Complex Numbers: Answers to Revision Questions

Here are some answers to the questions on the sheet of revision ex-
amples and questions.

CARTESIAN, POLAR AND EXPONENTIAL FORMS.

1. Write —1 — i in polar and exponential forms.

First draw —1 — 7 on an Argand diagram to see roughly where it is.
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The modulus of —1 —i is \/(—1)2 + (—1)2 = v/2. The angle 6 on the
diagram is 37 /4 (one right-angle plus one-half of a right-angle). Since
it is measured clockwise from the real axis, we get a minus sign. So
arg(—1 —1i) = —3m/4.

Hence
—1 —i = v/2(cos(—3m/4) + isin(—37/4)).

From the polar form it is trivial to convert to exponential form:

—1—4= \/56—32'%/4'

Note it would also be correct to write
—1—i= \/§(COS(57T/4) + isin(57/4)) = V2654,
You would get this expression if you instead used the angle ¢, which is

57 /4, measured anticlockwise from the real axis.

2. Let ¢ = tan='2. Plot 1 +2i, —2+14, —1 —2i and 2 —i on an
Argand diagram, and convert these numbers to polar form, writing your
answers in terms of ¢.

See the diagram below.
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From this diagram we see that all the numbers have modulus v/5
and that

arg(l+2i) = ¢
arg(=2+1i) = ¢+ /2
arg(—1—2i)=o¢+
arg(2 —1i) = ¢ + 3m/2.
Hence

1+ 2i = v/5(cos ¢ + i sin ¢)

—2+i= (co ¢+ m/2) +isin(¢ + 7/2))

—1-2i= \/_(COS (p+m) +isin(¢+ m))

2—i= \/g(cos( ¢+ 31/2) +isin(¢ + 37/2)).

Again you could give different (but equivalent) answers by taking a
different choice for the argument. For example, the principal argument
of2—iis ¢ —7/2, so

2—i= \/g(cos(<b — m/2) +isin(¢ — 7/2)).

3. Let 2 =L — i3 Write 2 in polar and exponential forms.
2 2

The modulus of z is /()2 + (%g)2 =,/3+3=+1=1 From the

diagram below we see that if arg z = 0 then cosd = 1/2 (adjacent side
is 1/2, hypoteneuse is 1), so § = /3.
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Since 6 is measured clockwise (negative) from the real axis, argz =
—m/3. Hence

2 = cos(—7/3) +isin(—m/3) = e /3,

It would be better style to tidy up the minus signs in the cosine and
sine and write z = cos(m/3) — isin(m/3).

4. What are Arg i and Arg(—i)? Put i and —i in exponential form.

Note that when written with a capital ‘A’, Arg refers to the principal
argument, chosen so that —m < Argz < 7.

Here Argi = 7/2 and Arg —i = —7/2. Hence i = ¢™/? and —i =

e—i7r/2

5. Convert e=™/% to Cartesian form.

By definition of the exponential function (see Definition 2.1),
/6 _ _Z .. _E
e COS( 6)+ZSIH( 6).

Now using that cos(—#) = — cosf and sin(—0) = —sin§ we get
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You should know the values of cos and sin for the angles 0, 7/6, 7/4, 7/3, 7 /2.
Using the values for 7/6 gives the simpler form

efw/e‘:\/_g_i.
2 2
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MODULUS, ARGUMENT AND CIRCLES.
1. Draw on the same Argand diagram the set of all z € C such that
|z| =2, and the set of all w € C such that |w — 2| = 2.
The complex numbers of modulus 2 are exactly the complex numbers

on the circle of radius 2 about 0.

The condition |w — 2| = 2 means that w is distance 2 from the point
2 + 0z on the Argand diagram. So we get a circle of radius 2 about 2.

27

|z —2| =2

2. Let T be the set of z € C such that |z| =1 and 0 < Argz < /2.
Draw T on an Argand diagram.

The condition |z| = 1 means that z is on the unit circle; the condition
0 < Argz < 7/2 means that the marked angle 6 is between 0 and /2.
Therefore we get the arc shown below.

arg z
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3. Draw the set of complex numbers of the form 1 + e~ where 0 <
0 < 7/6 on an Argand diagram.

The points of the form 1 + e~ are distance 1 from 1, so lie on the
circle of radius 1 with centre 1, shown in the diagram below. As 6
varies from 0 to 7/6 we get the thick arc.




Logic and sets: Answers to revision questions

Here are some answers to the questions on the sheet of revision ex-
amples and questions.

1. Negate the following propositions
(a) (Vr € R)(Ty € R)(y* = =)
(b) (Vo = 0)(Jy € R)(y* = )
(¢) (Vx € R)(3In € N)(n > z)
(d) (3In € N)(Vx € R)(n > z)

Which are true are which are false? Justify your answers.

Using the recommended method on page 27 of the printed lecture
notes, we find that the negation of (a) is

3z € R)~(3y € R)(y* = x)
which is logically equivalent to
(3z € R)(Vy € R)~(y* = 7).

Finally we replace —(y?> = x) with the easier to read (y* # x). The
other negations are found similarly:

~(a) (3 € R)(Vy € R)(y* # )
=(b) (32 > 0)(Vy € R)(y* # 2)
=(c) (Fzr € R)(Vn € N)(n < z)
=(d) (Vn e N)(Fz € R)(n < z)

e Since (Vy € R)(y* # —1) is true, the negation of (a), namely
(Fz € R)(Vy € R)(y? # x), is true. Hence (a) is false.

e Given any x > 0 there exists y € R such that y? = z, since we
can take y = y/x € R. Hence (b) is true.

e Given any x € R there is a natural number n such that n > x.
(For example, if x = m 4 6 where 0 < 6 < 1 then take n =
m +1.) So (c) is true.

e The negation of (d) is true, since given any n € N, there exists
r € R such that n < z. (For example, take x = n + 1.)
Hence (d) is false.
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PROPOSITIONS AND TRUTH TABLES.

2. Recall that a proposition is a tautology if it is always true. Using
truth tables, or by arguing directly (see the answer to Question 4 on
Sheet 6 for an example of this approach) decide which of the following
propositions are tautologies:

(i) P= (Q = P),
(ii) (P= Q) = P,
(ili) (P = Q) = ((Q = R) = (P = R)).

(a) The truth table for P = (@ = P) is shown below.

PlQ|Q=P|P= (Q=P)
T|T T T
T|F T T
F|T F T
F|F T T

Since all the entries in the column for P = (@ = P) are T,
P = ( = P) is a tautology.

(b) The truth table for (P = @) = P is shown below.

PlQIP=Q|(P=Q) =P
T|T T T
T|F F T
F|T T F
F|F T F

We see that (P = Q) = P is false when P is false and @ is true,
and also when P is false and @ is true. So (P = @)) = P is not a
tautology.

(c) Let A be the proposition
(P= Q)= ((@= R) = (P = R))

One way to show that A is a tautology is to use a truth table with eight
rows corresponding to the eight possible truth values for P, @) and R,
as shown below.



PIQRIP=Q|Q=R|P=R|(Q=—R)— (P=R)|A
T|T|T T T T T T
T|T|F T F F T T
T|F|T F T T T T
T|F|F F T F F T
F|T|T T T T T T
F|T|F T F T T T
F|F|T T T T T T
F|F|F T T T T T

It is also possible to argue directly. Suppose, for a contradiction that
(P= Q)= ((@ = R) = (P = R))

is false. Then, since A = B is false if and only if A is true and
B is false, we see that () = R) = (P = R) is false. Hence
(Q = R) is true and (P = R) is false, so P is true, R is false and @
is false. But then P = (@) is false, so the original proposition is true,
a contradiction.

Intuitive meaning: one interpretation of A is as follows: suppose we
can prove that P = (). Then if we can also prove that ) = R,
we have that P — R.

3. Let P, @, R be propositions. Let M be the proposition below
(PANQ)V(QANR)V (RAP).
(a) Show that M is true if and only if at least two of P, @) and R are
true.

(b) Show that M is logically equivalent to
(PVQ)N(QV R)AN(RV P).

(a) M is true if and only if at least one of PAQ, Q A R and RA P
is true. This is the case if and only if at least two of P,(Q), R are true.

(b) Similarly, the proposition (P V Q) A (Q V R) A (RV P) if and
only if at least two of P, () and R are true. So M is true if and only
if (PVQ)A(QV R)A(RV P)is true.

Remark: this could also be done with an eight-row truth table, show-
ing that the columns for M and (PV Q) A (QV R) A (RV P) are
equal.



4. Show that the following propositions formed from propositions P, )
and R are logically equivalent:

(a) (P = Q) and (-Q = —P) [corrected @) to —() on 29th
November]

(b) =(PVQVR) and =P A =Q A —R
(¢) 7(PVQ)V R and =((PAQ)A-R)

The first is used in proof by the contrapositive: to show P = () you

can instead show that =) = —P (see the bottom of page 25 of the
printed notes).

(a) From the truth table below we see that P = @ is true if and
only if =) = =P is true.

P Q P:>Q —\Q -P —\Q—>—\P
T|T T F | F T
T|F F T | F F
F|T T F | T T
F|F T T | T T

Alternatives: another good way to (a) is to use that P = @ is
logically equivalent to =P V Q. (Equivalently P = @ is only false if
P is true and @ is false.) So Hence

(P= Q) <= (-PVQ) < (=(=Q)V-P) = (=@ = ~P).

Or you use the argument given in lectures for Exercise 5.5.

SETS. Sets were introduced on page 4 and were the subject of §6.

5. Let X be the set {1,7,{42,v2},{{1,3}}}. Decide which of the fol-
lowing statements are true and which are false.

(i) ™€ X; (vi) {1,7} C X;
(i) {r} & X; (vil) (3A € X)(1 € A);
(iii) {42,v2} € X; (viii) {1,3} C X;
(iv) {1} C X, (ix) {1,3} € X
(v) {1,V2} C X; (x) (3A € X)({1,3} € A);

(i) True, since 7 is an element of X.
(i) False, since {m} is not an element of X. (It is true that {m} is
a subset of X, by (i), but this is not the same thing!)
(iii) True, since {42,+/2} is an element of X.
(iv) False, since {1} is not an element of X.
(v) False, since {1,v/2} is not an element of X.



(vi) True, since 1 € X and 7 € X so {1,7} C X.
(vii) False. There is no element of X which has 1 as an element.
(Compare (x).)
(viii) False: since 3 ¢ X, {1,3} Z X.
(ix) False: {1,3} is not an element of X.
(x) True: take A = {{1,3}}. Then {1,3} € A and A € X.

6. Define subsets X, Y and Z of the natural numbers as follows:
X={neN:6|(n—-1)}
Y={neN:3|(n-1)}
Z={neN:3|(n*-1)}

Show that X CY and Y C Z. Deduce that X C Z.

To show that X C Y we must show that if n € X thenn €Y. A
chain of implications is often a good way to do this:
neX=6|(n—1)=n—1=06k for some k € Z
= n—1=23(2k) forsome k€ Z=—=3|(n—1) = neY.

Similarly, if n € Y then 3| (n — 1) so n — 1 = 3k for some k € Z. But
n>—1=(mn-1)(n+1)son*—1=3k(n+1) and so 3 | n* — 1 and
hence n € Z. Hence Y C Z.

We have X CY C Z and so X C Z. (The relation C is transitive.)

FuNCTIONS.

7. For each of the diagrams below decide whether the function it repre-
sents is (1) injective, (2) surjective, (3) bijective.

For example, the top left diagram shows the function
f:{1,2,3,4} = {1,2,3}
defined by f(1) =3, f(2) =1, f(3) =2, f(4) = 3.



Top left: (1) not injective since f(1) = f(4) = 3; (2) surjective since
for all y € {1,2,3} there exists x € {1,2,3,4} such that f(z) =y
(specifically: f(2) =1, f(3) =2, f(4) = 3); (3) not bijective, since not
injective.

Top right: (1) not injective since f(1) = f(2) = 1; (2) not surjective
since there is no « € {1,2,3,4} such that f(x) ; (3) not bijective
since not injective.

Bottom left: (1) injective; (2) not surjective since there is no x €
{1,2,3,4} such that f(z) = 3; not bijective since not surjective.

Bottom right: (1) injective; (2) surjective; (3) hence bijective.

8. The graphs below show functions f : [0,2] — [—1,1]. Decide for each
each graph whether the function it shows is (1) injective, (2) surjective,
(3) bijective.

]; /4 %

Left function: (1) injective, (2) surjective and so (3) bijective.

Middle function: (1) not injective: for example there exists x < 1
such that f(z) = f(2) = 0; (2) surjective; (3) not bijective since not
injective.

Right function: (1) injective; (2) not surjective, for instance the
horizontal line through —1/2 does not meet the graph so there is no
x € [0,2] such that f(x) = —1/2; (3) not bijective since not surjective.

9. Let f: X — Y be a function. In symbols, the condition that f is
surjective is

(Vy € Y)(3z € X)(f(z) = y).
Write down the negation of this proposition.

Following the method on page 27 of the printed lecture notes we get
By €Y) (FBrinX)(f(x) = y)

which is logically equivalent to

By e Y)(Vo € X) [f(2) =y)



which we can rewrite as

(Fy eY)(Vz € X)(f(x) #y).

10. Let f : [0,00) — [1,00) be the function defined by f(z) = (z + 1)3.
(a) What is the domain of f? What is the codomain of f?
(b) Show that f is injective. Start your answer:
‘suppose that x,z’ € [0,00) and f(z) = f(2'). Then ...’
(c) Show that f is surjective.
(d) What are the domain and codomain of the inverse function f~'?
(e) Find a formula for f~!(y) where y is in the domain of f~1.

(a) The domain of f is [0,00) and the codomain of f is [1, 00).

(b) Suppose that z,z € [0co) and f(z) = f(z’). Then (z + 1)° =
(241)3 and since each real number has a unique real cube root, z+1 =
' + 1. Hence x = 2/. Therefore f is injective.

(c) Let y € [1,00). We want to find x € [0, 00) such that f(z) = y.
Now

(z+1)P =y <= 2+1=y <= z=y—1
so we can take v = Yy — 1.

(d) The inverse function has domain [1, 00) (the codomain of f) and

codomain [0, c0) (the domain of f).

(e) By (c) we have f~'(y) = ¢/y — 1.

11.Let X ={z € R: 2 # -1} andlet Y = {y € R :y # 0}. Let
g : R — R be the function defined by

1
g(x)_x—i-l

Show that g : X — Y is bijective and find a formula for ¢! : ¥ — X.

We first show that g is injective. Suppose that z, 2’ € X and g(z) =
g(«’). Then 1/(z 4+ 1) =1/(2’ + 1), so inverting we get x +1 =2’ + 1.
Hence x = 2’. Now let y € Y. We have

1 1 1

=y <<= r+1l=- << z=--—-1.
r+1 Yy Y
(Note that since y # 0, it is okay to invert 1/(x + 1) = y.) Hence
g(1/y — 1) = y and g is surjective. This also shows that the inverse
function is

g(r) =y <=

1
—1
g (t)=--1
Y



