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Recommended Reading

[1] How to think like a mathematician. Kevin Houston,
Cambridge University Press, 2009.

[2] A concise introduction to pure mathematics. Martin Liebeck,
Chapman and Hall, 2000.

[3] Discrete Mathematics. Norman L. Biggs, Oxford University
Press, 2002.



Overview
This course will give a straightforward introduction to the
fundamental number systems used in mathematics: the natural
numbers N, the integers Z, the rational numbers Q, the real
numbers R, the complex numbers C, the integers modulo a prime
Zp, and others. In parallel, we will develop the basic language of
pure mathematics: sets, functions, relations, propositions, etc.



Problem Sheets and Other Exercises

I There will be eight compulsory problem sheets. Each problem
sheet is worth 1.25% of your overall grade. This mark is
awarded for any reasonable attempt at each sheet.

I Doing the exercises in the notes will help you to review the
ideas from lectures. Some exercises will be used for quizzes in
lectures.

I Optional questions on problem sheets are harder than average.
They are non-examinable and included for interest only.

Other ways to make yourself think about the material.

I Read other books from the library.

I Discuss questions with your colleagues.

I Web: www.cut-the-knot.org, math.stackexchange.com.

I Check your answers to computational problems with computer
algebra packages such as Mathematica.
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Part A: Complex Numbers

§1 Introduction: Sets and Numbers

Definition 1.1
A set is any collection of objects. These objects are called the
elements of the set.

If X is a set and x is an element of X then we write x ∈ X . If y is
not an element of X then we write y 6∈ X .

Exercise 1.2
True or false?

(i) 29 is an element of the set of prime numbers;

(ii) 87 is an element of the set of prime numbers;

(ii) {2, 3, 5, 7, 11} = {5, 7, 11, 2, 3};
(iv) Julian Assange is an element of the set of people who live in

the Ecuadorian Embassy to the UK.
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The Natural Numbers N
We write N for the set of natural numbers:

N = {1, 2, 3, 4, . . .}.

One important property of the natural numbers is that if m, n ∈ N
then m + n ∈ N. Because of this we say that N is closed under
addition.

Definition 1.3
Let X be a set of numbers. We say that X is closed under addition
if x + y ∈ X whenever x ∈ X and y ∈ X . The terms closed under
multiplication and closed under subtraction are defined
analogously. We say that X is closed under division if x/y ∈ X
whenever x ∈ X , y ∈ X and y 6= 0.

Exercise 1.4
Is the set N of natural numbers closed under (i) multiplication; (ii)
subtraction; (iii) division?



I After this lecture the Student-Staff Committee elections for
first year representatives will be held.

I Spare copies of handouts at front.



Integers Z, Rational Numbers Q and Real Numbers R

We write Z for the set of integers (also called whole numbers):

Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .}.

The integers are closed under subtraction, but not division.

We write Q for the set of all rational numbers (also called
fractions). More formally, Q is the set of all numbers that can be
expressed as p/q where p, q ∈ Z and q 6= 0.

We write R for the set of real numbers, thought of as all points on
the real number line. So 0 ∈ R, −1/2 ∈ R,

√
2 ∈ R, π ∈ R.

The rational numbers and the real numbers are closed under
addition, subtraction, multiplication and division.
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Complex Numbers C

Definition 1.5
A complex number is an expression of the form a + bi where
a, b ∈ R and i is a special symbol with the property that i2 = −1.
The expression a + bi is said to be in Cartesian form.

All the usual rules for adding, subtracting, multiplying and dividing
complex numbers follow from the property that i2 = −1.

The complex numbers are closed under addition, subtraction,
multiplication and division.



Argand Diagram

We represent complex numbers by points in a plane (called an
Argand diagram) as shown below.
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Administration

I Submit answers on paper (not in notebooks). Please staple
multiple sheets together. Work submitted on Thursday will be
returned on Monday.



Complex Conjugation

Definition 1.6
If z = a + bi then we say that a is the real part of z and that b is
the imaginary part of z , and write Re z = a, Im z = b.

The complex conjugate of a + bi is a− bi . We denote the
complex conjugate of z ∈ C by z̄.

The modulus of a + bi is
√
a2 + b2.

Claim 1.7
Let z ,w ∈ C. Then

(i) zz = |z |2 and |zw | = |z ||w |.
(ii) z̄ = z,

(iii) z + w = z + w, zw = z w, and z/w = z/w.



Exercise 1.8
Note that by Claim 1.7(i) [misprinted as 1.8(i) in notes], if
z ∈ C and z 6= 0 then

1/z = z̄/zz̄ = z̄/|z |2.

Use this to write 1/(c +di) and (a+bi)/(c +di) in Cartesian form.



Polar Form of a Complex Number
Any complex number z can be written in the form

z = r(cos θ + i sin θ)

where r > 0 and θ is an angle. This is called the polar form of z .
Observe that |z | = r . In this course all angles are measured in
radians!

Definition 1.9
If z = r(cos θ+ i sin θ) then we say that θ is an argument of z , and
write θ = arg(z).

Definition 1.10
Let z be a non-zero complex number. If z = r(cos θ + i sin θ)
where −π < θ ≤ π, then we say that θ is the principal argument of
z , and write θ = Arg(z).

Example 1.11

Let z = 1 + i
√

3. Then Arg(z) = π/3 and the polar form of z is
z = 2(cosπ/3 + i sinπ/3).



Quiz

Let z = 1 + i .

I Write down a general form for the arguments of z .

I What is Arg(z)?

I What is Arg(−z)?

Imagine a rectangle with vertices at 0, 1, 1 + 2i and 2i .

I What is the image of this rectangle under the transformation
sending z ∈ C to z + 3 + i?

I What is the image of this square under the transformation
sending z ∈ C to 2iz?



Multiplication and Division in Polar Form

There is an easy way to multiply and divide complex numbers
written in polar form.

Claim 1.12
Let z = r(cos θ + i sin θ) and w = s(cosφ+ i sinφ) be complex
numbers in polar form. Then

zw = rs
(
cos(θ + φ) + i sin(θ + φ)

)
.

Exercise 1.13
Let z , w be as in Claim 1.12 and suppose that w 6= 0. Find a
similar expression for the polar form of z/w .



Another Set Closed Under the Arithmetic Operations

It is important, but maybe not very surprising, that the rational,
real and complex numbers are each closed under addition,
subtraction, multiplication and division. Here is a more surprising
example, similar to Question 3(e) on Sheet 1. (Examples of this
sort are important in number theory.)

Example 1.14

Let K be the set of all real numbers of the form a + b
√

2, where
a, b ∈ Q. Then K is closed under addition, subtraction,
multiplication and division.



Aside on Set Theory
In this course we will deal with sets in an
intuitive way. In particular, we allow sets
to contain any object we can imagine (even
Julian Assange).

This will be safe enough for this course.
However, there are problems with unre-
stricted set formation. An important exam-
ple is Bertrand Russell’s set R, defined to
be:

the set whose elements are
all sets X such that X 6∈ X .

Is R an element of R?

Either possibility
leads to a contradiction!

Solution: put restrictions on the sets we are allowed to consider.
Modern axiomatic set theory appears to be a sound foundation for
mathematics.
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Properties of complex numbers

Some motivation for the following definition will be given in
lectures.

Definition 2.1
Given z = a + bi ∈ C, we define

exp z = ea(cos b + i sin b).

We call exp the complex exponential function.

Putting z = iθ in Definition 2.1 we get the very useful Euler’s
formula:

eiθ = cos θ + i sin θ.

Lemma 2.2
Let z ,w ∈ C. Then

exp(z + w) = exp z expw .



Trigonometric Identities
Putting z = iπ in Definition 2.1 (or θ = π in Euler’s formula) gives

eiπ = −1.

In the form eiπ + 1 = 0, this identity unifies five fundamental
mathematical constants.

Euler’s formula gives quick proofs of the multiple-angle
trigonometric identities.

Example 2.3

Take the special case of Euler’s formula that

cos 3θ + i sin 3θ = e3iθ.

Rewrite the right-hand side as (eiθ)3 = (cos θ + i sin θ)3, expand,
and then compare real and imaginary parts to get

cos 3θ = 4 cos3 θ − 3 cos θ

sin 3θ = −4 sin3 θ + 3 sin θ.

Exercise 2.4
Use Euler’s formula for eiθ to show that

cos θ =
1

2

(
eiθ + e−iθ

)

sin θ =
1

2i

(
eiθ − e−iθ

)
.



Exponential Form of a Complex Number and Roots
Let z ∈ C. Suppose that z has polar form z = r(cos θ + i sin θ)
where r = |z | and θ is an argument of z . Then z = reiθ. This is
called the exponential form of z .

Exponential form is very useful for finding n-th roots of complex
numbers.

Problem 2.5
Find the complex numbers z such that z3 = 8i .

−2 0 2

2ei3π/2
=−2i

2i

2eiπ/62ei5π/6
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Log of a Complex Number

Let z = reiθ be a complex number in exponential form. If z = 0
then there is no w ∈ C such that ew = z . If z 6= 0 then the
equation ew = z holds for all w = a + bi ∈ C such that a = log r
and b = θ + 2πn, for some n ∈ Z.

For z = reiθ with z 6= 0, we denote by log z any number of the
form w = log r + i(θ + 2πn) for some n ∈ Z.



Quadratic equations

You are probably familiar with how to solve quadratic equations
over the real numbers. Essentially the same method works over C.
Exponential form can be used to find the necessary square root.

Claim 2.6
Let a, b, c ∈ C and suppose that a 6= 0. The solutions to the
quadratic equation az2 + bz + c = 0 are

z =
−b ± D

2a

where D ∈ C satisfies D2 = b2 − 4ac.

Example 2.7

The equation z2 − 2z + (1− i/2) = 0 has solutions 3/2 + i/2 and
1/2− i/2.



Fundamental Theorem of Algebra
The proof of this theorem is beyond the scope of this course.

Theorem 2.8 (Fundamental Theorem of Algebra)

Let n ∈ N and let a0, a1, . . . , an ∈ C with an 6= 0. Then the
equation

anz
n + an−1z

n−1 + · · ·+ a1z + a0 = 0

has a solution in C.

We will see later in Part D of the course that it easily follows from
the Fundamental Theorem of Algebra that there exist
w1,w2, . . . ,wn ∈ C such that

anz
n +an−1z

n−1 + · · ·+a1z +a0 = an(z−w1)(z−w2) . . . (z−wn).

Exercise 2.9
Find all solutions to the quartic equation
z4 + 2z3 + 3z2 + 4z + 2 = 0. (Hint: one solution is in Z.)



Part B: Integers and Induction

§3 Induction and Sigma Notation

A proposition is a self-contained statement which is either true or
false.

Example 3.1

Let P be the statement ‘The integers are closed under addition’.
Then P is a proposition and P is true. Let Q be the statement
‘There is a real number x such that x2 + 1 = 0. Then Q is a
proposition and Q is false.

Some statements are too vague or subjective to be proposition.
For example ‘3 is a pleasant sort of number’ or ‘houses in
Englefield Green are too expensive’.



Predicates
Here is another statement which is not a proposition: ‘n ≥ 3’. This
statement is not a proposition because it is not self-contained: we
cannot determine whether it is true or false without knowing n.

Definition 3.2
A predicate is a statement which depends on a variable n, and
which becomes a proposition for each choice of n from a
specified set.

Example 3.3

Let P(n) denote the statement ‘n2 + n + 41 is a prime number’.
Then P(n) is a predicate. Substituting particular natural numbers
for n we get a sequence of propositions:

P(1): 12 + 1 + 41 is a prime number,

P(2): 22 + 2 + 41 is a prime number,

and so on. In this case P(1),P(2), . . . ,P(39) are all true
propositions. But P(40) and P(41) are false.



Quiz

Which of the following statements are propositions and which are
predicates?

I 2n ≥ n2 + 4

I There are infinitely many primes

I If n ∈ N then there exist r , s, t, u ∈ N such that
n = r2 + s2 + t2 + u2.

I Every number is the sum of m square numbers.
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The Principle of Mathematical Induction
Let P(n) be a predicate defined for n ∈ N, so P(1), P(2), . . . are
propositions. The Principle of Mathematical Induction states that
if

I (i) P(1) is true and

I (ii) for each n ∈ N, if P(n) is true then P(n + 1) is true;

then P(n) is true for all n ∈ N.

Claim 3.5
For all n ∈ N we have

1 + 2 + · · ·+ n =
n(n + 1)

2

Claim 3.6
For n ∈ N let P(n) be the predicate

P(n) : 22n − 1 is a multiple of 3.

Then P(n) is true for all n ∈ N.



Base Case and Inductive Step

The case we prove to get the induction started is called the base
case, and the argument to go from P(n) to P(n + 1) is called the
inductive step. In the statement of the Principle of Mathematical
Induction above, the base case was the statement P(1) for n = 1.

Sometimes it is necessary to take a different value of n for the base
case.

Claim 3.7
If n ∈ N and n ≥ 4 then 2n ≥ 4n.



Problem Sheet 2

I If your surname starts with A to M your work is in the green
folder. Otherwise it is in the blue folder. Please claim any
older homework from the pink folder.

I Questions 4, 5 and 6 were marked. The main mark is out of
9, with a separate 0 or 1 mark for a reasonable attempt. (This
becomes 1.25% of your final mark for this course.)

I On Moodle there is an extra file with some common errors.
Please check your answer to Question 3 carefully: several
people assumed that Arg(a + bi) = tan−1(b/a), but this only
holds when a, b > 0.

I Please see the lecturer in an office hour to go through any of
the questions.

I Problem Sheet 3 is due in this Thursday. Problem Sheet 4 will
appear on Moodle by 5pm today.



Towers of Hanoi

Problem 3.8 (Towers of Hanoi)

You are given a board with three pegs. On peg number 1 there are
n discs of strictly increasing radius. The starting position for a four
disc game is shown below.

A move consists of taking a single disc from one peg, and moving
it to another peg. At no point may a larger disc be placed on top
of a smaller disc. Your aim is to transfer all the discs from peg
number 1 to one of the other pegs. How many moves are required?



Induction Exercises

Exercise 3.9
Prove by induction on n that no solution to the Towers of Hanoi
Problem can use fewer moves than the solution found in lectures.

Exercise 3.10
Let z ∈ C. Prove by induction on n that zn = zn for all n ∈ N.
[Hint: for the inductive step, use that zw = z w , as shown in
Question 5 on Sheet 1.]



Sigma notation

If a1, a2, . . . an are complex numbers then we write their sum

as
n∑

k=1

ak . This may be read as

‘the sum of ak as k varies from 1 to n’

or ‘sigma ak for k from 1 to n’. we say that k is the summation
variable. Here 1 is the lower limit and n is the upper limit.

