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Number systems

This course will give a straightforward introduction to the fun-
damental number systems used in mathematics: the natural num-
bers N, the integers Z, the rational numbers Q, the real num-
bers R, the complex numbers C, the integers modulo a prime Zp,
and others. In parallel, we will develop the basic language of pure
mathematics: sets, functions, relations, propositions, etc.

Outline.

(A) Complex numbers: Complex numbers and calculations
with them. Argand diagram. Polar form. Complex ex-
ponential function and eiθ = cos θ + i sin θ. Roots and
quadratic equations.

(B) The integers and induction: Induction and Σ notation.
Division algorithm: n = qa + r. Euclidean algorithm and
greatest common divisors. Prime factorization and the
Fundamental Theorem of Arithmetic. Binary and other
bases.

(C) Propositions, sets and relations: Propositions and
truth tables. Sets: union, intersection, complement, prod-
uct. Venn diagrams. de Morgan’s laws. Injective, surjec-
tive and bijective maps. Compositions. Inverses. Rela-
tions and equivalence relations.

(D) Groups, rings and fields: Modular arithmetic and Zn.
The field Zp for a prime p. The ring F [x] of polynomials
over a field F . Analogy with Z: division algorithm, re-
mainder theorem, greatest common divisors. The ring of
2× 2-matrices over a field.

Recommended Reading.

[1] How to think like a mathematician. Kevin Houston, Cam-
bridge University Press, 2009.

[2] A concise introduction to pure mathematics. Martin Liebeck,
Chapman and Hall, 2000.

[3] Discrete Mathematics. Norman L. Biggs, Oxford Univer-
sity Press, 2002.

As part of problem sheets you will be asked to do some reading
from How to think like a mathematician. The library has copies
of this book on short-term loan.
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Problem sheets. There will be 8 marked problem sheets; the
first will be due in on Thursday 11th October. To encourage you
to work hard throughout the term, each problem sheet is worth
1.25% of your overall grade. Note that this mark is awarded for
any reasonable attempt at the sheet. (There is a link on Moodle
to the document explaining this policy in more detail.)

Exercises in these notes. Exercises set in these notes are mostly
simple tests that you are following the material. (Any harder ex-
ercises will be clearly indicated.) Some will be used for quizzes in
lectures. Doing the others will help you to review your notes.

Optional questions. The ‘Bonus question’ at the end of each
problem sheet, and any other optional questions, are for interest
and to give you practice in problem solving. You should not worry
if you find them difficult.

If you can do the compulsory questions on problem sheets,
know the definitions and main results from lectures, and
can prove the theorems whose proofs are marked as exam-
inable, then you should do very well in the examination.
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Part A

1. Introduction: sets and numbers

Sets. The course begins with its least respectable definition.1

Definition 1.1. A set is any collection of objects. These objects
are called the elements of the set.

The italics indicate that it is the technical terms ‘set’ and ‘ele-
ments’ that are being defined above.

One way to specify a set is to put a list of its elements in-
side a pair of curly braces. For example {1, 4, 9, 16, 25} is a set.
Alternatively we may describe a set in words. For example,

the set of square numbers that are less than or equal to 25

is another way to specify {1, 4, 9, 16, 25}.
If X is a set and x is an element of X then we write x ∈ X.

When speaking this is usually read as ‘x is in X’. If y is not an ele-
ment of X then we write y 6∈ X. For example, 9 ∈ {1, 4, 9, 16, 25}
and 8 6∈ {1, 4, 9, 16, 25}.

We will look at sets in more detail in Part C of the course.

Exercise 1.2. True or false?
(i) 29 is an element of the set of prime numbers;

(ii) 87 is an element of the set of prime numbers;
(ii) {2, 3, 5, 7, 11} = {5, 7, 11, 2, 3};
(iv) Julian Assange is an element of the set of people who live

in the Ecuadorian Embassy to the UK.

The natural numbers. We write N for the set of natural num-
bers:

N = {1, 2, 3, 4, . . .}.
One important property of the natural numbers is that if m,n ∈ N
then m + n ∈ N and mn ∈ N. Because of this we say that N is
closed under addition and multiplication.

More generally, we make the following definition.

Definition 1.3. Let X be a set of numbers. We say that X is
closed under addition if x + y ∈ X whenever x ∈ X and y ∈ X.
The terms closed under multiplication and closed under subtrac-
tion are defined analogously. We say that X is closed under divi-
sion if x/y ∈ X whenever x ∈ X, y ∈ X and y 6= 0.

1If most mathematicians were put in charge of building a skyscraper, they
would put the foundations in last.
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Exercise 1.4. Is the set N of natural numbers closed under (i) mul-
tiplication; (ii) subtraction; (iii) division?

Integers, rational numbers and real numbers. We write Z
for the set of integers (also called whole numbers):

Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .}.
The integers are closed under subtraction, but not division.

We write Q for the set of all rational numbers (also called frac-
tions). More formally, Q is the set of all numbers that can be
expressed as p/q where p, q ∈ Z and q 6= 0.

For example, 0 ∈ Q, 1/2 ∈ Q, −3 ∈ Q. In Part B we will show
that

√
2 6∈ Q. In words:

√
2 is irrational.

We write R for the set of real numbers, thought of as all points
on the real number line. So 0 ∈ R, −1/2 ∈ R,

√
2 ∈ R, π ∈ R.

The rational numbers and the real numbers are closed under
addition, subtraction, multiplication and division.

Complex numbers. If x ∈ R then x2 ≥ 0. So the equation
x2 = −1 has no solutions in R. To solve this equation we must
pass to the larger set of complex numbers.

Definition 1.5. A complex number is an expression of the form
a+ bi where a, b ∈ R and i is a special symbol with the property
that i2 = −1. The expression a + bi is said to be in Cartesian
form. We write C for the set of complex numbers.

For example, 3 − 2i and 1 + i
√

2 are complex numbers. (It is
fine to write a + ib instead of a + bi.) It is usual to write bi, or
ib, instead of 0 + bi, and a instead of a+ 0i. So real numbers are
just a special sort of complex number.

All the usual rules for adding, subtracting, multiplying and di-
viding complex numbers follow from the property that i2 = −1.
For instance, if a+ bi and c+ di are complex numbers then

(a+ bi) + (c+ di) = (a+ c) + (b+ d)i

(a+ bi)(c+ di) = (ac− bd) + (ad+ bc)i.

The analogous formula for subtraction should be clear. For divi-
sion see Exercise 1.8. Therefore the complex numbers are closed
under addition, subtraction, multiplication and division.
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Argand diagrams. We represent complex numbers by points
in a plane (called an Argand diagram) as shown below.

−2 −1 0 1 2 3 4

−2i

−i

i

2i

3i

4i

2 + i

3 + 4i

√
2− i

−1 + 2i

Definition 1.6. If z = a + bi then we say that a is the real part
of z and that b is the imaginary part of z, and write Re z = a,
Im z = b. The complex conjugate of a+ bi is a− bi. The modulus
of a+ bi is

√
a2 + b2.

When speaking, it is usual to read |z| as ‘mod z’, Please do not
use this in writing: write ‘|z|’ or ‘the modulus of z’ instead. The
plural of modulus is ‘moduli’.

Claim 1.7. Let z, w ∈ C. Then
(i) zz = |z|2 and |zw| = |z||w|.

(ii) z̄ = z,

(iii) z + w = z + w, zw = z w, and z/w = z/w.

Exercise 1.8. Note that by Claim 1.8(i), if z ∈ C and z 6= 0 then

1/z = z̄/zz̄ = z̄/|z|2.
Use this to write 1/(c+di) and (a+bi)/(c+di) in Cartesian form.

Polar form of a complex number. Any non-zero complex
number z can be written in the form

z = r(cos θ + i sin θ)

where r > 0 and θ is an angle. This is called the polar form of z.
Observe that |z| = r. In this course all angles are measured in
radians!
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Definition 1.9. If z = r(cos θ + i sin θ) then we say that θ is
an argument of z, and write θ = arg(z).

Suppose that θ is an argument of z ∈ C. Then, since sin and
cos are periodic with period 2π, θ + 2nπ is also an argument for
any n ∈ Z. In fact, the set of angles that are arguments of θ is

{. . . , θ − 4π, θ − 2π, θ, θ + 2π, θ + 4π, . . .}.

Definition 1.10. Let z be a non-zero complex number. If z =
r(cos θ + i sin θ) where −π < θ ≤ π, then we say that θ is the
principal argument of z, and write θ = Arg(z).

Example 1.11. Let z = 1 + i
√

3. Then Arg(z) = π/3 and the
polar form of z is z = 2(cosπ/3 + i sinπ/3).

There is an easy way to multiply and divide complex numbers
written in polar form.

Claim 1.12. Let z = r(cos θ + i sin θ) and w = s(cosφ + i sinφ)
be complex numbers in polar form. Then

zw = rs
(
cos(θ + φ) + i sin(θ + φ)

)
.

Exercise 1.13. Let z, w be as in Claim 1.12 and suppose that
w 6= 0. Find a similar expression for the polar form of z/w.

It is important, but maybe not very surprising, that the ratio-
nal, real and complex numbers are each closed under addition,
subtraction, multiplication and division. Here is a more surpris-
ing example, similar to Question 3(e) on Sheet 1. (Examples of
this sort are important in number theory.)

Example 1.14. Let K be the set of all real numbers of the form
a + b

√
2, where a, b ∈ Q. Then K is closed under addition, sub-

traction, multiplication and division.

2. Properties of complex numbers

Exponential function. Some motivation for the following def-
inition will be given in lectures.

Definition 2.1. Given z = a+ bi ∈ C, we define

exp z = ea(cos b+ i sin b).

We call exp the complex exponential function.
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The ex in Definition 2.1 is an instance of the the usual real
exponential function. Often we will write ez instead of exp z.

Putting z = iθ in Definition 2.1 we get the very useful Euler’s
formula:

eiθ = cos θ + i sin θ.

We immediately prove the most important property of the com-
plex exponential function.2

Lemma 2.2. Let z, w ∈ C. Then

exp(z + w) = exp z expw.

Trigonometric identities. Putting z = iπ in Definition 2.1
(or θ = π in Euler’s formula) gives

eiπ = −1.

In the form eiπ + 1 = 0, this identity unifies five fundamental
mathematical constants.3

Euler’s formula gives quick proofs of the multiple-angle trigono-
metric identities.

Example 2.3. Take the special case of Euler’s formula that

cos 3θ + i sin 3θ = e3iθ.

Rewrite the right-hand side as (eiθ)3 = (cos θ + i sin θ)3, expand,
and then compare real and imaginary parts to get

cos 3θ = 4 cos3 θ − 3 cos θ

sin 3θ = −4 sin3 θ + 3 sin θ.

Exercise 2.4. Use Euler’s formula for eiθ to show that

cos θ =
1

2

(
eiθ + e−iθ

)
sin θ =

1

2i

(
eiθ − e−iθ

)
.

2This property is needed to justify writing exp z as ez, since from the ez

form, it certainly seems reasonable to expect that ez+w = ezew will hold.
Note that the previous sentence is not a proof of Lemma 2.2: for a proof we
have to use the definition of exp z, as given Definition 2.1.

3According to a survey in 1988 of 68 readers of The Mathematical Intelli-
gencer, this is the most beautiful result in mathematics. The close runner-up
was Euclid’s theorem that there are infinitely many primes.
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Exponential form of a complex number and roots. Let
z ∈ C. Suppose that z has polar form z = r(cos θ + i sin θ) where
r = |z| and θ is an argument of z. Then z = reiθ. This is called
the exponential form of z.

Exponential form is very useful for finding n-th roots of complex
numbers.

Problem 2.5. Find the complex numbers z such that z3 = 8i.
Solution: the argument of 8i is π/2, so in exponential form we
have 8i = 8eiπ/2. If z = reiθ then z3 = r3ei3θ. So we need to solve

r3ei3θ = 8eiπ/2

for r and θ. Comparing moduli, we get r = 2. Comparing argu-
ments, using the discussion after Definition 1.9, we see that

3θ = π/2 + 2nπ

for some n ∈ Z. Hence θ = π/6 + 2nπ/3. Since ei2nπ/3 = 1 if n is
a multiple of 3, only three of these solutions are different. Taking
n = 0, 1, 2 gives the three solutions

z = 2eiπ/6, 2ei5π/6, 2ei3π/2.

shown below on an Argand diagram.

−2 0 2

2ei3π/2
=−2i

2i

2eiπ/62ei5π/6

You should draw a diagram whenever you do a problem of this
sort. The rotational symmetry in the roots helps to check that
your answer is correct, and that no roots have been overlooked.

In general, a non-zero complex number has n distinct n-th roots.

Exercise 2.6.4 A particle starts at 1 ∈ C and moves vertically
upwards, parallel to the imaginary axis, so that its position at
time t is z(t) = 1+i2πt. The exponential function is applied to the
particle, so that its transformed position at time t is exp

(
z(t)

)
=

exp(1 + i2πt). What shape does the transformed particle trace
out?

4You should find ten minutes to work on this exercise, even if you have
ignored all the others.
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Log of a complex number. Let z = reiθ be a complex number
in exponential form. If z = 0 then there is no w ∈ C such that
ew = z. If z 6= 0 then the equation ew = z holds for all w =
a+ bi ∈ C such that a = log r and b = θ + 2πn, for some n ∈ Z.

For z = reiθ with z 6= 0, we denote by log z any number of the
form w = log r + i(θ + 2πn) for some n ∈ Z.

Quadratic equations. You are probably familiar with how to
solve quadratic equations over the real numbers. Essentially the
same method works over C. Exponential form can be used to find
the necessary square root.

Claim 2.7. Let a, b, c ∈ C and suppose that a 6= 0. The solutions
to the quadratic equation az2 + bz + c = 0 are

z =
−b±D

2a

where D ∈ C satisfies D2 = b2 − 4ac.

Example 2.8. The equation z2−2z+ (1− i/2) = 0 has solutions
3/2 + i/2 and 1/2− i/2.

Fundamental Theorem of Algebra. The proof of this the-
orem is beyond the scope of this course.5

Theorem 2.9 (Fundamental Theorem of Algebra). Let n ∈ N
and let a0, a1, . . . , an ∈ C with an 6= 0. Then the equation

anz
n + an−1z

n−1 + · · ·+ a1z + a0 = 0

has a solution in C.

We will see later in Part D of the course that it easily fol-
lows from the Fundamental Theorem of Algebra that there exist
w1, w2, . . . , wn ∈ C such that

anz
n +an−1z

n−1 + · · ·+a1z+a0 = an(z−w1)(z−w2) . . . (z−wn).

Exercise 2.10. Find all solutions to the quartic equation z4 +
2z3 + 3z2 + 4z + 2 = 0. (Hint: one solution is in Z.)

5A fairly elementary (in the sense of not needing too much background
knowledge, not in the sense of being easy) was given by D’Alembert in 1746
and simplified by Argand in 1804. A good account is available online here:
www.cs.amherst.edu/~djv/FTAp.pdf. There are now many other proofs,
using ideas from every branch of pure mathematics.
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Part B

3. Induction and Sigma Notation

Propositions. A proposition is a self-contained statement which
is either true or false.

Example 3.1. Let P be the statement ‘The integers are closed
under addition’. Then P is a proposition and P is true. Let Q
be the statement ‘There is a real number x such that x2 + 1 = 0.
Then Q is a proposition and Q is false.

Some statements are too vague or subjective to be proposition.
For example ‘3 is a pleasant sort of number’ or ‘houses in Engle-
field Green are too expensive’.

Predicates. Here is another statement which is not a proposi-
tion: ‘n ≥ 3’. This statement is not a proposition because it is
not self-contained: we cannot determine whether it is true or false
without knowing what n is.

Definition 3.2. A predicate is a statement which depends on a
variable n, and which becomes a proposition for each choice of n
from a specified set.

Example 3.3. Let P (n) denote the statement ‘n2 + n + 41 is a
prime number’. Then P (n) is a predicate. Substituting particular
natural numbers for n we get a sequence of propositions:

P(1): 12 + 1 + 41 is a prime number,

P(2): 22 + 2 + 41 is a prime number,

P(3): 32 + 3 + 41 is a prime number,

and so on. In this case P (1), P (2), . . . , P (39) are all true proposi-
tions. But P (40) and P (41) are false.6

6For expression n2 + n + 41 continues to generate prime numbers with
an unusually high frequency for larger n. For reasons that are beyond
the scope of this course, this is related to the fact that the discriminant

of the polynomial x2 + x + 41 is 12 − 4 × 41 = −163 and eπ
√
163 =

2262537412640768743.99999999999925 . . . is exceptionally close to an integer.
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Example 3.4. Some more examples of predicates are

P (n) : 1 + 2 + · · ·+ n =
n(n+ 1)

2
;

Q(x) : x+ 1 ≥ x;

T (n) : 4n ≥ 4n.

For Q(x) the intended values for x are all real numbers. For the
others, the intended values for n are all natural numbers.

The Principle of Mathematical Induction. Let P (n) be
a predicate defined for n ∈ N, so P (1), P (2), . . . are propositions.
The Principle of Mathematical Induction states that if

(i) P (1) is true and
(ii) for each n ∈ N, if P (n) is true then P (n+ 1) is true;

then P (n) is true for all n ∈ N.

Examples. Here are three examples of how to use the Princi-
ple of Mathematical Induction to prove results about the natural
numbers. Please fill in the gaps in the proof of Claim 3.5.

Claim 3.5. For all n ∈ N we have

1 + 2 + · · ·+ n =
n(n+ 1)

2

Proof. Let P (n) be the predicate

P (n) :

The proposition P (1) is ‘1 =
1(1 + 1)

2

′

. Clearly this is .

We now assume that the proposition P (2) is true. So, by assump-
tion

1 + 2 + · · ·+ n =

Adding we get

1 + 2 + · · ·+ n+ 1 =

Hence is true. We have shown that P (1) is true,
and that P (n) implies P (n+1) for each n ∈ N. So by the Principle
of Mathematical Induction, P (n) is true for all n, as required. �
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You may prefer to abbreviate the final two sentences, and write:
‘Hence by induction, P (n) is true for all n’. Do not write ‘and so
on’ as a substitute for ‘by induction on n’.

Claim 3.6. For n ∈ N let P (n) be the predicate

P (n) : 22n − 1 is a multiple of 3.

Then P (n) is true for all n ∈ N.

The case we prove to get the induction started is called the base
case, and the argument to go from P (n) to P (n+ 1) is called the
inductive step. In the statement of the Principle of Mathematical
Induction above, the base case was the statement P (1) for n = 1.
Sometimes it is necessary to take a different value of n for the
base case.

Claim 3.7. If n ∈ N and n ≥ 4 then 2n ≥ 4n.

Here is a more substantial example of induction.

Problem 3.8 (Towers of Hanoi). You are given a board with
three pegs. On peg A there are n discs of strictly increasing
radius. The starting position for a four disc game is shown below.

A B C

A move consists of taking a single disc from one peg, and moving
it to another peg. At no point may a larger disc be placed on top
of a smaller disc. Your aim is to transfer all the discs from peg A
to one of the other pegs. How many moves are required?

Exercise 3.9. Prove by induction on n that no solution to the
Towers of Hanoi Problem can use fewer moves than the solution
found in lectures.

Exercise 3.10. Let z ∈ C. Prove by induction on n that zn = zn

for all n ∈ N. [Hint: for the inductive step, use that zw = z w, as
shown in Question 5 on Sheet 1.]
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Sigma notation. If a1, . . . an are complex numbers then we write
their sum as

a1 + · · ·+ an =
n∑
k=1

ak.

The right-hand side may be read as

‘the sum of ak as k varies from 1 to n’

or ‘sigma ak for k from 1 to n’. we say that k is the summation
variable. At A-level you might have written

∑n
1 ak for this sum.

This can be ambiguous. For example, if m,n ∈ N then

1m + 2m + · · ·+ nm =
n∑
k=1

km.

If instead we write
∑n

1 k
m for the sum then it is no longer clear

that k should vary while m is fixed.

Example 3.11. Let z be a complex number. Then

(i)
∑n

k=1 z = nz;
(ii)

∑n
k=1 k = n(n+ 1)/2;

(iii)
∑n

k=0 n = (n+ 1)n.

Rules for manipulating Sigma notation.

(1) The summation variable can be renamed:
∑n

k=0 2k =
∑n

j=0 2j.

(2) In a product, expressions not involving the summation
variable can be taken outside the sum:

n∑
j=0

5(j + 1)2 = 5
n∑
j=0

(j + 1)2

and
n∑
j=0

5m(j +m)2 = 5m
n∑
j=0

(j +m)2.

(3) Sums can be split up:
n∑
j=0

(2j + j2) =
n∑
j=0

2j +
n∑
j=0

j2,

and terms taken out:
∑n

k=0 ak = a0 +
∑n

k=1 ak.

(4) The limits can be shifted. For example, if x ∈ R then

n∑
k=1

kxk−1 =
n−1∑
r=0

(r + 1)xr.

We replaced every k with r + 1. The original sum has k
varying from 1 to n. Hence r + 1 should also vary from 1
to n, and so r should vary from 0 to n− 1.
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Here is a final example involving both induction and Sigma
notation. If you get stuck on Question 2(b) on Sheet 4, try going
through this example first.

Example 3.12. We shall show that if n ∈ N then
∑n

k=1 k
2 =

1
6
n(n+ 1)(2n+ 1). Define a predicate P (n) by

P (n) :
n∑
k=1

k2 = 1
6
n(n+ 1)(2n+ 1).

In the case n = 1, the proposition P (1) is

‘
∑1

k=1 k
2 = 1

6
1(1 + 1)(2× 1 + 1)’.

This is true, because the left-hand side is 12 = 1 and the right-
hand side is 1

6
(1× 2× 3) = 1.

Assume that P (n) is true. So, by assumption

n∑
k=1

k2 = 1
6
n(n+ 1)(2n+ 1).

We want to prove that P (n + 1) is true. We obtain P (n + 1) by
replacing n with n + 1 in the statement of P (n) above. So the
statement we want to prove is

n+1∑
k=1

k2 = 1
6
(n+ 1)(n+ 2)(2(n+ 1) + 1)

= 1
6
(n+ 1)(n+ 2)(2n+ 3).

Note we have not proved it yet! Splitting off the final sum-
mand of

∑n+1
k=1 k

2 we get

n+1∑
k=1

k2 =
( n∑
k=1

k2
)

+ (n+ 1)2.

Now using the inductive assumption and some algebraic manipu-
lation we get

n+1∑
k=1

k2 = 1
6
n(n+ 1)(2n+ 1) + (n+ 1)2

= 1
6
(n+ 1)

(
n(2n+ 1) + 6(n+ 1)

)
= 1

6
(n+ 1)

(
2n2 + 7n+ 6

)
= 1

6
(n+ 1)

(
(n+ 2)(2n+ 3)

)
.

Hence P (n+ 1) holds.
By induction P (n) is true for all n ∈ N.
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Strong induction. In the inductive steps in the inductive proofs
seen so far, we assumed P (n) and used it to prove P (n+1). Some-
times it is useful to assume all the earlier cases, replacing (ii) in
the Principle of Mathematical Induction with

(ii)′ for each n ∈ N, if P (1), . . . , P (n− 1), P (n) are true then
P (n+ 1) is true.

A proof using (ii)′ is said to be a proof by strong induction. In
this course we take it for granted that strong induction is a valid
methods of proof.7

4. Division and prime factorization

Division with remainder should be familiar from school. It is
stated formally in the next theorem.

Theorem 4.1. Let n ∈ Z and let m ∈ N. There exist unique
integers q and r such that n = qm+ r and 0 ≤ r < m.

The q in Theorem 4.1 is called the quotient and the r the re-
mainder when n is divided by m.

Theorem 4.1 can be proved by strong induction on n, but the
proof is not especially illuminating, so it will not be given in lec-
tures. It is much more important that you understand the state-
ment of Theorem 4.1 and can find q and r in specific cases. This
is done by dividing n by m.

Example 4.2.

(i) Let n = 60 and m = 7. Then 60/7 = 84
7

and correspond-
ingly, 60 = 8× 7 + 4. So we have q = 8 and r = 4.

(ii) Let n = 63 and m = 7. Then 63/7 = 9 so we have q = 9
and r = 0.

(iii) Let n = 44 and m = 6. Then 44/6 = 72
6

so we have
q = 7 and r = 2. (Note that it is more useful to leave the
fractional part as 2

6
than to simplify it to 1

3
.)

7It can be proved, using the ordinary Principle of Mathematical Induction
that proof by strong induction is valid. So anyone who accepts the Principle
of Mathematical Induction should also accept proof by strong induction.
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Exercise 4.3. Find the quotient q and the remainder r when n
is divided by m in each of these cases:

(i) n = 20, m = 7;
(ii) n = 21, m = 7;
(iii) n = 22, m = 7;
(iv) n = 7, m = 22;
(v) n = −10, m = 7.

It is useful to have some special notation to indicate the case
where the remainder is 0 and n/m is an integer.

Definition 4.4. Let n ∈ Z and let m ∈ N. We say that m
divides n and write m | n if n/m ∈ Z.

Another way to say ‘m divides n’ is ‘n is a multiple of m’.

Greatest common divisors.

Definition 4.5. Let m,n ∈ N. We say that d ∈ N is the greatest
common divisor of m and n, and write gcd(m,n) = d, if d is the
greatest natural number dividing both m and n.

Exercise 4.6. Find gcd(m,n) in each of these cases:

(i) n = 310, m = 42;
(ii) n = 10, m = 21;

(iii) n = 23, m = 46;
(iv) n = 20475, m = 14025.

Euclid’s Algorithm. There is a very fast algorithm for finding
greatest common divisors that is usually attributed to Euclid. The
following lemma gives the key idea.

Lemma 4.7. Let m,n ∈ N. Let n = qm + r where 0 ≤ r < m.
Then

gcd(n,m) = gcd(m, r).

Algorithm 4.8 (Euclid’s Algorithm). Let m,n ∈ N . To find
gcd(n,m) first find the quotient q and the remainder r when n is
divided by m.

• If r = 0 then m divides n and gcd(n,m) = m.
• Otherwise gcd(n,m) = gcd(m, r). Repeat the algorithm

with m and r.
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Euclid’s Algorithm always finishes because the numbers get
smaller at each step. Lemma 4.7 implies that the final output
of the algorithm is gcd(m,n). So Euclid’s Algorithm has the two
key properties of a good algorithm: it always finishes, and it al-
ways finishes with the right answer.

Example 4.9. Let n = 4452 and let m = 3402. The equations
below show the quotient and remainder at each step of Euclid’s
Algorithm:

4452 = 1× 3402 + 1050

3402 = 3× 1050 + 252

1050 = 4× 252 + 42

252 = 5× 42.

Hence gcd(4452, 3402) = 42.

By working backwards through the steps in Euclid’s Algorithm
it is possible to find s, t ∈ Z such that sm+ tn = gcd(m,n).

Example 4.10. By the penultimate line of Example 4.9 we have
42 = 1050− 4× 252. By finding the rows in which 1050 and 252
appear as remainders we get

42 = 1050− 4× 252

= 1050− 4× (3402− 3× 1050)

= 13× 1050− 4× 3402

= 13× (4452− 3402)− 4× 3402

= 13× 4452− 17× 3402.

Factorization into primes.

Definition 4.11. A natural number p > 1 is said to be prime if
the only natural numbers that divide it are 1 and p. A natural
number n > 1 is said to be composite if it is not prime.

The first few primes are

2, 3, 5, 7, 11, 13, 17, 21, 23, 29, 31, 37, 41, 43, 47, . . . .

By Definition 4.11, 1 is neither prime nor composite.

Theorem 4.12 (Fundamental Theorem of Arithmetic). Let n > 1
be a natural number. There exists k ∈ N and primes p1, p2, . . . , pk
such that

n = p1p2 . . . pk.

This expression of n as a product of primes is unique up to the
order of the factors.
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The existence of prime factorizations can be proved fairly easily
using strong induction. The uniqueness is a bit trickier and will
not be proved in lectures.8

Example 4.13.

(i) Since 43 is prime, its unique factorization is 43 = 43, with
k = 1 and p1 = 43.

(ii) Up to the order of the factors, the unique prime factor-
ization of 572 is 22 × 11 × 13. So k = 4 and we can take
p1 = 2, p2 = 2, p3 = 11, p4 = 13.

(iii) The prime factorization of 7680 is . . . .

The reason why 1 is not defined to be a prime number, even
though it is not divisible by any numbers except itself, is because
this would destroy unique factorization. For instance, 5 = 5×1 =
1 × 5 × 1 = 1 × 5 × 1 × 1 = . . . would all be different prime
factorizations of 5.

Unique factorization can be used to show that some numbers
are irrational. As an example we will show that

√
3 is irrational.

The proof goes through with very minor changes to show that
√
p

is irrational for any prime p.

Claim 4.14.
√

3 is an irrational number.

Proof. Suppose, for a contradiction that
√

3 ∈ Q. Then there exist
m,n ∈ Z with n 6= 0 such that

√
3 = m/n. Multiply through by n

and square both sides to get

3n2 = m2.

Let n = 3b × N and let m = 3a ×M , where N and M are not
divisible by 3. Substituting into 3n2 = m2 we get

32b+1 ×N = 32a ×M.

The highest power of 3 dividing the left-hand side is 33b+1, and
the highest power of 3 dividing the right-hand side is 32a. But
2b + 1 6= 2a. This contradicts unique factorization. Hence

√
3 is

irrational. �

For Quesion 6 on Sheet 4, try cubing instead of squaring!

8See the lecturer in an office hour, or Proposition 10.6 and Theorem 11.1 in
A concise introduction to pure mathematics by Martin Liebeck (CRC Press,
2011).
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Infinitely many primes. According to the poll of readers of
The Mathematical Intelligencer mentioned on page 8, the follow-
ing theorem is the second most beautiful result in mathematics.

Theorem 4.15 (Euclid). There are infinitely many primes.

Exercise 4.16. Let p1 = 2, p2 = 3, p3 = 5, p4 = 7, p5 = 11,
p6 = 13 be the first six prime numbers. Show that p1 +1, p1p2 +1,
p1p2p3 + 1, p1p2p3p4 + 1 and p1p2p3p4p5 + 1 are all prime, but

p1p2p3p4p5p6 + 1 = 2× 3× 5× 7× 11× 13 + 1

= 300031

= 59× 509.

To show that a number is prime you could use Question 5 on
Sheet 4, or the Mathematica command PrimeQ. This example
shows that the second case in the proof of Euclid’s theorem can
arise!

Two things to think about.

(1) It is quite easy to generate large primes, and easy to mul-
tiply them together. Any modern desktop computer can
generate primes of about 300 decimal digits almost in-
stantly. But given only the product of two primes, it ap-
pears to be a hard problem to find the prime factors.

For example, given only

31485923544937

and a pocket calculator, you would probably have a hard
time finding its prime factors. But on the other hand,
given the primes 1282817 and 24544361, you could verify
that

1282817× 24544361 = 31485923544937

quite easily.

The algorithms used to make secure connections on the
internet, for for internet banking etc., would all be useless
if there was a quick way to factorize large composite num-
bers. To learn more, search for ‘Public Key Cryptography’
on the web, or wait until your 3rd / 4th year and do one
of the cryptography courses here.

(2) How much should one trust a proof? Euclid’s proof is
a mathematical gem that has been understood and en-
joyed by generations of mathematicians since 300 BC. Can
any reasonable person doubt that there are infinitely many
primes?
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Remark on Claim 4.14. The line ‘Let n = 3b × N and let
m = 3a×M ’ has caused some confusion. The purpose of this line
is to define b, a,N and M .

So 3a is the highest power of 3 dividing n and 3b is the highest
power of 3 dividing m, and N = n/3b, M = m/3a.

Exercise 4.17. A manufacturer of cheap pocket calculators claims
to you that

√
3 = 2148105

1240209
. Put m = 2148105 and n = 1240209 in

the proof of Claim 4.14 and find b, a,N and M . (You can do this
by repeated division by 3, even on one of his cheapest calculators.)
Hence show the manufacturer that he is wrong.

Binary and other bases.

Example 4.18. To write 144 in base 3:

Divide 144 by 3: 144 = 48× 3 + 0
Divide the quotient 48 by 3: 48 = 16× 3 + 0
Divide the quotient 16 by 3: 16 = 5× 3 + 1
Divide the quotient 5 by 3: 5 = 1× 3 + 2
Divide the quotient 1 by 3: 1 = 0× 3 + 1

We now stop, because the last quotient was 0. Reading the list of
remainders from bottom to top we get

144 = 1× 34 + 2× 33 + 1× 32 + 0× 31 + 0× 30.

Hence 144 is 12100 in base 3. We write this as 144 = 121003.

Our usual way of writing numbers uses base 10. If no base is
specified, as is usually the case, base 10 is intended.

The example above should suggest a general algorithm.

Algorithm 4.19. Let n ∈ N and let b ∈ N. To write n in base b,
divide n by b, then divide the quotient by b, and so on, until the
quotient is 0. If r0, r1, r2, . . . , rk is the sequence of remainders then

n = rkb
k + rk−1b

k−1 + · · ·+ r1b+ r0

and so n = (rkrk−1 . . . r1r0)b.

The correctness of this algorithm can be proved by strong in-
duction. This is left as an optional exercise.
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Example 4.20. To write 37 in base 2, following the algorithm:

Divide 37 by 2: 37 = 18× 2 + 1
Divide the quotient 18 by 2: 18 = 9× 2 + 0
Divide the quotient 9 by 2: 9 = 4× 2 + 1
Divide the quotient 4 by 2: 4 = 2× 2 + 0
Divide the quotient 2 by 2: 2 = 1× 2 + 0
Divide the quotient 1 by 2: 2 = 0× 2 + 1

The sequence of remainders is 1, 0, 1, 0, 0, 1, so

r0 = 1, r1 = 0, r2 = 1, r3 = 0, r4 = 0, r5 = 1.

Hence 37 = (r5r4r3r2r1r0)2 = 1001012.

Base 2 is known as binary. Binary is particularly important
because computers store and process data as sequences of the
binary digits 0, 1, also known as bits. For a nice introduction
to programming at the level of bits, see pleasingfungus.com/

Manufactoria/.

Exercise 4.21. Show that 21 = 101012 and write 63, 64 and 65
in binary.
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Part C

5. Propositional Logic

Implication. Suppose that A and B are mathematical state-
ments9 such that if A is true then B is true. Then we say that A
implies B, and write A =⇒ B.

Exercise 5.1. Which of the following are correct:

(a) 3 divides 87 =⇒ 87/3 ∈ Z;
(b) 5 divides 11 =⇒ 11/5 ∈ Z;
(c) x ≥ 4 =⇒ x ≥ 3;
(d) x ≥ 3 =⇒ x ≥ 4;
(e) x2 − 2x− 3 = 0 =⇒ x = −1, x = 3 or x = 37
(f) x ≥ 0 and x2 − 2x− 3 = 0 =⇒ x = 3.
(g) If x and y are real numbers then x2 = y2 =⇒ x = y.
(h) If r and s are distances in the plane then r2 = s2 =⇒ r = s.
(i) If x and y are real numbers then x3 = y3 =⇒ x = y;
(j) If z and w are complex numbers then w3 = z3 =⇒ w = z?

It is occasionally useful to write A =⇒ B as B ⇐= A. This
can be read as ‘B is implied by A’.

If A implies B and B implies A then we write A ⇐⇒ B. For
the moment, please read this as ‘A implies and is implied by B’.

Exercise 5.2. Question 4(b) on Sheet 3 asked for a proof, us-
ing the Principle of Mathematical Induction (see page 12) that
2n ≥ 6n for all n ≥ 5. Here is a slightly tidied-up version of one
argument that was submitted.10

Define a predicate P (n) by

P (n) : 2n ≥ 6n

If n = 5 then P (5) states that 25 ≥ 6 × 5; this is
true because 32 ≥ 30. Assume, by induction, that
P (n) is true. Then

2n+1 ≥ 6(n+ 1)

2n+1 − 6(n+ 1) ≥ 0

2× 2n − 6n− 6 ≥ 0

2(2n − 6n) + 6n− 6 ≥ 0

which is true since 2n ≥ 6n and 6n ≥ 6.

Is this argument valid? How could it be clarified?

9So A and B could be either propositions or predicates (see page 11). Some
non-mathematical statements will be used in quizzes.

10Dubious parts of arguments are marked with bars: these are reproduced
so you can think about them, not so you can use them as model examples!
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It is often tempting to start with the statement we are trying
to prove, and manipulate it until it becomes obviously true. But
this is only valid if every step is reversible. The following
example should make this point.

Example 5.3. Suppose we want to find all x ∈ R such that
√
x+ 3 = x+ 1.

It might be tempting to write something like this:
√
x+ 3 = x+ 1 =⇒ (x+ 3) = (x+ 1)2

=⇒ x+ 3 = x2 + 2x+ 1

=⇒ x2 + x− 2 = 0

=⇒ (x+ 2)(x− 1) = 0

hence x = −2 or x = 1. But something is definitely wrong: if we
substitute x = −2 into the original equation, we get

√
−2 + 3 =

−2 + 1, which is false!

Your arguments will be clearer if you use =⇒ and ⇐⇒ to
show their logical structure. Try to avoid lists of assertions whose
relationship to one another is unclear.

Correct use of implication signs is helpful even in very simple
arguments. For example, to find the prime factorization of 210
you could write:

210/2 = 105 =⇒ 210 = 105× 2

105/5 = 21 =⇒ 105 = 5× 21

21/3 = 7 =⇒ 21 = 3× 7

hence 210 = 2× 105 = 2× 5× 21 = 2× 3× 5× 7.

If, only if, necessary, sufficient. As before, let A and B
be mathematical statements. The following are all different ways
to write ‘A =⇒ B′:

• if A then B;
• B if A;
• A only if B.
• A is sufficient for B;
• B is necessary for A.

The first often feels the most natural and is frequently used. (See,
for instance, the statement of Claim 3.7.)
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Exercise 5.4. Please assume that the following statements are true.

P : If it is raining then the sky is cloudy.
Q: If it rains in the morning then Prof. X carries his umbrella

all day.
R: People who carry umbrellas never get soaked.

Which of the following statements can be deduced from P , Q
and R?

A: A cloudy sky is a necessary condition for rain.
B: A cloudy sky is a sufficient condition for rain.
C: It is raining only if the sky is cloudy.
D: Rain in the morning is a necessary condition for Prof. X

to carry his umbrella.
E: Rain in the morning is a sufficient condition for Prof. X to

carry his umbrella.
F : Rain falling from the sky implies that the sky is cloudy.
G: The sky is cloudy implies that rain is falling.
H: If Prof. X is soaked then it did not rain this morning.

‘If and only if’ and logical equivalence. If A ⇐⇒ B
holds we say that A and B are logically equivalent. We can rewrite

B =⇒ A as ‘A if B’.
A =⇒ B as ‘A only if B’.

This justifies reading A ⇐⇒ B as ‘A if and only if B’. Note
that the ‘A if B’ part of this expression refers to the implication
B =⇒ A.

Negation and the Contrapositive. If A is a mathematical
statement we write ¬A for the statement ‘not A’. The contrapos-
itive of an implication A =⇒ B is ¬B =⇒ ¬A.

Exercise 5.5. Convince yourself that A =⇒ B is true if and only
if the contrapositive ¬B =⇒ ¬A is true. In symbols

(A =⇒ B) ⇐⇒ (¬B =⇒ ¬A).

Switching to the contrapositive can be a useful first step in a
proof, particularly when statements appear in negated form.

Claim 5.6. Let x ∈ Q. If y 6∈ Q then x+ y 6∈ Q.

For example, Claim 5.6 implies that n +
√

2 is not a rational
number for any n ∈ Z.
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‘For all’ and ‘exists’. Let P (x) be a predicate defined for
elements x of a set X.

• If P (x) is true for all x ∈ X, then we write (∀x ∈ X)P (x).
• If there exists an element x ∈ X such that P (x) is true,

then we write (∃x ∈ X)P (x).

The parentheses around ∀x ∈ X and ∃x ∈ X are often omitted.

The negation of

• (∀x ∈ X)P (x) is (∃x ∈ X)¬P (x).
• (∃x ∈ X)P (x) is (∀x ∈ X)¬P (x).

Once you have understood the meaning of the ∀ and ∃ symbols,
these rules should seem fairly obvious to you. Negating long com-
pound statements becomes routine if you apply these rules step-
by-step.

Exercise 5.7. Sometimes the set X in ∀x ∈ X is indicated by
inequalities. For example,

(∀ε > 0)Q(ε) means that Q(ε) is true for all ε in the set
of positive real numbers,

(∀n ≥ N)S(n) means that S(n) is true for all n ∈ N such
that n ≥ N .

Let a1, a2, a3, . . . be real numbers. Write down the negation of

(∃` ∈ R)(∀ε > 0)(∃N ∈ N)(∀n ≥ N) |an − `| < ε.

Those doing MT194 Numbers and Functions will notice that
a logically equivalent statement is ‘the sequence (an) converges’.
Using the two rules above, everyone should be able to get the
correct negation.

Conjunction and disjunction. LetA andB be mathematical
statements.

• The conjunction of A and B, written A ∧ B and read
‘A and B’, is true if A and B are both true, and false
otherwise.

• The disjunction of A and B, written A ∨ B and read
‘A or B’ is true if one or both of A and B is true, and
false otherwise.
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Truth tables. Consider the disjunction A ∨ B. This is true if
one of A and B is true, and false otherwise. The truth table below
shows this by going through all possibilities for A and B.

A B A ∨B
T T T
T F T
F T T
F F F

Exercise 5.8. Fill in the =⇒ column of the following truth table.
(Unless you are very confident, use pencil.)

A B A =⇒ B ¬B ¬A ¬B =⇒ ¬A
T T

T F

F T

F F

Now fill in the remaining columns. Are they consistent with the
logical equivalence of A =⇒ B and ¬B =⇒ ¬A?

Exercise 5.9. By definition, A ⇐⇒ B is true if and only if
A =⇒ B and B =⇒ A both hold. So A⇐⇒ B is logically equiv-
alent to

(A =⇒ B) ∧ (B =⇒ A).

Use this to find the truth table for A⇐⇒ B.

For Question 2(c) on Sheet 6 you will need a truth table with
eight rows, corresponding to the eight possibilities for the truth
or falsity of the statements A, B and C.

The final example below may give you a hint for Question 6 on
Sheet 6.

Example 5.10. Let A and B be propositions. The exclusive or of
A and B is true if exactly one of A and B is true. The truth table
of exclusive or is shown below. [Corrected 16th November.]

A B A xor B

T T F
T F T
F T T
F F F
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To express A xor B in terms of the usual logical connectives ∧
and ∨, we write down a proposition that says ‘A and B have the
truth values of one of the rows for which A xor B is true’. There
are two such rows in the truth table, so we want to say

‘(A is true and B is false) or (A is false and B is true)’.

In symbols this is (
A ∧ (¬B)

)
∨
(
(¬A) ∧B

)
.

As an exercise you should find a different, but logically equivalent,
way to express A xor B.

Propositional and predicate logic is a much deeper subject than
this introduction might suggest. It underpins Gödel’s famous in-
completeness theorem on the limits of formal mathematical proofs
and Turing’s equally important work on the relationship between
mathematical truth and computability.

There are many good books on these subjects written for the
non-expert. For example, Gödel’s Proof by Ernest Nagel and
James Newman, NYU Press (2001).

6. More about sets

Let X be a set. If P (x) is a predicate defined for elements of X
then we denote by

{x ∈ X : P (x)}
the set of all elements of X for which P (x) is true.

Example 6.1.

(a) {m ∈ Z : 2 | n} is the set of even integers.
(b) {x ∈ R : x > 0} is the set of positive real numbers.
(c) {z ∈ C : z5 = 1} is the set of fifth roots of 1 in C.

Definition 6.2.

(i) A set X is said to be a subset of a set Y if x ∈ X implies
x ∈ Y . If X is a subset of Y we write X ⊆ Y .

(ii) The set with no elements is called the empty set and is
denoted ∅.

(ii) A set is said to be finite if it has finitely many elements.
The size of a finite set is its number of elements. We
denote the size of a set X by |X|, read ‘mod X’.

A good way to show that two sets X and Y are equal is to show
that X ⊆ Y and Y ⊆ X. If this holds then X and Y have the
same elements, so are equal.
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Exercise 6.3. Decide whether each of the following statements
are true or false:

(a) the empty set is a subset of every set;
(b) the empty set is an element of every set;
(c) {0, 1} is a subset of {{0, 1}, 1, 3};
(d) {0, 1} is an element of {{0, 1}, 1, 3};
(e) the size of ∅ is 0;
(f) |{{0, 1}, 1, 3}| = 4;
(g) |{z ∈ C : z3 = 1}| = 3.

Example 6.4. Let m ∈ N. Then

(i) {n ∈ N : m2 | n} ⊆ {n ∈ N : m | n}
(ii) {n ∈ N : 6 | n} = {n ∈ N : 2 | n and 3 | n}.

Intersection, union. Let X and Y be sets. We define the
intersection X ∩ Y to be the set of elements that are in both X
and Y . We define the union X ∪ Y to be the set of elements that
are in at least one of X and Y .

If X is a subset of a ‘universe set’ U then we define the com-
plement of U with respect to U by

X ′ = {z ∈ U : z 6∈ X}.

Claim 6.5 (De Morgan’s Laws). Let X and Y be subsets of a
universe set U . Then

(i) (X ∪ Y )′ = X ′ ∩ Y ′,
(ii) (X ∩ Y )′ = X ′ ∪ Y ′.

The proof of (ii) is left to you: see Question 4(a) on Sheet 7.

Venn diagrams.

Example 6.6. Let U = {0, 1, 2, 3, 4}. Define subsets X and Y of
U by X = {1, 3, 4} and Y = {2, 3}. We can represent U , X and
Y pictorially by a Venn diagram, as shown below.

1, 4 23

0

X Y
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In this diagram U is represented by the rectangular region. The
region representing X is shaded.

Venn diagrams are a useful way of picturing the unions and
intersections of two or three sets. It is possible to draw a Venn
diagram for 4 sets with 16 different regions, but Venn diagrams
for 5 sets cannot be drawn in the plane.

Inclusion and Exclusion. Let X and Y be finite sets. In the
sum |X|+ |Y | we count each element of X once, and each element
of Y once. So the elements of X ∩ Y are counted twice, once as
elements of X, and once as elements of Y . If we subtract |X ∩ Y |
to correct for this overcounting, we get

|X ∪ Y | = |X|+ |Y | − |X ∩ Y |.

Exercise 6.7. Show that if X, Y and Z are finite sets then

|X ∪ Y ∪ Z| = |X|+ |Y |+|Z| − |X ∩ Y |
− |Y ∩ Z| − |Z ∩X|+ |X ∩ Y ∩ Z|.

The Principle of Inclusion and Exclusion generalizes these for-
mulae to any number of sets. (Most textbooks on combinatorics
in the library will have a proof.)

Cartesian products. If X and Y are sets then we denote by
X × Y the set of all ordered pairs (x, y) with x ∈ X and y ∈ Y .
It is usual to write X2 for X × X. Thus the plane is the set
R× R = R2.

Duality. Given any equation involving subsets of a universe
set U , the principle of duality says that if you swap ∪ and ∩
and replace every set with its complement in U , then the new
equation still holds.

For example, suppose that X, Y , Z are subsets of U and
X ∪ Y = Z. Then by duality, X ′ ∩ Y ′ = Z ′. Exercise: What
happens when X ′ ∩ Y ′ = Z ′ is dualized?

Boolean logic (non-examinable). If A and B are mathe-
matical statements then you showed in Question 2(b) of Sheet 6
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that ¬(A ∨B) and ¬A ∧ ¬B are logically equivalent. This might
remind you of the first De Morgan’s Law in Claim 6.5(i), that

(X ∪ Y )′ = X ′ ∩ Y ′

In fact, any pair of logically equivalent propositions corresponds
to an identity in set theory: replace ∧ with ∩, replace ∨ with ∪,
replace ¬ with complement, and interpret the letters A, B, etc.
as sets to get the two sides of the identity.11

Exercise 6.8 (Optional). By Question 2(c) on Sheet 6, the propo-
sitions (A ∨B) ∧ C and (A∧C)∨(B∧C) are logically equivalent.
What is the corresponding identity in set theory?

Yet another equivalent setting is digital electronics: NOT gates
correspond to negation ¬ (or complement), AND gates to con-
junction ∧ (or intersection ∩) [sorry, there was a nasty typo
here, where I switched from AND / conjunction / ∧ / ∩
to OR / disjunction / ∨ / ∪ in mid-sentence.] Try searching
the web for ‘Boolean algebra’ to learn more about these ideas.

7. Functions

Let X and Y be sets. A function

f : X → Y

assigns to each x ∈ X a unique element f(x) ∈ Y . If f(x) = y
then we say that y is the image of x under f . We say that X is
the domain of f and Y is the codomain of f .

Example 7.1.

(a) Define f : Z → Z by f(x) = x + 1. Then f is a function
with domain Z and codomain Z.

(b) LetX = {1, 2, 3} and let Y = {1, 2, 3, 4}. Define t : X → Y
by t(1) = 2, t(2) = 1, t(3) = 4. Then t is a function with
domain X and codomain Y .

(c) Define g : R→ R by g(x) = x2. Then g is a function with
domain R and codomain R.

(d) Define h : C→ C by h(z) = z2. Then h is a function with
domain C and codomain C.

11To see why this correspondence should work, let U be a universe set
and suppose that A(x) and B(x) are predicates defined for x ∈ U . Define
X = {x ∈ U : A(x)} and Y = {x ∈ U : B(x)}. Then

X ∩ Y = {x ∈ U : A(x) ∧B(x)}
X ′ = {x ∈ U : ¬A(x)}

and so on. So ∩ corresponds to ∧, and set complement correspond to negation
of propositions.
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Note that g and h are different functions, according to the def-
inition at the start of this section, because they have different
domains (and different codomains).

If f : X → Y is a function then f(x) must be defined for each
x ∈ X. There is no requirement that there is some ‘uniform rule’
giving the values of f(x). For example, in Example 7.1(b) the
values f(x) were specified one-by-one for each x ∈ X.

Functions are also called mappings.

Definition 7.2. Let X and Y be sets and let f : X → Y be a
function.

(i) We say that f is injective if for each y ∈ Y there exists at
most one x ∈ X such that f(x) = y.

(ii) We say that f is surjective if for all y ∈ Y there exists
x ∈ X such that f(x) = y.

(iii) We say that f is bijective if f is injective and surjective.

Example 7.3.

(a) The function f : Z→ Z defined by f(x) = x+1 is bijective.

(b) The function t : {1, 2, 3} → {1, 2, 3, 4} defined in Exam-
ple 7.1(b) is injective but not surjective.

(c) The function g : R → R defined by g(x) = x2 is neither
injective nor surjective.

(d) The function h : C→ C defined by h(z) = z2 is surjective
but not injective.

To give another example, we need some notation for intervals
in R. Given a, b ∈ R, let

[a, b] = {x ∈ R : a ≤ x ≤ b}
Similarly [a,∞) = {x ∈ R : a ≤ x}, and so on. (Please do not
take this to mean that ∞ is a real number: this is not the case.)

Example 7.4. Let f : [1,∞) → [0,∞) be defined by f(x) =
x2 + 2x− 3. Then f is bijective.

To show that f is injective, we suppose that f(x) = f(x′), and
show that x = x′. This is usually the most elegant way to present
this sort of argument. Please use it for Question 5 on Sheet 7.
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Definition 7.5. Let f : X → Y be bijective. The inverse func-
tion to f is the function g : Y → X defined, for each y ∈ Y , by
g(y) = x where x is the unique element of X such that f(x) = y.

We denote the inverse function to f by f−1. You may have seen
this notation used for the inverses of the sine, cosine and tangent
functions, which are bijective when defined with suitable domain
and codomain.

Exercise 7.6.

(a) Show, by sketching the graph, that if we define sine as a
function sin : [−π/2, π/2] → [−1, 1] then sin is bijective.
Draw the inverse function on the same set of axes.

(b) Repeat (a) for cosine. (You should keep [−1, 1] as the
codomain but change the domain.)

Example 7.7.

(a) Define f : [0,∞) → [0,∞) by f(x) = x2. Then f is
bijective with inverse function g(y) =

√
y.

(b) Define f : R → R>0 by f(x) = ex. Then f is bijective
with inverse function g(y) = log y.

Definition 7.8. Let f : X → Y and g : Y → Z be functions.
The composition of f and g is the function gf : X → Z defined
by (gf)(x) = g(f(x)).

Note that gf means ‘do f then do g’. So one has to get used
to reading function compositions from right to left. In the special
case where Y = X and g = f we write f 2 for ff , f 3 for fff and
so on.12

The proof of (i) in the following theorem is left to you on Ques-
tion 5(a) of Sheet 8. You should be able to do it in a fairly similar
way to (ii).

Theorem 7.9. Let X, Y and Z be sets and let f : X → Y and
g : Y → Z be functions.

(i) If f and g are injective then gf : X → Z is injective.
(ii) If f and g are surjective then gf : X → Z is surjective.

(iii) If f and g are bijective then gf : X → Z is bijective.

12There is a nasty notational clash with the trigonometric functions, where
sin2 x means (sinx)2 rather than sin(sinx). This is a historical accident.
Fortunately it is rarely useful to compose trigonometric functions.
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By Theorem 7.9(iii), if f : X → Y and g : Y → Z are both
bijective then gf : X → Z is bijective, and so has an inverse
function. To undo gf we need to first undo g then undo f , so

(gf)−1 = f−1g−1.

For an application of this result, see Question 8 on Sheet 8.

If X is a set then the function iX : X → X such that iX(x) = x
for all x ∈ X is called the identity function on X. For example,
if f : X → Y is bijective then f−1f = iX and ff−1 = iY .

Theorem 7.10. Let X and Y be non-empty sets and let f : X → Y
be a function.

(i) f is injective ⇐⇒ there exists a function g : Y → X such
that gf = iX .

(ii) f is surjective⇐⇒ there exists a function h : Y → X such
that fh = iY .

For some other results on compositions of functions see Ques-
tion 5 on Sheet 8.

8. Relations

Let X be a set. A relation on X is a subset of X × X. If
(x, y) is in the subset, then we say that x and y are related. More
informally, a relation is a true-or-false statement that depends on
two elements of X.

Example 8.1.

(i) Let X = R. Then ‘x < y’ is a relation on X.

(ii) Let X = Z. Then ‘m− n is even’ is a relation on X.

(iii) Let X be the set of all subsets of {1, 2, 3}. Then A ⊆ B is
a relation on X.

(iv) Let X be the set of people in this room. Then x ∼ y if x
can see y is a relation on X.

Formally, the relation in (i) is the subset{
(x, y) ∈ R× R : x < y

}
.

Usually it is clearer to specify relations more informally, as in this
example.

In Example 8.1(iii) the subset relation was shown with the usual
symbol ⊆. Other symbols that are commonly used to denote
relations are ≡, read ‘is equivalent to’, and ∼, read ‘is related to’
or ‘twiddles’.
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Diagrams. Let X be a set and let ≡ be a relation defined on X.
To represent ≡ on a diagram, draw a dot for each element of X.
Then for each x, y ∈ X such that x ≡ y, draw an arrow from x
to y. If x ≡ x draw a loop from x to itself.

Example 8.2. Let X = {1, 2, 3, 4, 5, 6} and let ≡ be the relation
defined on X by

x ≡ y ⇐⇒ x− y is even.

The diagram for X is shown below.

1 2

3 4

5 6

Exercise 8.3. Let X = {1, 2, 3, 4, 5, 6} as in Example 8.2. Draw
a diagram for the relation on X defined by

x ≡ y ⇐⇒ x− y is even and x > y.

Properties of relations.

Definition 8.4. Let ∼ be a relation on a set X. We say that ∼ is

(i) reflexive if x ∼ x for all x ∈ X;

(ii) symmetric if for all x, y ∈ X,

x ∼ y =⇒ y ∼ x;

(iii) transitive if for all x, y, z ∈ X,

x ∼ y and y ∼ z =⇒ x ∼ z.

A relation that is reflexive, symmetric and transitive is said to be
an equivalence relation.

The following exercise will be used as part of a quiz in lectures.

Exercise 8.5. Let X be the set of people sitting in this lecture
room. For each of the following relations, decide whether it is
(1) reflexive, (2) symmetric and (3) transitive.

(a) x ∼ y if x is sitting in a strictly higher row than y;
(b) x ∼ y if x and y are in the same row, or x is higher than y;
(c) x ∼ y if x and y are sitting in the same row;
(d) x ∼ y if x and y are friends.
(e) x ∼ y if x is not y.
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Equivalence relations and partitions. Suppose that ∼ is
an equivalence relation on a set X. For x ∈ X, we define the
equivalence class of x to be the set

[x]∼ = {z ∈ X : z ∼ x}.
So the equivalence class of x consists of all the elements of X that
relate to x.

If the relation will be clear we may write [x] rather than [x]∼.

Example 8.6. Define a relation ∼ on C by z ≡ w if |z| = |w|.
Then ∼ is an equivalence relation. The equivalence classes are the
circles centred on 0, together with [0]∼ = {0}.

The next example will be important in Part D of the course.

Example 8.7. Let n ∈ N. Define a relation on the set of inte-
gers Z by a ≡ b if n divides a − b. Then ≡ is an equivalence
relation. The different equivalence class are

[0] = {qn : q ∈ Z}
[1] = {1 + qn : q ∈ Z}

...

[n− 1] = {(n− 1) + qn : q ∈ Z}
Observe that [r] is the set of integers that leave a remainder r on
division by n.

Examples 8.2, 8.5(c), 8.6 and 8.7 illustrate an important general
result on equivalence relations. To state it we need the following
definition.

Definition 8.8. Let X be a set.

(i) We say that subsets A,B ⊆ X are disjoint if A ∩B = ∅.

(ii) A partition of X is a collection of non-empty subsets of X
such that any element of X is in one of the subsets, and
any two subsets are either equal or disjoint.

For instance, in Example 8.7 the equivalence classes

[0], [1], . . . , [n− 1]

partition Z since they are disjoint and

[0] ∪ [1] ∪ · · · ∪ [n− 1] = Z.

Theorem 8.9. Let ∼ be an equivalence relation on a set X. Then
the equivalence classes [x]∼ for x ∈ X partition X.
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By Theorem 8.9, an equivalence relation on a set X gives a
partition of X. Conversely, given a partition of X we can define
the corresponding equivalence relation by defining

x ∼ y ⇐⇒ x and y are in the same subset in the partition.

Hence there is a bijective correspondence between equivalence
relations on a set X and partitions of X.

Example 8.10. An alternative way to define the equivalence re-
lation ∼ in Example 8.6 would be to start with the partition of C,
and define z ∼ w if and only if z and w are in the same subset in
this partition. Equivalently,

z ∼ w ⇐⇒ either z = w = 0 or z and w are on the same
circle centred on 0.
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Part D

9. Introduction to rings: Integers modulo n

We begin with a formal definition of the relation introduced in
Example 8.7.

Definition 9.1. Let n ∈ N. Given a, b ∈ Z, we say that a is
congruent to b modulo n, and write

a ≡ b mod n

if n divides b − a. Let Zn = {[0], [1], . . . , [n − 1]} be the set of
equivalence classes under this relation, so

[r] = {r + qn : q ∈ Z}.

If n ∈ N and a, b ∈ Z then

a ≡ b mod n⇐⇒ [a] = [b].

Working with integers, as on the left-hand side, is usually easiest
for calculations. For more theoretical results it is better to work
with the equivalence classes in Zn, as on the right-hand side.13

Since the distinct equivalence classes in Zn are [0], [1], . . . , [n−1],
any integer is congruent to one of 0, 1, . . . , n− 1 mod n.

Exercise 9.2. Recall that a square number is a number of the
form n2 where n ∈ N0.

(i) Calculate 0, 1, 4, 9, 16, 25, 36, . . .modulo 4. State and prove
a conjecture on the pattern you observe.

(ii) Is 2015 the sum of two square numbers?

Exercise 9.3. Find the following:

(i) 27× 33 mod 10;
(ii) 7× 33 mod 10;

(iii) 27× 3 mod 10;
(iv) 7× 3 mod 10.

The next lemma states the result that was hopefully suggested
by Exercise 9.3.

Lemma 9.4. Let n ∈ N and let r, r′, s, s′ ∈ Z. If r ≡ r′ mod n
and s ≡ s′ mod n then r+ s ≡ r′+ s′ mod n and rs ≡ r′s′ mod n.

13You might see other notations for Zn such as Z/nZ and Z/n in textbooks
or online.
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We now use modular arithmetic to define addition and multi-
plication on Zn.

Definition 9.5. Let n ∈ N. Given [r], [s] ∈ Zn we define

[r] + [s] = [r + s]

and

[r][s] = [rs].

There is one subtle point that has to be checked about this def-
inition. We have defined addition and multiplication on equiva-
lence classes by choosing particular representatives r and s within
each class. We must check that these operations are well-defined,
that is, they do not depend on the choice of representatives.

For example, take n = 5. According to Definition 9.5 we have
[1] + [2] = [3]. But [1] = [6], so we should also have

[1] + [2] = [6] + [2] = [8].

Since [3] = [8] these answers are consistent. The next lemma
shows that is the case in general.

Lemma 9.6. The definitions of addition and multiplication in
Definition 9.5 are well-defined.

We can record the addition and multiplication operations on Zn
by tables as in the next example.

Example 9.7. The addition and multiplication tables for Z5 are
shown below. For example, the entry in the addition table in the
row for [4] and the column for [2] is

[4] + [3] = [2]

since 4 + 3 = 7 and 7 ≡ 2 mod 5.

+ [0] [1] [2] [3] [4]

[0] [0] [1] [2] [3] [4]

[1] [1] [2] [3] [4] [0]

[2] [2] [3] [4] [0] [1]

[3] [3] [4] [0] [1] [2]

[4] [4] [0] [1] [2] [3]

× [0] [1] [2] [3] [4]

[0] [0] [0] [0] [0] [0]

[1] [0] [1] [2] [3] [4]

[2] [0] [2] [4] [1] [3]

[3] [0] [3] [1] [4] [2]

[4] [0] [4] [3] [2] [1]

The addition and multiplication operations on Zn have all the
properties you would expect. Formally this is expressed by saying
that Zn is a ring, as defined in the next definition.
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Definition 9.8. Suppose that R is a set on which addition and
multiplication are defined, so that given any two elements x, y ∈ R,
their sum x+ y and product xy are elements of R. We say that R
is a ring if the following properties hold:

(1) (Commutative law of addition) x + y = y + x for all
x, y ∈ R;

(2) (Existence of zero) There is an element 0 ∈ R such that
0 + x = x for all x ∈ R;

(3) (Existence of additive inverses) For each x ∈ R there exists
an element −x ∈ R such that −x + x = 0, where 0 is the
element in property (2);

(4) (Associative law of addition) (x+ y) + z = x+ (y + z) for
all x, y, z ∈ R;

(5) (Existence of one) There exists an element 1 ∈ R such
that 1x = x1 = x for all x ∈ R;

(6) (Associative law of multiplication) (xy)z = x(yz) for all
x, y, z ∈ R;

(7) (Distributivity) x(y+ z) = xy+xz and (x+ y)z = xz+ yz
for all x, y, z ∈ R.

Claim 9.9. The number systems Z, Q, C and Zn for n ∈ N are
rings.

For Z, Q and C the properties in Definition 9.8 (if not their
official names) should be familiar to you. Some of them will be
checked for Zn in lectures.

Definition 9.10. A ring R is commutative if xy = yx for all
x, y ∈ R. A commutative ring R is a field if for all non-zero x ∈ R
there exists an element y ∈ R such that xy = yx = 1, where 1 is
the one element in property (5). We say that y is the inverse of x
and write y = x−1.

For example, Z5 is a field. The inverses of the non-zero elements
can be found from the multiplication table in Example 9.7. They
are

[1]−1 = [1], [2]−1 = [3], [3]−1 = [2], [4]−1 = [4].

Theorem 9.11. If p is prime then Zp is a field.
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Note that the proof of this theorem gives an effective way to find
the inverse of a non-zero element [x] ∈ Zp: use Euclid’s Algorithm
to find r, s ∈ Z such that

rx+ sp = 1;

then [x]−1 = [r].

Some further examples of fields are Q, R and C. Example 1.14
gives a more unusual example of a field.

Example 9.12. Let K be the subset of R defined by

K = {a+ b
√

2 : a, b ∈ Q}.
Then K is a ring. Properties (1), (4), (6) and (7) in Definition 9.8
hold because K is closed under addition and multiplication and
these properties are known to hold for R. Properties (2) and (5)
hold because 0, 1 ∈ K. Property (3) holds because if a+b

√
2 ∈ K

then −a− b
√

2 ∈ K. Finally the inverse of the non-zero element
a+ b

√
2 ∈ K is

(a+ b
√

2)−1 =
a− b

√
2

a2 − 2b2
.

So K is a field.

Here are some properties that hold for all rings. Some of the
proofs are left to you on Question 8 of Problem Sheet 10.

Claim 9.13. Let R be a ring.

(i) There is a unique zero element in R satisfying property (2).

(ii) There is a unique one element in R satisfying property (5).

Let 0 be the unique zero element in R and let 1 be the unique one
element.

(iii) For each x ∈ R there exists a unique y ∈ R such that
y + x = x+ y = 0.

(iv) We have 0x = 0 = x0 for all x ∈ R.

(v) We have −x = (−1)x = x(−1) for all x ∈ R.

(vi) For each x ∈ X, −(−x) = x.

(vii) For all x, y ∈ R we have −(xy) = (−x)y = y(−x) and
(−x)(−y) = xy.

(viii) 0 = 1 if and only if R = {0}.

In (v) and (vi) you should bear in mind that −x means the
element of R given by Property (3) satisfying −x + x = 0. So it
is a non-trivial result that −x = (−1)x.
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10. Polynomial rings

We will define polynomials rings over arbitrary fields. The main
examples of fields to bear in mind are Q,R,C and Zp for a prime p.

Definition 10.1. Let F be a field. Let F [x] denote the set of all
polynomials

f(x) = a0 + a1x+ a2x
2 + · · ·+ adx

d

where d ∈ N0 and a0, a1, a2, . . . , ad ∈ F . If d = 0 so f(x) = a0
then we say that f(x) is a constant polynomial. If ad 6= 0 then we
say that ad is the leading coefficient of f(x).

When writing polynomials we usually omit coefficients of 1, and
do not include powers of x whose coefficient is 0. For example,
in Q[x], we write x2 + 1 rather than 1x2 + 0x+ 1.

Polynomials are added and multiplied in the natural way.

Example 10.2. In Z3[x], we have

(x4 + [2]x3 + [1]) + ([2]x4 + x2 + [1])

= ([1] + [2])x4 + [2]x3 + x2 + ([1] + [1])

= [2]x3 + x2 + [2]

and

(x+ [1])(x+ [2]) = x2 + ([1] + [2])x+ [1][2] = x2 + [2].

It is routine to verify that each of the properties in Definition 9.8
holds for F [x]. We will assume this result in this course.

Theorem 10.3. Let F be a field. Then F [x] is a ring with zero
the constant polynomial 0 and one the constant polynomial 1.

There is a remarkable analogy between the ring of integers Z
and polynomial rings. For example, polynomials can be divided
with remainder in a similar way to integers (see Theorem 4.1).

Definition 10.4. If f(x) = a0+a1x+a2+· · ·+adxd where ad 6= 0,
then we say that d is the degree of the polynomial f(x), and write
deg f = d.

We leave the degree of zero polynomial f(x) = 0 undefined.

Theorem 10.5 (Division algorithm). Let F be a field, let f(x) ∈
F [x] be a non-zero polynomial and let g(x) ∈ F [x]. There exist
polynomials q(x), r(x) ∈ F [x] such that

g(x) = q(x)f(x) + r(x)

and either r(x) = 0 or deg r(x) < deg f(x).
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We say that q(x) is the quotient and r(x) is the remainder when
g(x) is divided by f(x).

Example 10.6. Working in Q[x], let g(x) = 3x2 + 2x− 1 and let
f(x) = 2x+ 1. Then

g(x) = (3
2
x+ 1

4
)f(x)− 5

4

so the quotient is q(x) = 3
2
x+ 1

4
and the remainder is r(x) = −5

4
.

If instead we take h(x) = x+ 1 then

g(x) = (3x− 1)h(x).

So when g(x) is divided by h(x) the quotient is 3x − 1 and the
remainder is 0.

There is a Mathematica notebook on Moodle you can use to
check calculations with polynomials.

Example 10.7. Working in Z3[x], let g(x) = x3 +x2 + [2] and let
f(x) = x2 + [2]x+ [1]. Then

g(x) = (x+ [2])f(x) + x

so the quotient when g(x) is divided by f(x) is x + [2] and the
remainder is x.

The next theorem is sometimes called the Remainder Theorem,
or Factor Theorem.

Theorem 10.8. Let F be a field and let f(x) ∈ F [x] be a poly-
nomial. Let c ∈ F . Then

f(x) = q(x)(x− c) + r

for some polynomial q(x) ∈ F [x] and some r ∈ F. Moreover
f(c) = 0 if and only if r = 0.

This theorem is very useful when solving polynomial equations.

Example 10.9. Let f(x) = x3 − 3x2 + 7x − 5 ∈ C[x]. The sum
of the coefficients is 1− 3 + 7− 5 = 0 so f(1) = 0. Dividing f(x)
by x− 1 gives

f(x) = (x− 1)(x2 − 2x+ 5).

Hence the roots of f(x) are 1, 1 + 2i and 1− 2i.

We end with a corollary of Theorem 10.8 that gives a stronger
version of the Fundamental Theorem of Algebra (Theorem 2.9).

Corollary 10.10. Let F be a field and let f(x) ∈ C[x] be a poly-
nomial of degree n. Then f has at most n roots in F . Moreover
if F = C then f has exactly n roots in C.
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11. Integral Domains and Matrix Rings

This final section is non-examinable and is included for interest
only. Let R be a ring. If a, b, c, d ∈ R then we say that(

a b
c d

)
is a 2×2-matrix over R. The set of all such matrices forms a ring,
with addition and multiplication defined by(

a b
c d

)
+

(
a′ b′

c′ d′

)
=

(
a+ a′ b+ b′

c+ c′ d+ d′

)
.

and (
a b
c d

)(
a′ b′

c′ d′

)
=

(
aa′ + bc′ ab′ + bd′

ca′ + dc′ cb′ + dd′

)
The zero element is

(
0 0
0 0

)
and the one element is

(
1 0
0 1

)
. The

reason why matrices are multiplied in this way will be seen in
MT182 Matrix Algebra.

One interesting property of the ring of 2 × 2-matrices is that,
unlike all the rings seen so far, multiplication is not commutative.

Exercise 11.1. Compute the matrix products(
1 0
0 0

)(
0 1
0 0

)
and

(
0 1
0 0

)(
1 0
0 0

)
and deduce that multiplication of matrices is not commutative.

An important property of the integers Z is that the product of
two non-zero integers is always non-zero.

Definition 11.2. Let R be a ring and suppose that x, y ∈ R. If
xy = 0 implies that either x = 0 or y = 0 then we say that R is
an integral domain.

Thus Z is an integral domain. However, the ring of 2 × 2-
matrices is not an integral domain. For example, the second
product in Example 11.1 is the zero matrix. By Question 4(a)
on Sheet 10, Zn is not an integral domain if n is composite.

Theorem 11.3. If F is a field then F is an integral domain

Proof. Suppose that x, y ∈ F are such that xy = 0. If x 6= 0 then
x has an inverse, x−1 ∈ F . Multiplying by x−1 we get

0 = x−10 = x−1(xy) = (x−1x)y = 1y = y

using Claim 3.13(iv) and the ring properties in Definition 9.8.
Hence if x 6= 0 then y = 0, and so either x = 0 or y = 0. �


