SW1

(
{2, 12m−1}

)
=

{
2 +B(m− 1) + P (m− 1) if m is odd

2 +B(m− 1)− P (m) if m is even.

Let m ≡ 3 mod 4 and let M = {12m+1} be the starting position in the

majority game with n = 2m+ 1 and k = m+ 1. The positions the Assigner

can choose between on the first move in the game are M+ = {2, 12m−1} and

M− = {12m−1, 0}. By Lemma 7, we have

SW1(M
+) = 2 +B(m− 1) + P (m− 1) = 3 +B(m− 1) = 2 +B(m).

It is clear that removing a zero element from a position decreases its SW1

statistic by 1, so by (†) at the end of §3 we have

SW1(M
−) = 1 + SW1({12m−1}) = 1 + 1 +B(m− 1) = 1 +B(m).

Using the SW1 statistic, the Assigner will therefore choose M− on the first

move. However Lemma 7 implies that SW1({2, 12m−3, 0}) = 1 +B(m), and

we have already seen that SW1

(
{12m−1}

)
= B(m). It follows that playing

to M+ is also an optimal move for the Assigner.
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