Example 3.11

Let z be a complex number. Then

(i)
∑n

k=1 z = nz ;

(ii)
∑n

k=1 k = n(n + 1)/2;

(iii)
∑n

k=0 n = (n + 1)n.



Sigma Notation and Induction

Quiz: (a)
∑2

k=0 k
22k−1 =

(A) 7 (B) 8 (C) 9 (D) something else

(b) If n ∈ N then
∑n

j=1 j
2 −∑n

k=2(k − 1)2 =

(A) 1 (B) n2 (C) 42 (D) n2 − (n − 1)2

Using Sigma notation, Claim 3.5 can be restated as

n∑

k=1

k =
n(n + 1)

2
.

See Example 3.12 in the printed notes for a larger example.



Discussion on Induction

Is this argument valid? If not, where is the logical flaw?

(1) After dinner, a box of chocolates is passed clockwise around
the table. Define

P(n) : it is impolite to eat a chocolate when exactly
n chocolates remain.

Everyone knows it is impolite to eat the last chocolate, so
P(1) is true. Suppose P(n) is true, and you are offered a
choice of n + 1 chocolates. If you eat a chocolate then

I either the person to your left eats a chocolate, which we know
by induction is an impolite thing to do,

I or he or she goes hungry.

It would be impolite to put the person to your left in the
position where he or she either had to be impolite or go
hungry. Hence P(n + 1) is true.



Administration

I Please pass your answers to Sheet 3 to the person in your left.
The person at the end of each row should put all work in the
box and pass it down to the next row.

I Maths Soc talk by Laurence O’Toole, Cipher Systems. In Arts
Building 021 at 6pm.

I Please collect unclaimed work at the end from the files at the
front. These files are kept in the box outside my office
(McCrea 240).



§4 Division and prime factorization

Theorem 4.1
Let n ∈ Z and let m ∈ N. There exist unique integers q and r such
that n = qm + r and 0 ≤ r < m.

The q in Theorem 4.1 is called the quotient and the r the
remainder when n is divided by m.

Example 4.2

(i) Let n = 60 and m = 7. Then 60/7 = 84
7 and correspondingly,

60 = 8× 7 + 4. So we have q = 8 and r = 4.

(ii) Let n = 63 and m = 7. Then 63/7 = 9 so we have q = 9 and
r = 0.

(iii) Let n = 44 and m = 6. Then 44/6 = 72
6 so we have q = 7

and r = 2. (Note that it is more useful to leave the fractional
part as 2

6 than to simplify it to 1
3 .)



Exercise on division

Exercise 4.3
Find the quotient q and the remainder r when n is divided by m in
each of these cases:

(i) n = 20, m = 7;

(ii) n = 21, m = 7;

(iii) n = 22, m = 7;

(iv) n = 7, m = 22;

(v) n = −10, m = 7.

It is useful to have some special notation to indicate the case
where the remainder is 0 and n/m is an integer.

Definition 4.4
Let n ∈ Z and let m ∈ N. We say that m divides n and write m | n
if n/m ∈ Z.

Another way to say ‘m divides n’ is ‘n is a multiple of m’.



Greatest common divisors

Definition 4.5
Let m, n ∈ N. We say that d ∈ N is the greatest common divisor
of m and n, and write gcd(m, n) = d , if d is the greatest natural
number dividing both m and n.

Exercise 4.6
Find gcd(m, n) in each of these cases:

(i) n = 310, m = 42;

(ii) n = 10, m = 21;

(iii) n = 23, m = 46;

(iv) n = 20475, m = 14025.
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Revision Quiz on Sigma notation

(a) Let tm = 1 + 2 + 4 + 8 + · · ·+ 2m. Then t3 =

(A) 14 (B) 15 (C) 7 (D) 37

and in Sigma notation tm =

(A)
∑m

k=0 2m (B)
∑m−1

k=0 2m (C) 2m (D)
∑m

k=1 2m

(b)
∑2

k=0 k
22k−1 =

(A) 7 (B) 8 (C) 9 (D) something else

(c) If n ∈ N then
∑n

j=1 j
2 −∑n

k=2(k − 1)2 =

(A) 1 (B) n2 (C) 42 (D) something else



Euclid’s Algorithm

There is a very fast algorithm for finding greatest common divisors
that is usually attributed to Euclid. The following lemma gives the
key idea.

Lemma 4.7
Let m, n ∈ N. Let n = qm + r where 0 ≤ r < m. Then

gcd(n,m) = gcd(m, r).

Algorithm 4.8 (Euclid’s Algorithm)

Let m, n ∈ N. To find gcd(n,m) first find the quotient q and the
remainder r when n is divided by m.

• If r = 0 then m divides n and gcd(n,m) = m.

• Otherwise gcd(n,m) = gcd(m, r). Repeat the algorithm with
m and r .



Example of Euclid’s Algorithm

Example 4.9

Let n = 4452 and let m = 3402. The equations below show the
quotient and remainder at each step of Euclid’s Algorithm:

4452 = 1× 3402 + 1050

3402 = 3× 1050 + 252

1050 = 4× 252 + 42

252 = 5× 42.

Hence gcd(4452, 3402) = 42.

By working backwards through the steps in Euclid’s Algorithm it is
possible to find s, t ∈ Z such that sm + tn = gcd(m, n).



Linear Combinations

Example 4.10

By the penultimate line of Example 4.9 we have
42 = 1050− 4× 252. By finding the rows in which 1050 and 252
appear as remainders we get

42 = 1050− 4× 252

= 1050− 4× (3402− 3× 1050)

= 13× 1050− 4× 3402

= 13× (4452− 3402)− 4× 3402

= 13× 4452− 17× 3402.
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Factorization into Primes

Definition 4.11
A natural number p > 1 is said to be prime if the only natural
numbers that divide it are 1 and p. A natural number n > 1 is said
to be composite if it is not prime.

Theorem 4.12 (Fundamental Theorem of Arithmetic)

Let n > 1 be a natural number. There exists k ∈ N and primes
p1, p2, . . . , pk such that

n = p1p2 . . . pk .

This expression of n as a product of primes is unique up to the
order of the factors.



Example of Prime Factorization

Example 4.13

(i) Since 43 is prime, its unique factorization is 43 = 43, with
k = 1 and p1 = 43.

(ii) Up to the order of the factors, the unique prime factorization
of 572 is 22 × 11× 13. So k = 4 and we can take p1 = 2,
p2 = 2, p3 = 11, p4 = 13.

(iii) The prime factorization of 7680 is . . . .

Quiz: Find the prime factorizations of the following numbers:

(a) 270 (b) 101 (c) 1001 (d) 123123.

Claim 4.14√
3 is an irrational number.
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Proof of the Existence of Prime Factorization
Strong Induction
In the inductive steps in the inductive proofs seen so far, we
assumed P(n) and used it to prove P(n + 1). To prove the
existence of prime factorization, it will be useful to assume all the
earlier cases, replacing (ii) in the Principle of Mathematical
Induction with

(ii)′ for each n ∈ N, if P(1), . . . , P(n − 1), P(n) are true then
P(n + 1) is true.

Theorem 4.12 (Fundamental Theorem of Arithmetic)

Let n > 1 be a natural number. There exists k ∈ N and primes
p1, p2, . . . , pk such that

n = p1p2 . . . pk .

This expression of n as a product of primes is unique up to the
order of the factors.
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Infinitely Many Primes

Theorem 4.15 (Euclid)

There are infinitely many primes.

Exercise 4.16
Let p1 = 2, p2 = 3, p3 = 5, p4 = 7, p5 = 11, p6 = 13 be the first
six prime numbers. Show that p1 + 1, p1p2 + 1, p1p2p3 + 1,
p1p2p3p4 + 1 and p1p2p3p4p5 + 1 are all prime, but

p1p2p3p4p5p6 + 1 = 2× 3× 5× 7× 11× 13 + 1

= 300031

= 59× 509.

This example shows that the second case in the proof of Euclid’s
theorem can arise!



Exercise on Claim 4.14

The line ‘Let n = 3b × N and let m = 3a ×M’ has caused some
confusion. The purpose of this line is to define b, a,N and M.

So 3a is the highest power of 3 dividing n and 3b is the highest
power of 3 dividing m, and N = n/3b, M = m/3a.

Exercise 4.17
A manufacturer of cheap pocket calculators claims to you that√

3 = 2148105
1240209 . Put m = 2148105 and n = 1240209 in the proof of

Claim 4.14 and find b, a,N and M. (You can do this by repeated
division by 3, even on one of his cheapest calculators.) Hence show
the manufacturer that he is wrong.



Bases

Example 4.18

To write 144 in base 3:

Divide 144 by 3: 144 = 48× 3 + 0
Divide the quotient 48 by 3: 48 = 16× 3 + 0
Divide the quotient 16 by 3: 16 = 5× 3 + 1
Divide the quotient 5 by 3: 5 = 1× 3 + 2
Divide the quotient 1 by 3: 1 = 0× 3 + 1

We now stop, because the last quotient was 0. Reading the list of
remainders from bottom to top we get

144 = 1× 34 + 2× 33 + 1× 32 + 0× 31 + 0× 30.

Hence 144 is 12100 in base 3. We write this as 144 = 121003.



Algorithm for Writing Numbers in Base b

Algorithm 4.19

Let n ∈ N and let b ∈ N. To write n in base b, divide n by b, then
divide the quotient by b, and so on, until the quotient is 0. If
r0, r1, r2, . . . , rk is the sequence of remainders then

n = rkb
k + rk−1b

k−1 + · · ·+ r1b + r0

and so n = (rk rk−1 . . . r1r0)b.

The correctness of this algorithm can be proved by strong
induction. This is left as an optional exercise.



Example of Algorithm 4.19

Example 4.20

To write 37 in base 2, following the algorithm:

Divide 37 by 2: 37 = 18× 2 + 1
Divide the quotient 18 by 2: 18 = 9× 2 + 0
Divide the quotient 9 by 2: 9 = 4× 2 + 1
Divide the quotient 4 by 2: 4 = 2× 2 + 0
Divide the quotient 2 by 2: 2 = 1× 2 + 0
Divide the quotient 1 by 2: 2 = 0× 2 + 1

The sequence of remainders is 1, 0, 1, 0, 0, 1, so

r0 = 1, r1 = 0, r2 = 1, r3 = 0, r4 = 0, r5 = 1.

Hence 37 = (r5r4r3r2r1r0)2 = 1001012.

Exercise 4.21
Show that 21 = 101012 and write 63, 64 and 65 in binary.



Liar Game

Exercise 4.22
Form pairs. Person A should think of a number between 1 and 16
and write it down on a hidden piece of paper. Person B should
now ask ask questions about the unknown number until it is
discovered. Record how many questions you need.

Now repeat, with the change that person A is allowed to lie in at
most one answer.
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Quiz: True or False?

I 3 divides 9

I 9 divides 3

I 3 is a multiple of 15

I 15 is a multiple of 3

I 3 | 21

I 21 | 3



Part C: Propositions, sets and relations

§5 Propositional Logic

Suppose that A and B are mathematical statements. such that if
A is true then B is true. Then we say that A implies B, and write
A =⇒ B.

So A and B could either be propositions, e.g. ‘the morning is the
best time of day’, ‘2 + 2 = 4’, or predicates e.g. ‘2n + 1 is odd’, ‘n
is even’.

It is occasionally useful to write A =⇒ B as B ⇐= A. This can
be read as ‘B is implied by A’.

If A implies B and B implies A then we write A ⇐⇒ B. For the
moment, please read this as ‘A implies and is implied by B’.



Exercise

Exercise 5.1
Which of the following are correct:

(a) 3 divides 87 =⇒ 87/3 ∈ Z;

(b) 5 divides 11 =⇒ 11/5 ∈ Z;

(c) x ≥ 4 =⇒ x ≥ 3;

(d) x ≥ 3 =⇒ x ≥ 4;

(e) x2 − 2x − 3 = 0 =⇒ x = −1, x = 3 or x = 37

(f) x ≥ 0 and x2 − 2x − 3 = 0 =⇒ x = 3.

(g) If x and y are real numbers then x2 = y2 =⇒ x = y .

(h) If r and s are distances in the plane then r2 = s2 =⇒ r = s.

(i) If x and y are real numbers then x3 = y3 =⇒ x = y ;

(j) If z and w are complex numbers then w3 = z3 =⇒ w = z?
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Double implication

Let A and B be mathematical statements. If A implies B and B
implies A then we write A ⇐⇒ B. For the moment, please read
this as ‘A implies and is implied by B’.

Quiz:

I Which of (a), (b), (c) and (d) are correct?

I In which can =⇒ be replaced with ⇐⇒ ?

(a) x2 = 4 =⇒ x ∈ {−2, 2}
(b) x2 = 4 =⇒ x ∈ {−2, 2, 5}
(c) x ∈ {−2, 2} =⇒ x ∈ {−2, 2, 5}
(d) x ≥ 0 and x2 = 4 =⇒ x = 2



Double implication

Exercise 5.2
Define a predicate P(n) by

P(n) : 2n ≥ 6n

If n = 5 then P(5) states that 25 ≥ 6× 5; this is true
because 32 ≥ 30. Assume, by induction, that P(n) is
true. Then

2n+1 ≥ 6(n + 1)

2n+1 − 6(n + 1) ≥ 0

2× 2n − 6n − 6 ≥ 0

2(2n − 6n) + 6n − 6 ≥ 0

which is true since 2n ≥ 6n and 6n ≥ 6.

Is this argument valid? How could it be clarified?
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Another Example on Double Implication

Example 5.3

Suppose we want to find all x ∈ R such that

√
x + 3 = x + 1.

The following chain of implications is correct:

√
x + 3 = x + 1 =⇒ (x + 3) = (x + 1)2

=⇒ x + 3 = x2 + 2x + 1

=⇒ x2 + x − 2 = 0

=⇒ (x + 2)(x − 1) = 0

=⇒ x = −2 or x = 1.

But we cannot conclude that x = −2 and x = 1 are solutions.
Putting x = −2 into

√
x + 3 = x + 1 gives

√
−2 + 3 = −2 + 1,

which is false!



Logical Structure

Your arguments will be clearer if you use =⇒ and ⇐⇒ to show
their logical structure. Try to avoid lists of assertions whose
relationship to one another is unclear.

Correct use of implication signs is helpful even in very simple
arguments. For example, to find the prime factorization of 210 you
could write:

210/2 = 105 =⇒ 210 = 105× 2

105/5 = 21 =⇒ 105 = 5× 21

21/3 = 7 =⇒ 21 = 3× 7

hence 210 = 2× 105 = 2× 5× 21 = 2× 3× 5× 7.



If, only if, necessary, sufficient

As before, let A and B be mathematical statements. The following
are all different ways to write ‘A =⇒ B ′:

I if A then B;

I B if A;

I A only if B.

I A is sufficient for B;

I B is necessary for A.

The first often feels the most natural and is frequently used. (See,
for instance, the statement of Claim 3.7.)
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Exercise 5.4: Assume P , Q, R .
P: If it is raining then the sky is cloudy.

RAIN =⇒ CLOUD

Q: If it rains in the morning then Prof. X carries his umbrella all day.

MORNING RAIN =⇒ UMBRELLA

R: People who carry umbrellas never get soaked.

UMBRELLA =⇒ NOT SOAKED

Which of the following statements can be deduced from P, Q and R?
Write down a letter ⇐⇒ it can be deduced.

A: A cloudy sky is a necessary condition for rain.

B: A cloudy sky is a sufficient condition for rain.

C : It is raining only if the sky is cloudy.

D: Rain in the morning is a necessary condition for Prof. X to carry his
umbrella.

E : Rain in the morning is a sufficient condition for Prof. X to carry his
umbrella.

F : Rain falling implies that the sky is cloudy.

G : The sky is cloudy implies that rain is falling.

H: If Prof. X is soaked then it did not rain this morning.
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MORNING RAIN =⇒ UMBRELLA

R: People who carry umbrellas never get soaked.
UMBRELLA =⇒ NOT SOAKED
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G : The sky is cloudy implies that rain is falling.
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H: If Prof. X is soaked then it did not rain this morning.

SOAKED =⇒ NOT MORNING RAIN
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‘If and only if’ and logical equivalence

If A⇐⇒ B holds we say that A and B are logically equivalent. We
can rewrite

B =⇒ A as ‘A if B’.

A =⇒ B as ‘A only if B’.

This justifies reading A⇐⇒ B as ‘A if and only if B’. Note that
the ‘A if B’ part of this expression refers to the implication
B =⇒ A.



Negation and the Contrapositive

If A is a mathematical statement we write ¬A for the statement
‘not A’. The contrapositive of an implication A =⇒ B is
¬B =⇒ ¬A.

Exercise 5.5
Convince yourself that A =⇒ B is true if and only if the
contrapositive ¬B =⇒ ¬A is true. In symbols

(A =⇒ B) ⇐⇒ (¬B =⇒ ¬A).

Switching to the contrapositive can be a useful first step in a
proof, particularly when statements appear in negated form.

Claim 5.6
Let x ∈ Q. If y 6∈ Q then x + y 6∈ Q.



Quiz

(A) Cards. You are shown a number of cards. Each card has a
letter printed on one side, and a number printed on the other.
Four cards are put on a table. You can see:

(a) E (b) D (c) 5 (d) 6

Which cards would you turn over to test the conjecture: ‘If a card
has a vowel on one side then it has a prime on the other’?

(B) Alcohol. In the far-off land of Erewhon, only people over the
age of 21 are allowed to drink alcohol in public. If your job is to
enforce this law, who of the following would you investigate
further?

(a) A person drinking a glass of wine

(b) A person drinking coke

(c) Someone clearly over 50 with an unidentifable drink

(d) Someone who looks about 18 with an unidentifiable drink
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‘For all’ and ‘exists’

Let P(x) be a predicate defined for elements x of a set X .

• If P(x) is true for all x ∈ X , then we write (∀x ∈ X )P(x).

• If there exists an element x ∈ X such that P(x) is true, then
we write (∃x ∈ X )P(x).

The parentheses around ∀x ∈ X and ∃x ∈ X are often omitted.

The negation of

I (∀x ∈ X )P(x) is (∃x ∈ X )¬P(x).

I (∃x ∈ X )P(x) is (∀x ∈ X )¬P(x).



Exercise on negation

Exercise 5.7
Sometimes the set X in ∀x ∈ X is indicated by inequalities. For
example,

(∀ε > 0)Q(ε) means that Q(ε) is true for all ε in the set of
positive real numbers,

(∀n ≥ N) S(n) means that S(n) is true for all n ∈ N such that
n ≥ N.

Let a1, a2, a3, . . . be real numbers. Write down the negation of

(∃` ∈ R)(∀ε > 0)(∃N ∈ N)(∀n ≥ N) |an − `| < ε.



Administration

I Answers to Problem Sheet 5 are now on Moodle. This was a
revision sheet and so will not be marked.
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Conjunction and disjunction

Let A and B be mathematical statements.

I The conjunction of A and B, written A ∧ B and read
‘A and B’, is true if A and B are both true, and false
otherwise.

I The disjunction of A and B, written A ∨ B and read ‘A or B’
is true if one or both of A and B is true, and false otherwise.



Truth tables

Consider the disjunction A ∨ B. This is true if one of A and B is
true, and false otherwise. The truth table below shows this by
going through all possibilities for A and B.

A B A ∨ B

T T T
T F T
F T T
F F F
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Truth table for implication

Exercise 5.8
Fill in the =⇒ column of the following truth table.

A B A =⇒ B ¬B ¬A ¬B =⇒ ¬A
T T

T F

F T

F F

Now fill in the remaining columns. Are they consistent with the
logical equivalence of A =⇒ B and ¬B =⇒ ¬A?

Remember: A =⇒ B means that if A is true then B is true. If A
is false . . . then B is allowed to be anything . . . so A =⇒ B is true.
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Exercise 5.9
By definition, A⇐⇒ B is true if and only if A =⇒ B and B =⇒ A
both hold. So A⇐⇒ B is logically equivalent to

(A =⇒ B) ∧ (B =⇒ A).

Use this to find the truth table for A⇐⇒ B.



Example 5.10

Let A and B be propositions. The exclusive or of A and B is true if
exactly one of A and B is true.

A B A xor B

T T F
T T T
T F T
T F F

To express A xor B in terms of the usual logical connectives ∧ and
∨, we write down a proposition that says ‘A and B have the truth
values of one of the rows for which A xor B is true’. There are two
such rows in the truth table, so we want to say

‘(A is true and B is false) or (A is false and B is true)’.

In symbols this is

(
A ∧ (¬B)

)
∨
(
(¬A) ∧ B

)
.



§6 More about Sets

Let X be a set. If P(x) is a predicate defined for elements of X
then we denote by

{x ∈ X : P(x)}
the set of all elements of X for which P(x) is true.

Example 6.1

(a) {m ∈ Z : 2 | m} is the set of even integers.

(b) {x ∈ R : x > 0} is the set of positive real numbers.

(c) {z ∈ C : z5 = 1} is the set of fifth roots of 1 in C.



Definition 6.2

(i) A set X is said to be a subset of a set Y if x ∈ X implies
x ∈ Y . If X is a subset of Y we write X ⊆ Y .

(ii) The set with no elements is called the empty set and is
denoted ∅.

(ii) A set is said to be finite if it has finitely many elements. The
size of a finite set is its number of elements. We denote the
size of a set X by |X |, read ‘mod X ’.

Exercise 6.3 (True or False?)
(a) the empty set is a subset of every set;

(b) the empty set is an element of every set;

(c) {0, 1} is a subset of {{0, 1}, 1, 3};
(d) {0, 1} is an element of {{0, 1}, 1, 3};
(e) the size of ∅ is 0;

(f) |{{0, 1}, 1, 3}| = 4;

(g) |{z ∈ C : z3 = 1}| = 3.
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(a) the empty set is a subset of every set;

TRUE
For any set Y , x ∈ ∅ =⇒ x ∈ Y (nothing to check!)

(b) the empty set is an element of every set;

FALSE
For example, ∅ 6∈ {1}, or ∅ 6∈ R, or . . .

(c) {0, 1} is a subset of {{0, 1}, 1, 3};

FALSE
This is false because 0 ∈ {0, 1} but 0 6∈ {{0, 1}, 1, 3}.

(d) {0, 1} is an element of {{0, 1}, 1, 3};

TRUE

(e) the size of ∅ is 0;

TRUE

(f) |{{0, 1}, 1, 3}| = 4;

FALSE (size is 3)

(g) |{z ∈ C : z3 = 1}| = 3.

TRUE
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Subsets

Recall that a set X is said to be a subset of a set Y if x ∈ X
implies x ∈ Y .

Example 6.4

Let m ∈ N. Then

(i) {n ∈ N : m2 | n} ⊆ {n ∈ N : m | n}
(ii) {n ∈ N : 6 | n} = {n ∈ N : 2 | n and 3 | n}.



Intersection, Union and Complement

Let X and Y be sets.

I We define the intersection X ∩ Y to be the set of elements
that are in both X and Y .

I We define the union X ∪ Y to be the set of elements that are
in at least one of X and Y .

If X is a subset of a ‘universe set’ U then we define the
complement of U with respect to U by

X ′ = {z ∈ U : z 6∈ X}.

Claim 6.5 (De Morgan’s Laws)

Let X and Y be subsets of a universe set U. Then

(i) (X ∪ Y )′ = X ′ ∩ Y ′,

(ii) (X ∩ Y )′ = X ′ ∪ Y ′.



Venn Diagrams

Example 6.6

Let U = {0, 1, 2, 3, 4}. Define subsets X and Y of U by
X = {1, 3, 4} and Y = {2, 3}. We can represent U, X and Y
pictorially by a Venn diagram, as shown below.

1, 4 23

0

X Y

In this diagram U is represented by the rectangular region. The
region representing X is shaded.



Inclusion and Exclusion

Let X and Y be finite sets. In the sum |X |+ |Y | we count each
element of X once, and each element of Y once. So the elements
of X ∩ Y are counted twice, once as elements of X , and once as
elements of Y . If we subtract |X ∩ Y | to correct for this
overcounting, we get

|X ∪ Y | = |X |+ |Y | − |X ∩ Y |.

Exercise 6.7
Show that if X , Y and Z are finite sets then

|X ∪ Y ∪ Z | = |X |+ |Y |+|Z | − |X ∩ Y |
− |Y ∩ Z | − |Z ∩ X |+ |X ∩ Y ∩ Z |.
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Cartesian Products
If X and Y are sets then we denote by X × Y the set of all
ordered pairs (x , y) with x ∈ X and y ∈ Y . It is usual to write X 2

for X × X . Thus the plane is the set R× R = R2.

Quiz: Decide whether the following are True or False. Let

X = {x ∈ R : 1 ≤ x ≤ 3}
Y = {y ∈ R : 1 ≤ y ≤ 2}.

(a) (1, 2) = (2, 1);

FALSE

(b) {1, 2} = {2, 1}.

TRUE

(c) (52 ,
3
2) ∈ X × Y ;

TRUE

(d) (32 ,
5
2) ∈ X × Y ;

FALSE

(e) Y × Y ⊆ X × Y ;

TRUE

(f) X ⊆ Y ;

FALSE

(g) ∅× X ⊆ ∅× Y ;

TRUE

(h) Every subset of R2 is of the form A× B for
suitable subsets A ⊆ R, B ⊆ R.

FALSE
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Duality

Given any equation involving subsets of a universe set U, the
principle of duality says that if you swap ∪ and ∩ and replace every
set with its complement in U, then the new equation still holds.

For example, suppose that X , Y , Z are subsets of U and
X ∪ Y = Z . Then by duality, X ′ ∩ Y ′ = Z ′. Exercise: What
happens when X ′ ∩ Y ′ = Z ′ is dualized?
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Common Errors on Sheet 6: Question 4
Write A for (P =⇒ Q) ∧ (Q =⇒ R). To show that
A =⇒ (P =⇒ Q) is a tautology, you need to show that

(
(P =⇒ Q) ∧ (Q =⇒ R)

)
=⇒ (P =⇒ R)

holds for all truth values of P, Q and R.

This is not the same as showing that A and P =⇒ R always have
the same truth value. If you did this, you were testing whether
A⇐⇒ (P =⇒ R) is a tautology. (It is not.)

P Q R P =⇒ Q Q =⇒ R A P =⇒ R A =⇒ (P =⇒ R)

T T T T T T T T
T T F T F F F T
T F T F T F T T
T F F F T F F T
F T T T T T T T
F T F T F F T T
F F T F T F T T
F F F F T F T T
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Common Errors on Sheet 6: Question 5

(a) Let P be the proposition (∀x ∈ R)(x2 > 0). Write ¬P
without using ‘¬’. Is P true? Explain your answer.

(b) Let Q be the proposition (∀m ∈ N)(∃n ∈ N)(m divides n).
Write ¬Q without using ‘¬’. Is Q true? Explain your answer.

(c) Let R be the proposition (∃n ∈ N)(∀m ∈ N)(m divides n).
Write ¬R without using ‘¬’. Is R true? Explain your answer.

For (a), ¬P is
(∃x ∈ R)(x2 ≤ 0).

Many people dealt with the quantifier correctly, but then negated
x2 > 0 as x2 < 0. This is wrong: if x2 6> 0 then x2 ≤ 0.

In (b) several people seemed to misinterpret the meaning of
(∀m ∈ N)(∃n ∈ N)(m divides n). It means that for each m ∈ N,
there exists some n ∈ N, such that m divides n. So for each m you
need to find one n that works.

Many people wrote down ¬Q then ’True’. I hope you all meant
that Q was True, not that ¬Q was True. Some words would help!
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§7 Functions

Let X and Y be sets. A function

f : X → Y

assigns to each x ∈ X a unique element f (x) ∈ Y . If f (x) = y
then we say that y is the image of x under f . We say that X is the
domain of f and Y is the codomain of f .

Example 7.1

(a) Define f : Z→ Z by f (x) = x + 1. Then f is a function with
domain Z and codomain Z.

(b) Let X = {1, 2, 3} and let Y = {1, 2, 3, 4}. Define t : X → Y
by t(1) = 2, t(2) = 1, t(3) = 4. Then t is a function with
domain X and codomain Y .

(c) Define g : R→ R by f (x) = x2. Then g is a function with
domain R and codomain R.

(d) Define h : C→ C by g(z) = z2. Then h is a function with
domain C and codomain C.



Injective, Surjective, Bijective

Definition 7.2
Let X and Y be sets and let f : X → Y be a function.

(i) We say that f is injective if for each y ∈ Y there exists at
most one x ∈ X such that f (x) = y .

(ii) We say that f is surjective if for all y ∈ Y there exists x ∈ X
such that f (x) = y .

(iii) We say that f is bijective if f is injective and surjective.

Example 7.3

(a) The function f : Z→ Z defined by f (x) = x + 1 is bijective.

(b) The function t : {1, 2, 3} → {1, 2, 3, 4} defined in Example 7.1
is injective but not surjective.

(c) The function g : R→ R defined by g(x) = x2 is neither
injective nor surjective.

(d) The function h : C→ C defined by h(z) = z2 is surjective but
not injective.



Administration

I Please pass your answers to Sheet 3 to the person in your left.
The person at the end of each row should put all work in the
box and pass it down to the next row.

I Please correct a nasty typo: in last paragraph of §6
‘Yet another equivalent setting is digitial electonics:
NOT gates correspond to negation ¬ (or
complement), AND gates to conjunction ∧ (or
intersection ∩), and so on.’

I Change of office hours: from Wednesday 2pm to Wednesday
11am. Tuesday 10am and Friday 3pm continue as before.

I Please take Problem Sheet 8 and pages 33 and 34 of the
printed notes.



Real-Valued Functions

To give another example, we need some notation for intervals in R.
Given a, b ∈ R, let

[a, b] = {x ∈ R : a ≤ x ≤ b}

Similarly [a,∞) = {x ∈ R : a ≤ x}, and so on. (Please do not take
this to mean that ∞ is a real number: this is not the case.)

Example 7.4

Let f : [1,∞)→ [0,∞) be defined by f (x) = x2 + 2x − 3. Then f
is bijective.

To show that f is injective, we suppose that f (x) = f (x ′), and
show that x = x ′. This is usually the most elegant way to present
this sort of argument. Please use it for Question 5 on Sheet 7.



Administration

I Answers to Problem Sheet 7 will appear on Moodle later
today.

I Hints for Question 2 and 4 on Problem Sheet 8 will appear on
my blog shortly.

I There was a request for some extra questions on recent parts
of the course. I will put up something on Moodle by Monday.

Another good source for questions is textbooks, in particular
Martin Liebeck’s book A concise introduction to pure
mathematics, which has the answers to odd-numbered
questions at the back.

You can also see me in office hours to get answers.



Inverse functions

Definition 7.5
Let f : X → Y be bijective. The inverse function to f is the
function g : Y → X defined, for each y ∈ Y , by g(y) = x where x
is the unique element of X such that f (x) = y .

We denote the inverse function to f by f −1. You may have seen
this notation used for the inverses of the sine, cosine and tangent
functions, which are bijective when defined with suitable domain
and codomain.

Exercise 7.6

(a) Show, by sketching the graph, that if we define sine as a
function sin : [−π/2, π/2]→ [−1, 1] then sin is bijective.
Draw the inverse function on the same set of axes.

(b) Repeat (a) for cosine. (You should keep [−1, 1] as the
codomain but change the domain.)



More inverse functions

Example 7.7

(a) Define f : [0,∞)→ [0,∞) by f (x) = x2. Then f is bijective
with inverse function g(y) =

√
y .

(b) Define f : R→ R>0 by f (x) = ex . Then f is bijective with
inverse function g(y) = log y .

Quiz: True or False?

(a) f (x) = x2 + 1 : [0,∞)→ [0,∞) is injective;

TRUE

(b) g(x) = x2 + 1 : [0,∞)→ [0,∞) is surjective;

FALSE

(c) h(x) = x2 + 1 : [0,∞)→ [1,∞) is injective;

TRUE

(d) h(x) = x2 + 1 : [0,∞)→ [1,∞) is surjective;

TRUE

(e) The inverse of h is h−1(y) =
√
y − 1;

TRUE

(f) The codomain of h−1 is [0,∞);

TRUE

(g) There is a function ∅→ {1, 2, 3};

TRUE

(h) There is a function {1, 2, 3} → ∅.

FALSE

(i) The unique function ∅→ ∅ is (1) injective (2) surjective

T T



More inverse functions

Example 7.7

(a) Define f : [0,∞)→ [0,∞) by f (x) = x2. Then f is bijective
with inverse function g(y) =

√
y .

(b) Define f : R→ R>0 by f (x) = ex . Then f is bijective with
inverse function g(y) = log y .

Quiz: True or False?

(a) f (x) = x2 + 1 : [0,∞)→ [0,∞) is injective; TRUE
(b) g(x) = x2 + 1 : [0,∞)→ [0,∞) is surjective;

FALSE

(c) h(x) = x2 + 1 : [0,∞)→ [1,∞) is injective;

TRUE

(d) h(x) = x2 + 1 : [0,∞)→ [1,∞) is surjective;

TRUE

(e) The inverse of h is h−1(y) =
√
y − 1;

TRUE

(f) The codomain of h−1 is [0,∞);

TRUE

(g) There is a function ∅→ {1, 2, 3};

TRUE

(h) There is a function {1, 2, 3} → ∅.

FALSE

(i) The unique function ∅→ ∅ is (1) injective (2) surjective

T T



More inverse functions

Example 7.7

(a) Define f : [0,∞)→ [0,∞) by f (x) = x2. Then f is bijective
with inverse function g(y) =

√
y .

(b) Define f : R→ R>0 by f (x) = ex . Then f is bijective with
inverse function g(y) = log y .

Quiz: True or False?

(a) f (x) = x2 + 1 : [0,∞)→ [0,∞) is injective; TRUE
(b) g(x) = x2 + 1 : [0,∞)→ [0,∞) is surjective; FALSE
(c) h(x) = x2 + 1 : [0,∞)→ [1,∞) is injective;

TRUE

(d) h(x) = x2 + 1 : [0,∞)→ [1,∞) is surjective;

TRUE

(e) The inverse of h is h−1(y) =
√
y − 1;

TRUE

(f) The codomain of h−1 is [0,∞);

TRUE

(g) There is a function ∅→ {1, 2, 3};

TRUE

(h) There is a function {1, 2, 3} → ∅.

FALSE

(i) The unique function ∅→ ∅ is (1) injective (2) surjective

T T



More inverse functions

Example 7.7

(a) Define f : [0,∞)→ [0,∞) by f (x) = x2. Then f is bijective
with inverse function g(y) =

√
y .

(b) Define f : R→ R>0 by f (x) = ex . Then f is bijective with
inverse function g(y) = log y .

Quiz: True or False?

(a) f (x) = x2 + 1 : [0,∞)→ [0,∞) is injective; TRUE
(b) g(x) = x2 + 1 : [0,∞)→ [0,∞) is surjective; FALSE
(c) h(x) = x2 + 1 : [0,∞)→ [1,∞) is injective; TRUE
(d) h(x) = x2 + 1 : [0,∞)→ [1,∞) is surjective;

TRUE

(e) The inverse of h is h−1(y) =
√
y − 1;

TRUE

(f) The codomain of h−1 is [0,∞);

TRUE

(g) There is a function ∅→ {1, 2, 3};

TRUE

(h) There is a function {1, 2, 3} → ∅.

FALSE

(i) The unique function ∅→ ∅ is (1) injective (2) surjective

T T



More inverse functions

Example 7.7

(a) Define f : [0,∞)→ [0,∞) by f (x) = x2. Then f is bijective
with inverse function g(y) =

√
y .

(b) Define f : R→ R>0 by f (x) = ex . Then f is bijective with
inverse function g(y) = log y .

Quiz: True or False?

(a) f (x) = x2 + 1 : [0,∞)→ [0,∞) is injective; TRUE
(b) g(x) = x2 + 1 : [0,∞)→ [0,∞) is surjective; FALSE
(c) h(x) = x2 + 1 : [0,∞)→ [1,∞) is injective; TRUE
(d) h(x) = x2 + 1 : [0,∞)→ [1,∞) is surjective; TRUE
(e) The inverse of h is h−1(y) =

√
y − 1;

TRUE

(f) The codomain of h−1 is [0,∞);

TRUE

(g) There is a function ∅→ {1, 2, 3};

TRUE

(h) There is a function {1, 2, 3} → ∅.

FALSE

(i) The unique function ∅→ ∅ is (1) injective (2) surjective

T T



More inverse functions

Example 7.7

(a) Define f : [0,∞)→ [0,∞) by f (x) = x2. Then f is bijective
with inverse function g(y) =

√
y .

(b) Define f : R→ R>0 by f (x) = ex . Then f is bijective with
inverse function g(y) = log y .

Quiz: True or False?

(a) f (x) = x2 + 1 : [0,∞)→ [0,∞) is injective; TRUE
(b) g(x) = x2 + 1 : [0,∞)→ [0,∞) is surjective; FALSE
(c) h(x) = x2 + 1 : [0,∞)→ [1,∞) is injective; TRUE
(d) h(x) = x2 + 1 : [0,∞)→ [1,∞) is surjective; TRUE
(e) The inverse of h is h−1(y) =

√
y − 1; TRUE

(f) The codomain of h−1 is [0,∞);

TRUE

(g) There is a function ∅→ {1, 2, 3};

TRUE

(h) There is a function {1, 2, 3} → ∅.

FALSE

(i) The unique function ∅→ ∅ is (1) injective (2) surjective

T T



More inverse functions

Example 7.7

(a) Define f : [0,∞)→ [0,∞) by f (x) = x2. Then f is bijective
with inverse function g(y) =

√
y .

(b) Define f : R→ R>0 by f (x) = ex . Then f is bijective with
inverse function g(y) = log y .

Quiz: True or False?

(a) f (x) = x2 + 1 : [0,∞)→ [0,∞) is injective; TRUE
(b) g(x) = x2 + 1 : [0,∞)→ [0,∞) is surjective; FALSE
(c) h(x) = x2 + 1 : [0,∞)→ [1,∞) is injective; TRUE
(d) h(x) = x2 + 1 : [0,∞)→ [1,∞) is surjective; TRUE
(e) The inverse of h is h−1(y) =

√
y − 1; TRUE

(f) The codomain of h−1 is [0,∞); TRUE
(g) There is a function ∅→ {1, 2, 3};

TRUE

(h) There is a function {1, 2, 3} → ∅.

FALSE

(i) The unique function ∅→ ∅ is (1) injective (2) surjective

T T



More inverse functions

Example 7.7

(a) Define f : [0,∞)→ [0,∞) by f (x) = x2. Then f is bijective
with inverse function g(y) =

√
y .

(b) Define f : R→ R>0 by f (x) = ex . Then f is bijective with
inverse function g(y) = log y .

Quiz: True or False?

(a) f (x) = x2 + 1 : [0,∞)→ [0,∞) is injective; TRUE
(b) g(x) = x2 + 1 : [0,∞)→ [0,∞) is surjective; FALSE
(c) h(x) = x2 + 1 : [0,∞)→ [1,∞) is injective; TRUE
(d) h(x) = x2 + 1 : [0,∞)→ [1,∞) is surjective; TRUE
(e) The inverse of h is h−1(y) =

√
y − 1; TRUE

(f) The codomain of h−1 is [0,∞); TRUE
(g) There is a function ∅→ {1, 2, 3}; TRUE
(h) There is a function {1, 2, 3} → ∅.

FALSE

(i) The unique function ∅→ ∅ is (1) injective (2) surjective

T T



More inverse functions

Example 7.7

(a) Define f : [0,∞)→ [0,∞) by f (x) = x2. Then f is bijective
with inverse function g(y) =

√
y .

(b) Define f : R→ R>0 by f (x) = ex . Then f is bijective with
inverse function g(y) = log y .

Quiz: True or False?

(a) f (x) = x2 + 1 : [0,∞)→ [0,∞) is injective; TRUE
(b) g(x) = x2 + 1 : [0,∞)→ [0,∞) is surjective; FALSE
(c) h(x) = x2 + 1 : [0,∞)→ [1,∞) is injective; TRUE
(d) h(x) = x2 + 1 : [0,∞)→ [1,∞) is surjective; TRUE
(e) The inverse of h is h−1(y) =

√
y − 1; TRUE

(f) The codomain of h−1 is [0,∞); TRUE
(g) There is a function ∅→ {1, 2, 3}; TRUE
(h) There is a function {1, 2, 3} → ∅. FALSE
(i) The unique function ∅→ ∅ is (1) injective (2) surjective

T T



More inverse functions

Example 7.7

(a) Define f : [0,∞)→ [0,∞) by f (x) = x2. Then f is bijective
with inverse function g(y) =

√
y .

(b) Define f : R→ R>0 by f (x) = ex . Then f is bijective with
inverse function g(y) = log y .

Quiz: True or False?

(a) f (x) = x2 + 1 : [0,∞)→ [0,∞) is injective; TRUE
(b) g(x) = x2 + 1 : [0,∞)→ [0,∞) is surjective; FALSE
(c) h(x) = x2 + 1 : [0,∞)→ [1,∞) is injective; TRUE
(d) h(x) = x2 + 1 : [0,∞)→ [1,∞) is surjective; TRUE
(e) The inverse of h is h−1(y) =

√
y − 1; TRUE

(f) The codomain of h−1 is [0,∞); TRUE
(g) There is a function ∅→ {1, 2, 3}; TRUE
(h) There is a function {1, 2, 3} → ∅. FALSE
(i) The unique function ∅→ ∅ is (1) injective (2) surjective T

T



More inverse functions

Example 7.7

(a) Define f : [0,∞)→ [0,∞) by f (x) = x2. Then f is bijective
with inverse function g(y) =

√
y .

(b) Define f : R→ R>0 by f (x) = ex . Then f is bijective with
inverse function g(y) = log y .

Quiz: True or False?

(a) f (x) = x2 + 1 : [0,∞)→ [0,∞) is injective; TRUE
(b) g(x) = x2 + 1 : [0,∞)→ [0,∞) is surjective; FALSE
(c) h(x) = x2 + 1 : [0,∞)→ [1,∞) is injective; TRUE
(d) h(x) = x2 + 1 : [0,∞)→ [1,∞) is surjective; TRUE
(e) The inverse of h is h−1(y) =

√
y − 1; TRUE

(f) The codomain of h−1 is [0,∞); TRUE
(g) There is a function ∅→ {1, 2, 3}; TRUE
(h) There is a function {1, 2, 3} → ∅. FALSE
(i) The unique function ∅→ ∅ is (1) injective (2) surjective T T



Composition

Definition 7.8
Let f : X → Y and g : Y → Z be functions. The composition of f
and g is the function gf : X → Z defined by (gf )(x) = g(f (x)).

Note that gf means ‘do f then do g ’. So one has to get used to
reading function compositions from right to left. In the special case
where Y = X and g = f we write f 2 for f f , f 3 for f f f and so on.

Theorem 7.9
Let X , Y and Z be sets and let f : X → Y and g : Y → Z be
functions.

(i) If f and g are injective then gf : X → Z is injective.

(ii) If f and g are surjective then gf : X → Z is surjective.

(iii) If f and g are bijective then gf : X → Z is bijective.



Administration

I If your surname begins with
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I N–Z your work is probably in the blue folder

I Please remember to put your full name and/or student
number on your work.

I Remember a reasonable attempt at each of the 8
assessed sheets is worth 1.25% of your final mark.

I There are model answers on Moodle for Sheet 7.
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I Office hours: the Wednesday hour has moved from 2pm
to 11am. Tuesday 11am, Friday 3pm as before.



Quiz on Inverse Functions

Definition 7.5
Let X and Y be sets and let f : X → Y be a bijective function.
Recall that the inverse function f −1 : Y → X is the function
defined by

f −1(y) = x ⇐⇒ x is the unique element of X such that f (x) = y .

Quiz: For each of the functions drawn on the board, decide
whether they are bijective. