### **Complex Numbers: Answers to Revision Questions**

Here are some answers to the questions on the sheet of revision examples and questions.

CARTESIAN, POLAR AND EXPONENTIAL FORMS.

**1.** Write -1 - i in polar and exponential forms.

First draw -1 - i on an Argand diagram to see roughly where it is.



The modulus of -1-i is  $\sqrt{(-1)^2 + (-1)^2} = \sqrt{2}$ . The angle  $\theta$  on the diagram is  $3\pi/4$  (one right-angle plus one-half of a right-angle). Since it is measured clockwise from the real axis, we get a minus sign. So  $\arg(-1-i) = -3\pi/4$ .

Hence

$$-1 - i = \sqrt{2} \left( \cos(-3\pi/4) + i \sin(-3\pi/4) \right).$$

From the polar form it is trivial to convert to exponential form:

$$-1 - i = \sqrt{2} \mathrm{e}^{-3i\pi/4}.$$

Note it would also be correct to write

$$-1 - i = \sqrt{2} \left( \cos(5\pi/4) + i \sin(5\pi/4) \right) = \sqrt{2} e^{5i\pi/4}.$$

You would get this expression if you instead used the angle  $\phi$ , which is  $5\pi/4$ , measured anticlockwise from the real axis.

**2.** Let  $\phi = \tan^{-1} 2$ . Plot 1 + 2i, -2 + i, -1 - 2i and 2 - i on an Argand diagram, and convert these numbers to polar form, writing your answers in terms of  $\phi$ .

See the diagram below.



From this diagram we see that all the numbers have modulus  $\sqrt{5}$  and that

$$\arg(1+2i) = \phi$$
$$\arg(-2+i) = \phi + \pi/2$$
$$\arg(-1-2i) = \phi + \pi$$
$$\arg(2-i) = \phi + 3\pi/2.$$

Hence

$$1 + 2i = \sqrt{5} (\cos \phi + i \sin \phi)$$
  
-2 + i =  $\sqrt{5} (\cos(\phi + \pi/2) + i \sin(\phi + \pi/2))$   
-1 - 2i =  $\sqrt{5} (\cos(\phi + \pi) + i \sin(\phi + \pi))$   
2 - i =  $\sqrt{5} (\cos(\phi + 3\pi/2) + i \sin(\phi + 3\pi/2)).$ 

Again you could give different (but equivalent) answers by taking a different choice for the argument. For example, the principal argument of 2 - i is  $\phi - \pi/2$ , so

$$2 - i = \sqrt{5} \left( \cos(\phi - \pi/2) + i \sin(\phi - \pi/2) \right).$$

**3.** Let  $z = \frac{1}{2} - i\frac{\sqrt{3}}{2}$ . Write z in polar and exponential forms.

The modulus of z is  $\sqrt{(\frac{1}{2})^2 + (\frac{\sqrt{3}}{2})^2} = \sqrt{\frac{1}{4} + \frac{3}{4}} = \sqrt{1} = 1$ . From the diagram below we see that if  $\arg z = \theta$  then  $\cos \theta = 1/2$  (adjacent side is 1/2, hypoteneuse is 1), so  $\theta = \pi/3$ .



Since  $\theta$  is measured clockwise (negative) from the real axis, arg  $z = -\pi/3$ . Hence

$$z = \cos(-\pi/3) + i\sin(-\pi/3) = e^{-i\pi/3}.$$

It would be better style to tidy up the minus signs in the cosine and sine and write  $z = \cos(\pi/3) - i\sin(\pi/3)$ .

# **4.** What are Arg i and Arg(-i)? Put i and -i in exponential form.

Note that when written with a capital 'A', Arg refers to the principal argument, chosen so that  $-\pi < \operatorname{Arg} z \leq \pi$ .

Here Arg  $i = \pi/2$  and Arg  $-i = -\pi/2$ . Hence  $i = e^{i\pi/2}$  and  $-i = e^{-i\pi/2}$ .

# **5.** Convert $e^{-\pi i/6}$ to Cartesian form.

By definition of the exponential function (see Definition 2.1),

$$e^{-\pi/6} = \cos\left(-\frac{\pi}{6}\right) + i\sin\left(-\frac{\pi}{6}\right).$$

Now using that  $\cos(-\theta) = -\cos\theta$  and  $\sin(-\theta) = -\sin\theta$  we get

$$e^{-\pi/6} = \cos\frac{\pi}{6} - i\sin\frac{\pi}{6}.$$

You should know the values of cos and sin for the angles  $0, \pi/6, \pi/4, \pi/3, \pi/2$ . Using the values for  $\pi/6$  gives the simpler form

$$e^{-\pi/6} = \frac{\sqrt{3}}{2} - \frac{i}{2}.$$

MODULUS, ARGUMENT AND CIRCLES.

**1.** Draw on the same Argand diagram the set of all  $z \in \mathbb{C}$  such that |z| = 2, and the set of all  $w \in \mathbb{C}$  such that |w - 2| = 2.

The complex numbers of modulus 2 are exactly the complex numbers on the circle of radius 2 about 0.

The condition |w-2| = 2 means that w is distance 2 from the point 2 + 0i on the Argand diagram. So we get a circle of radius 2 about 2.



**2.** Let T be the set of  $z \in \mathbb{C}$  such that |z| = 1 and  $0 \leq \operatorname{Arg} z \leq \pi/2$ . Draw T on an Argand diagram.

The condition |z| = 1 means that z is on the unit circle; the condition  $0 \leq \operatorname{Arg} z \leq \pi/2$  means that the marked angle  $\theta$  is between 0 and  $\pi/2$ . Therefore we get the arc shown below.



**3.** Draw the set of complex numbers of the form  $1 + e^{-i\theta}$  where  $0 \le \theta \le \pi/6$  on an Argand diagram.

The points of the form  $1 + e^{-i\theta}$  are distance 1 from 1, so lie on the circle of radius 1 with centre 1, shown in the diagram below. As  $\theta$  varies from 0 to  $\pi/6$  we get the thick arc.



## Logic and sets: Answers to revision questions

Here are some answers to the questions on the sheet of revision examples and questions.

### 1. Negate the following propositions

- (a)  $(\forall x \in \mathbb{R}) (\exists y \in \mathbb{R}) (y^2 = x)$
- (b)  $(\forall x \ge 0) (\exists y \in \mathbb{R}) (y^2 = x)$
- (c)  $(\forall x \in \mathbb{R}) (\exists n \in \mathbb{N}) (n \ge x)$
- (d)  $(\exists n \in \mathbb{N}) (\forall x \in \mathbb{R}) (n \ge x)$

Which are true are which are false? Justify your answers.

Using the recommended method on page 27 of the printed lecture notes, we find that the negation of (a) is

$$(\exists x \in \mathbb{R}) \neg (\exists y \in \mathbb{R}) (y^2 = x)$$

which is logically equivalent to

$$(\exists x \in \mathbb{R}) (\forall y \in \mathbb{R}) \neg (y^2 = x).$$

Finally we replace  $\neg(y^2 = x)$  with the easier to read  $(y^2 \neq x)$ . The other negations are found similarly:

$$\neg(\mathbf{a}) \ (\exists x \in \mathbb{R}) (\forall y \in \mathbb{R}) (y^2 \neq x)$$
  
$$\neg(\mathbf{b}) \ (\exists x \ge 0) (\forall y \in \mathbb{R}) (y^2 \neq x)$$
  
$$\neg(\mathbf{c}) \ (\exists x \in \mathbb{R}) (\forall n \in \mathbb{N}) (n < x)$$
  
$$\neg(\mathbf{d}) \ (\forall n \in \mathbb{N}) (\exists x \in \mathbb{R}) (n < x)$$

- Since  $(\forall y \in \mathbb{R})(y^2 \neq -1)$  is true, the negation of (a), namely  $(\exists x \in \mathbb{R})(\forall y \in \mathbb{R})(y^2 \neq x)$ , is true. Hence (a) is false.
- Given any  $x \ge 0$  there exists  $y \in \mathbb{R}$  such that  $y^2 = x$ , since we can take  $y = \sqrt{x} \in \mathbb{R}$ . Hence (b) is true.
- Given any  $x \in \mathbb{R}$  there is a natural number n such that  $n \ge x$ . (For example, if  $x = m + \theta$  where  $0 \le \theta < 1$  then take n = m + 1.) So (c) is true.
- The negation of (d) is true, since given any  $n \in \mathbb{N}$ , there exists  $x \in \mathbb{R}$  such that n < x. (For example, take x = n + 1.) Hence (d) is false.

PROPOSITIONS AND TRUTH TABLES.

- 2. Recall that a proposition is a tautology if it is always true. Using truth tables, or by arguing directly (see the answer to Question 4 on Sheet 6 for an example of this approach) decide which of the following propositions are tautologies:
  - (i)  $P \Longrightarrow (Q \Longrightarrow P)$ ,

  - (ii)  $(P \Longrightarrow Q) \Longrightarrow P$ , (iii)  $(P \Longrightarrow Q) \Longrightarrow ((Q \Longrightarrow R) \Longrightarrow (P \Longrightarrow R))$ .

(a) The truth table for  $P \Longrightarrow (Q \Longrightarrow P)$  is shown below.

| P | Q | $Q \Longrightarrow P$ | $P \Longrightarrow (Q \Longrightarrow P)$ |
|---|---|-----------------------|-------------------------------------------|
| Т | Т | Т                     | Т                                         |
| Т | F | Т                     | Т                                         |
| F | Т | F                     | Т                                         |
| F | F | Т                     | Т                                         |

Since all the entries in the column for  $P \implies (Q \implies P)$  are T,  $P \Longrightarrow (Q \Longrightarrow P)$  is a tautology.

(b) The truth table for  $(P \Longrightarrow Q) \Longrightarrow P$  is shown below.

| P | Q | $P \Longrightarrow Q$ | $(P \Longrightarrow Q) \Longrightarrow P$ |
|---|---|-----------------------|-------------------------------------------|
| Т | Т | Т                     | Т                                         |
| Т | F | F                     | Т                                         |
| F | Т | Т                     | F                                         |
| F | F | Т                     | F                                         |

We see that  $(P \Longrightarrow Q) \Longrightarrow P$  is false when P is false and Q is true, and also when P is false and Q is true. So  $(P \Longrightarrow Q) \Longrightarrow P$  is not a tautology.

(c) Let A be the proposition

$$(P \Longrightarrow Q) \Longrightarrow \left( (Q \Longrightarrow R) \Longrightarrow (P \Longrightarrow R) \right)$$

One way to show that A is a tautology is to use a truth table with eight rows corresponding to the eight possible truth values for P, Q and R, as shown below.

| P | Q | R | $P \Longrightarrow Q$ | $Q \Longrightarrow R$ | $P \Longrightarrow R$ | $(Q \Longrightarrow R) \Longrightarrow (P \Longrightarrow R)$ | A |
|---|---|---|-----------------------|-----------------------|-----------------------|---------------------------------------------------------------|---|
| Т | Т | Т | Т                     | Т                     | Т                     | Т                                                             | Т |
| Т | Т | F | Т                     | F                     | F                     | Т                                                             | Т |
| Т | F | T | F                     | Т                     | Т                     | Т                                                             | Т |
| Т | F | F | F                     | Т                     | F                     | ${ m F}$                                                      | Т |
| F | Т | Т | Т                     | Т                     | Т                     | Т                                                             | Т |
| F | Т | F | Т                     | F                     | Т                     | Т                                                             | Т |
| F | F | T | Т                     | Т                     | Т                     | Т                                                             | Т |
| F | F | F | Т                     | Т                     | Т                     | Т                                                             | Т |

It is also possible to argue directly. Suppose, for a contradiction that

$$(P \Longrightarrow Q) \Longrightarrow ((Q \Longrightarrow R) \Longrightarrow (P \Longrightarrow R))$$

is false. Then, since  $A \Longrightarrow B$  is false if and only if A is true and B is false, we see that  $(Q \Longrightarrow R) \Longrightarrow (P \Longrightarrow R)$  is false. Hence  $(Q \Longrightarrow R)$  is true and  $(P \Longrightarrow R)$  is false, so P is true, R is false and Q is false. But then  $P \Longrightarrow Q$  is false, so the original proposition is true, a contradiction.

**Intuitive meaning:** one interpretation of A is as follows: suppose we can prove that  $P \implies Q$ . Then if we can also prove that  $Q \implies R$ , we have that  $P \implies R$ .

**3.** Let P, Q, R be propositions. Let M be the proposition below  $(P \land Q) \lor (Q \land R) \lor (R \land P).$ 

(a) Show that M is true if and only if at least two of P, Q and R are true.

(b) Show that M is logically equivalent to

 $(P \lor Q) \land (Q \lor R) \land (R \lor P).$ 

(a) M is true if and only if at least one of  $P \wedge Q$ ,  $Q \wedge R$  and  $R \wedge P$  is true. This is the case if and only if at least two of P, Q, R are true.

(b) Similarly, the proposition  $(P \lor Q) \land (Q \lor R) \land (R \lor P)$  if and only if at least two of P, Q and R are true. So M is true if and only if  $(P \lor Q) \land (Q \lor R) \land (R \lor P)$  is true.

**Remark:** this could also be done with an eight-row truth table, showing that the columns for M and  $(P \lor Q) \land (Q \lor R) \land (R \lor P)$  are equal.

- 4. Show that the following propositions formed from propositions P, Q and R are logically equivalent:
  - (a)  $(P \Longrightarrow Q)$  and  $(\neg Q \Longrightarrow \neg P)$  [corrected Q to  $\neg Q$  on 29th November]
  - (b)  $\neg (P \lor Q \lor R)$  and  $\neg P \land \neg Q \land \neg R$
  - (c)  $\neg (P \lor Q) \lor R$  and  $\neg ((P \land Q) \land \neg R)$

The first is used in proof by the contrapositive: to show  $P \Longrightarrow Q$  you can instead show that  $\neg Q \Longrightarrow \neg P$  (see the bottom of page 25 of the printed notes).

(a) From the truth table below we see that  $P \Longrightarrow Q$  is true if and only if  $\neg Q \Longrightarrow \neg P$  is true.

| P | Q | $P \Longrightarrow Q$ | $\neg Q$ | $\neg P$ | $\neg Q \rightarrow \neg P$ |
|---|---|-----------------------|----------|----------|-----------------------------|
| T | Т | Т                     | F        | F        | Т                           |
| T | F | F                     | Т        | F        | F                           |
| F | Т | Т                     | F        | Т        | Т                           |
| F | F | Т                     | Т        | Т        | Т                           |

**Alternatives:** another good way to (a) is to use that  $P \Longrightarrow Q$  is logically equivalent to  $\neg P \lor Q$ . (Equivalently  $P \Longrightarrow Q$  is only false if P is true and Q is false.) So Hence

 $(P \Longrightarrow Q) \iff (\neg P \lor Q) \iff (\neg (\neg Q) \lor \neg P) \iff (\neg Q \Longrightarrow \neg P).$ 

Or you use the argument given in lectures for Exercise 5.5.

SETS. Sets were introduced on page 4 and were the subject of §6.

**5.** Let X be the set  $\{1, \pi, \{42, \sqrt{2}\}, \{\{1, 3\}\}\}\)$ . Decide which of the following statements are true and which are false.

| (i) $\pi \in X$ ;                  | (vi) $\{1,\pi\} \subseteq X;$           |
|------------------------------------|-----------------------------------------|
| (ii) $\{\pi\} \notin X;$           | (vii) $(\exists A \in X)(1 \in A);$     |
| (iii) $\{42, \sqrt{2}\} \in X;$    | (viii) $\{1,3\} \subseteq X;$           |
| (iv) $\{1\} \subseteq X;$          | (ix) $\{1,3\} \in X$                    |
| (v) $\{1, \sqrt{2}\} \subseteq X;$ | (x) $(\exists A \in X)(\{1,3\} \in A);$ |

- (i) True, since  $\pi$  is an element of X.
- (ii) False, since  $\{\pi\}$  is not an element of X. (It is true that  $\{\pi\}$  is a subset of X, by (i), but this is not the same thing!)
- (iii) True, since  $\{42, \sqrt{2}\}$  is an element of X.
- (iv) False, since  $\{1\}$  is not an element of X.
- (v) False, since  $\{1, \sqrt{2}\}$  is not an element of X.

4

- (vi) True, since  $1 \in X$  and  $\pi \in X$  so  $\{1, \pi\} \subseteq X$ .
- (vii) False. There is no element of X which has 1 as an element. (Compare (x).)
- (viii) False: since  $3 \notin X$ ,  $\{1,3\} \nsubseteq X$ .
  - (ix) False:  $\{1,3\}$  is not an element of X.
  - (x) True: take  $A = \{\{1, 3\}\}$ . Then  $\{1, 3\} \in A$  and  $A \in X$ .
- **6.** Define subsets X, Y and Z of the natural numbers as follows:

$$X = \{n \in \mathbb{N} : 6 \mid (n-1)\}$$
$$Y = \{n \in \mathbb{N} : 3 \mid (n-1)\}$$
$$Z = \{n \in \mathbb{N} : 3 \mid (n^2 - 1)\}$$

Show that  $X \subseteq Y$  and  $Y \subseteq Z$ . Deduce that  $X \subseteq Z$ .

To show that  $X \subseteq Y$  we must show that if  $n \in X$  then  $n \in Y$ . A chain of implications is often a good way to do this:

 $n \in X \Longrightarrow 6 \mid (n-1) \Longrightarrow n-1 = 6k$  for some  $k \in \mathbb{Z}$ 

$$\implies n-1=3(2k)$$
 for some  $k \in \mathbb{Z} \implies 3 \mid (n-1) \implies n \in Y$ .

Similarly, if  $n \in Y$  then  $3 \mid (n-1)$  so n-1 = 3k for some  $k \in \mathbb{Z}$ . But  $n^2 - 1 = (n-1)(n+1)$  so  $n^2 - 1 = 3k(n+1)$  and so  $3 \mid n^2 - 1$  and hence  $n \in \mathbb{Z}$ . Hence  $Y \subseteq \mathbb{Z}$ .

We have  $X \subseteq Y \subseteq Z$  and so  $X \subseteq Z$ . (The relation  $\subseteq$  is transitive.)

FUNCTIONS.

7. For each of the diagrams below decide whether the function it represents is (1) injective, (2) surjective, (3) bijective.



For example, the top left diagram shows the function

 $f: \{1, 2, 3, 4\} \to \{1, 2, 3\}$ defined by f(1) = 3, f(2) = 1, f(3) = 2, f(4) = 3. Top left: (1) not injective since f(1) = f(4) = 3; (2) surjective since for all  $y \in \{1, 2, 3\}$  there exists  $x \in \{1, 2, 3, 4\}$  such that f(x) = y(specifically: f(2) = 1, f(3) = 2, f(4) = 3); (3) not bijective, since not injective.

Top right: (1) not injective since f(1) = f(2) = 1; (2) not surjective since there is no  $x \in \{1, 2, 3, 4\}$  such that f(x) = 2; (3) not bijective since not injective.

Bottom left: (1) injective; (2) not surjective since there is no  $x \in \{1, 2, 3, 4\}$  such that f(x) = 3; not bijective since not surjective.

Bottom right: (1) injective; (2) surjective; (3) hence bijective.

8. The graphs below show functions f: [0,2] → [-1,1]. Decide for each each graph whether the function it shows is (1) injective, (2) surjective, (3) bijective.



Left function: (1) injective, (2) surjective and so (3) bijective.

Middle function: (1) not injective: for example there exists x < 1 such that f(x) = f(2) = 0; (2) surjective; (3) not bijective since not injective.

Right function: (1) injective; (2) not surjective, for instance the horizontal line through -1/2 does not meet the graph so there is no  $x \in [0, 2]$  such that f(x) = -1/2; (3) not bijective since not surjective.

**9.** Let  $f: X \to Y$  be a function. In symbols, the condition that f is surjective is

$$(\forall y \in Y)(\exists x \in X)(f(x) = y).$$

Write down the negation of this proposition.

Following the method on page 27 of the printed lecture notes we get

$$(\exists y \in Y) \ (\exists xinX)(f(x) = y)$$

which is logically equivalent to

$$(\exists y \in Y) (\forall x \in X) \ / f(x) = y)$$

 $\mathbf{6}$ 

which we can rewrite as

$$(\exists y \in Y) (\forall x \in X) (f(x) \neq y)$$

10. Let  $f: [0,\infty) \to [1,\infty)$  be the function defined by  $f(x) = (x+1)^3$ .

- (a) What is the domain of f? What is the codomain of f?
- (b) Show that f is injective. Start your answer: 'suppose that  $x, x' \in [0, \infty)$  and f(x) = f(x'). Then ...'
- (c) Show that f is surjective.
- (d) What are the domain and codomain of the inverse function  $f^{-1}$ ?
- (e) Find a formula for  $f^{-1}(y)$  where y is in the domain of  $f^{-1}$ .

(a) The domain of f is  $[0, \infty)$  and the codomain of f is  $[1, \infty)$ .

(b) Suppose that  $x, x \in [0\infty)$  and f(x) = f(x'). Then  $(x + 1)^3 = (x'+1)^3$  and since each real number has a unique real cube root, x+1 = x'+1. Hence x = x'. Therefore f is injective.

(c) Let  $y \in [1, \infty)$ . We want to find  $x \in [0, \infty)$  such that f(x) = y. Now

$$(x+1)^3 = y \iff x+1 = \sqrt{y} \iff x = \sqrt[3]{y-1}$$

so we can take  $x = \sqrt[3]{y} - 1$ .

(d) The inverse function has domain  $[1, \infty)$  (the codomain of f) and codomain  $[0, \infty)$  (the domain of f).

- (e) By (c) we have  $f^{-1}(y) = \sqrt[3]{y} 1$ .
- **11.** Let  $X = \{x \in \mathbb{R} : x \neq -1\}$  and let  $Y = \{y \in \mathbb{R} : y \neq 0\}$ . Let  $g : \mathbb{R} \to \mathbb{R}$  be the function defined by

$$g(x) = \frac{1}{x+1}$$

Show that  $g: X \to Y$  is bijective and find a formula for  $g^{-1}: Y \to X$ .

We first show that g is injective. Suppose that  $x, x' \in X$  and g(x) = g(x'). Then 1/(x+1) = 1/(x'+1), so inverting we get x + 1 = x' + 1. Hence x = x'. Now let  $y \in Y$ . We have

$$g(x) = y \iff \frac{1}{x+1} = y \iff x+1 = \frac{1}{y} \iff x = \frac{1}{y} - 1.$$

(Note that since  $y \neq 0$ , it is okay to invert 1/(x+1) = y.) Hence g(1/y-1) = y and g is surjective. This also shows that the inverse function is

$$g^{-1}(t) = \frac{1}{y} - 1.$$