
Complex Numbers: Answers to Revision Questions

Here are some answers to the questions on the sheet of revision ex-
amples and questions.

Cartesian, polar and exponential forms.

1. Write −1− i in polar and exponential forms.

First draw −1− i on an Argand diagram to see roughly where it is.

The modulus of −1− i is
√

(−1)2 + (−1)2 =
√

2. The angle θ on the
diagram is 3π/4 (one right-angle plus one-half of a right-angle). Since
it is measured clockwise from the real axis, we get a minus sign. So
arg(−1− i) = −3π/4.

Hence

−1− i =
√

2
(

cos(−3π/4) + i sin(−3π/4)
)
.

From the polar form it is trivial to convert to exponential form:

−1− i =
√

2e−3iπ/4.

Note it would also be correct to write

−1− i =
√

2
(

cos(5π/4) + i sin(5π/4)
)

=
√

2e5iπ/4.

You would get this expression if you instead used the angle φ, which is
5π/4, measured anticlockwise from the real axis.

2. Let φ = tan−1 2. Plot 1 + 2i, −2 + i, −1 − 2i and 2 − i on an
Argand diagram, and convert these numbers to polar form, writing your
answers in terms of φ.

See the diagram below.



2

From this diagram we see that all the numbers have modulus
√

5
and that

arg(1 + 2i) = φ

arg(−2 + i) = φ+ π/2

arg(−1− 2i) = φ+ π

arg(2− i) = φ+ 3π/2.

Hence

1 + 2i =
√

5
(
cosφ+ i sinφ)

−2 + i =
√

5
(
cos(φ+ π/2) + i sin(φ+ π/2)

)

−1− 2i =
√

5
(
cos(φ+ π) + i sin(φ+ π)

)

2− i =
√

5
(
cos(φ+ 3π/2) + i sin(φ+ 3π/2)

)
.

Again you could give different (but equivalent) answers by taking a
different choice for the argument. For example, the principal argument
of 2− i is φ− π/2, so

2− i =
√

5
(
cos(φ− π/2) + i sin(φ− π/2)

)
.

3. Let z = 1
2
− i

√
3
2

. Write z in polar and exponential forms.

The modulus of z is
√

(1
2
)2 + (

√
3
2

)2 =
√

1
4

+ 3
4

=
√

1 = 1. From the

diagram below we see that if arg z = θ then cos θ = 1/2 (adjacent side
is 1/2, hypoteneuse is 1), so θ = π/3.
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Since θ is measured clockwise (negative) from the real axis, arg z =
−π/3. Hence

z = cos(−π/3) + i sin(−π/3) = e−iπ/3.

It would be better style to tidy up the minus signs in the cosine and
sine and write z = cos(π/3)− i sin(π/3).

4. What are Arg i and Arg(−i)? Put i and −i in exponential form.

Note that when written with a capital ‘A’, Arg refers to the principal
argument, chosen so that −π < Arg z ≤ π.

Here Arg i = π/2 and Arg−i = −π/2. Hence i = eiπ/2 and −i =
e−iπ/2.

5. Convert e−πi/6 to Cartesian form.

By definition of the exponential function (see Definition 2.1),

e−π/6 = cos
(
−π

6

)
+ i sin

(
−π

6

)
.

Now using that cos(−θ) = − cos θ and sin(−θ) = − sin θ we get

e−π/6 = cos
π

6
− i sin

π

6
.

You should know the values of cos and sin for the angles 0, π/6, π/4, π/3, π/2.
Using the values for π/6 gives the simpler form

e−π/6 =

√
3

2
− i

2
.
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Modulus, argument and circles.

1. Draw on the same Argand diagram the set of all z ∈ C such that
|z| = 2, and the set of all w ∈ C such that |w − 2| = 2.

The complex numbers of modulus 2 are exactly the complex numbers
on the circle of radius 2 about 0.

The condition |w− 2| = 2 means that w is distance 2 from the point
2 + 0i on the Argand diagram. So we get a circle of radius 2 about 2.

−2 −1 1 2 3 4

−2i

−i

i

2i

|z| = 2
|z − 2| = 2

2. Let T be the set of z ∈ C such that |z| = 1 and 0 ≤ Arg z ≤ π/2.
Draw T on an Argand diagram.

The condition |z| = 1 means that z is on the unit circle; the condition
0 ≤ Arg z ≤ π/2 means that the marked angle θ is between 0 and π/2.
Therefore we get the arc shown below.

1

−i
z

arg z
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3. Draw the set of complex numbers of the form 1 + e−iθ where 0 ≤
θ ≤ π/6 on an Argand diagram.

The points of the form 1 + e−iθ are distance 1 from 1, so lie on the
circle of radius 1 with centre 1, shown in the diagram below. As θ
varies from 0 to π/6 we get the thick arc.

1 2

−i

i

π/6



Logic and sets: Answers to revision questions

Here are some answers to the questions on the sheet of revision ex-
amples and questions.

1. Negate the following propositions

(a) (∀x ∈ R)(∃y ∈ R)(y2 = x)

(b) (∀x ≥ 0)(∃y ∈ R)(y2 = x)

(c) (∀x ∈ R)(∃n ∈ N)(n ≥ x)

(d) (∃n ∈ N)(∀x ∈ R)(n ≥ x)

Which are true are which are false? Justify your answers.

Using the recommended method on page 27 of the printed lecture
notes, we find that the negation of (a) is

(∃x ∈ R)¬(∃y ∈ R)(y2 = x)

which is logically equivalent to

(∃x ∈ R)(∀y ∈ R)¬(y2 = x).

Finally we replace ¬(y2 = x) with the easier to read (y2 6= x). The
other negations are found similarly:

¬(a) (∃x ∈ R)(∀y ∈ R)(y2 6= x)

¬(b) (∃x ≥ 0)(∀y ∈ R)(y2 6= x)

¬(c) (∃x ∈ R)(∀n ∈ N)(n < x)

¬(d) (∀n ∈ N)(∃x ∈ R)(n < x)

• Since (∀y ∈ R)(y2 6= −1) is true, the negation of (a), namely
(∃x ∈ R)(∀y ∈ R)(y2 6= x), is true. Hence (a) is false.

• Given any x ≥ 0 there exists y ∈ R such that y2 = x, since we
can take y =

√
x ∈ R. Hence (b) is true.

• Given any x ∈ R there is a natural number n such that n ≥ x.
(For example, if x = m + θ where 0 ≤ θ < 1 then take n =
m+ 1.) So (c) is true.

• The negation of (d) is true, since given any n ∈ N, there exists
x ∈ R such that n < x. (For example, take x = n + 1.)
Hence (d) is false.
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Propositions and truth tables.

2. Recall that a proposition is a tautology if it is always true. Using
truth tables, or by arguing directly (see the answer to Question 4 on
Sheet 6 for an example of this approach) decide which of the following
propositions are tautologies:

(i) P =⇒ (Q =⇒ P ),
(ii) (P =⇒ Q) =⇒ P ,

(iii) (P =⇒ Q) =⇒
(
(Q =⇒ R) =⇒ (P =⇒ R)

)
.

(a) The truth table for P =⇒ (Q =⇒ P ) is shown below.

P Q Q =⇒ P P =⇒ (Q =⇒ P )

T T T T

T F T T

F T F T

F F T T

Since all the entries in the column for P =⇒ (Q =⇒ P ) are T,
P =⇒ (Q =⇒ P ) is a tautology.

(b) The truth table for (P =⇒ Q) =⇒ P is shown below.

P Q P =⇒ Q (P =⇒ Q) =⇒ P

T T T T

T F F T

F T T F

F F T F

We see that (P =⇒ Q) =⇒ P is false when P is false and Q is true,
and also when P is false and Q is true. So (P =⇒ Q) =⇒ P is not a
tautology.

(c) Let A be the proposition

(P =⇒ Q) =⇒
(
(Q =⇒ R) =⇒ (P =⇒ R)

)

One way to show that A is a tautology is to use a truth table with eight
rows corresponding to the eight possible truth values for P , Q and R,
as shown below.
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P Q R P =⇒ Q Q =⇒ R P =⇒ R (Q =⇒ R) =⇒ (P =⇒ R) A

T T T T T T T T

T T F T F F T T

T F T F T T T T

T F F F T F F T

F T T T T T T T

F T F T F T T T

F F T T T T T T

F F F T T T T T

It is also possible to argue directly. Suppose, for a contradiction that

(P =⇒ Q) =⇒
(
(Q =⇒ R) =⇒ (P =⇒ R)

)

is false. Then, since A =⇒ B is false if and only if A is true and
B is false, we see that (Q =⇒ R) =⇒ (P =⇒ R) is false. Hence
(Q =⇒ R) is true and (P =⇒ R) is false, so P is true, R is false and Q
is false. But then P =⇒ Q is false, so the original proposition is true,
a contradiction.

Intuitive meaning: one interpretation of A is as follows: suppose we
can prove that P =⇒ Q. Then if we can also prove that Q =⇒ R,
we have that P =⇒ R.

3. Let P , Q, R be propositions. Let M be the proposition below

(P ∧Q) ∨ (Q ∧R) ∨ (R ∧ P ).

(a) Show that M is true if and only if at least two of P , Q and R are
true.

(b) Show that M is logically equivalent to

(P ∨Q) ∧ (Q ∨R) ∧ (R ∨ P ).

(a) M is true if and only if at least one of P ∧Q, Q ∧R and R ∧ P
is true. This is the case if and only if at least two of P,Q,R are true.

(b) Similarly, the proposition (P ∨ Q) ∧ (Q ∨ R) ∧ (R ∨ P ) if and
only if at least two of P , Q and R are true. So M is true if and only
if (P ∨Q) ∧ (Q ∨R) ∧ (R ∨ P ) is true.

Remark: this could also be done with an eight-row truth table, show-
ing that the columns for M and (P ∨ Q) ∧ (Q ∨ R) ∧ (R ∨ P ) are
equal.
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4. Show that the following propositions formed from propositions P , Q
and R are logically equivalent:

(a) (P =⇒ Q) and (¬Q =⇒ ¬P ) [corrected Q to ¬Q on 29th
November]

(b) ¬(P ∨Q ∨R) and ¬P ∧ ¬Q ∧ ¬R
(c) ¬(P ∨Q) ∨R and ¬

(
(P ∧Q) ∧ ¬R

)

The first is used in proof by the contrapositive: to show P =⇒ Q you
can instead show that ¬Q =⇒ ¬P (see the bottom of page 25 of the
printed notes).

(a) From the truth table below we see that P =⇒ Q is true if and
only if ¬Q =⇒ ¬P is true.

P Q P =⇒ Q ¬Q ¬P ¬Q→ ¬P
T T T F F T

T F F T F F

F T T F T T

F F T T T T

Alternatives: another good way to (a) is to use that P =⇒ Q is
logically equivalent to ¬P ∨ Q. (Equivalently P =⇒ Q is only false if
P is true and Q is false.) So Hence

(P =⇒ Q) ⇐⇒ (¬P ∨Q) ⇐⇒ (¬(¬Q) ∨ ¬P ) ⇐⇒ (¬Q =⇒ ¬P ).

Or you use the argument given in lectures for Exercise 5.5.

Sets. Sets were introduced on page 4 and were the subject of §6.

5. Let X be the set
{

1, π, {42,
√

2}, {{1, 3}}
}

. Decide which of the fol-
lowing statements are true and which are false.

(i) π ∈ X;
(ii) {π} 6∈ X;
(iii) {42,

√
2} ∈ X;

(iv) {1} ⊆ X;
(v) {1,

√
2} ⊆ X;

(vi) {1, π} ⊆ X;
(vii) (∃A ∈ X)(1 ∈ A);
(viii) {1, 3} ⊆ X;
(ix) {1, 3} ∈ X
(x) (∃A ∈ X)({1, 3} ∈ A);

(i) True, since π is an element of X.
(ii) False, since {π} is not an element of X. (It is true that {π} is

a subset of X, by (i), but this is not the same thing!)
(iii) True, since {42,

√
2} is an element of X.

(iv) False, since {1} is not an element of X.
(v) False, since {1,

√
2} is not an element of X.
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(vi) True, since 1 ∈ X and π ∈ X so {1, π} ⊆ X.
(vii) False. There is no element of X which has 1 as an element.

(Compare (x).)
(viii) False: since 3 6∈ X, {1, 3} 6⊆ X.

(ix) False: {1, 3} is not an element of X.
(x) True: take A = {{1, 3}}. Then {1, 3} ∈ A and A ∈ X.

6. Define subsets X, Y and Z of the natural numbers as follows:

X = {n ∈ N : 6 | (n− 1)}
Y = {n ∈ N : 3 | (n− 1)}
Z = {n ∈ N : 3 | (n2 − 1)}

Show that X ⊆ Y and Y ⊆ Z. Deduce that X ⊆ Z.

To show that X ⊆ Y we must show that if n ∈ X then n ∈ Y . A
chain of implications is often a good way to do this:

n ∈ X =⇒ 6 | (n− 1) =⇒ n− 1 = 6k for some k ∈ Z
=⇒ n− 1 = 3(2k) for some k ∈ Z =⇒ 3 | (n− 1) =⇒ n ∈ Y.

Similarly, if n ∈ Y then 3 | (n− 1) so n− 1 = 3k for some k ∈ Z. But
n2 − 1 = (n − 1)(n + 1) so n2 − 1 = 3k(n + 1) and so 3 | n2 − 1 and
hence n ∈ Z. Hence Y ⊆ Z.

We have X ⊆ Y ⊆ Z and so X ⊆ Z. (The relation ⊆ is transitive.)

Functions.

7. For each of the diagrams below decide whether the function it repre-
sents is (1) injective, (2) surjective, (3) bijective.

For example, the top left diagram shows the function

f : {1, 2, 3, 4} → {1, 2, 3}
defined by f(1) = 3, f(2) = 1, f(3) = 2, f(4) = 3.
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Top left: (1) not injective since f(1) = f(4) = 3; (2) surjective since
for all y ∈ {1, 2, 3} there exists x ∈ {1, 2, 3, 4} such that f(x) = y
(specifically: f(2) = 1, f(3) = 2, f(4) = 3); (3) not bijective, since not
injective.

Top right: (1) not injective since f(1) = f(2) = 1; (2) not surjective
since there is no x ∈ {1, 2, 3, 4} such that f(x) = 2; (3) not bijective
since not injective.

Bottom left: (1) injective; (2) not surjective since there is no x ∈
{1, 2, 3, 4} such that f(x) = 3; not bijective since not surjective.

Bottom right: (1) injective; (2) surjective; (3) hence bijective.

8. The graphs below show functions f : [0, 2]→ [−1, 1]. Decide for each
each graph whether the function it shows is (1) injective, (2) surjective,
(3) bijective.

Left function: (1) injective, (2) surjective and so (3) bijective.

Middle function: (1) not injective: for example there exists x < 1
such that f(x) = f(2) = 0; (2) surjective; (3) not bijective since not
injective.

Right function: (1) injective; (2) not surjective, for instance the
horizontal line through −1/2 does not meet the graph so there is no
x ∈ [0, 2] such that f(x) = −1/2; (3) not bijective since not surjective.

9. Let f : X → Y be a function. In symbols, the condition that f is
surjective is

(∀y ∈ Y )(∃x ∈ X)(f(x) = y).

Write down the negation of this proposition.

Following the method on page 27 of the printed lecture notes we get

(∃y ∈ Y ) 6 (∃xinX)(f(x) = y)

which is logically equivalent to

(∃y ∈ Y )(∀x ∈ X) 6 (f(x) = y)
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which we can rewrite as

(∃y ∈ Y )(∀x ∈ X)(f(x) 6= y).

10. Let f : [0,∞)→ [1,∞) be the function defined by f(x) = (x+ 1)3.

(a) What is the domain of f? What is the codomain of f?

(b) Show that f is injective. Start your answer:
‘suppose that x, x′ ∈ [0,∞) and f(x) = f(x′). Then . . . ’

(c) Show that f is surjective.

(d) What are the domain and codomain of the inverse function f−1?

(e) Find a formula for f−1(y) where y is in the domain of f−1.

(a) The domain of f is [0,∞) and the codomain of f is [1,∞).

(b) Suppose that x, x ∈ [0∞) and f(x) = f(x′). Then (x + 1)3 =
(x′+1)3 and since each real number has a unique real cube root, x+1 =
x′ + 1. Hence x = x′. Therefore f is injective.

(c) Let y ∈ [1,∞). We want to find x ∈ [0,∞) such that f(x) = y.
Now

(x+ 1)3 = y ⇐⇒ x+ 1 =
√
y ⇐⇒ x = 3

√
y − 1

so we can take x = 3
√
y − 1.

(d) The inverse function has domain [1,∞) (the codomain of f) and
codomain [0,∞) (the domain of f).

(e) By (c) we have f−1(y) = 3
√
y − 1.

11. Let X = {x ∈ R : x 6= −1} and let Y = {y ∈ R : y 6= 0}. Let
g : R→ R be the function defined by

g(x) =
1

x+ 1

Show that g : X → Y is bijective and find a formula for g−1 : Y → X.

We first show that g is injective. Suppose that x, x′ ∈ X and g(x) =
g(x′). Then 1/(x+ 1) = 1/(x′ + 1), so inverting we get x+ 1 = x′ + 1.
Hence x = x′. Now let y ∈ Y . We have

g(x) = y ⇐⇒ 1

x+ 1
= y ⇐⇒ x+ 1 =

1

y
⇐⇒ x =

1

y
− 1.

(Note that since y 6= 0, it is okay to invert 1/(x + 1) = y.) Hence
g(1/y − 1) = y and g is surjective. This also shows that the inverse
function is

g−1(t) =
1

y
− 1.


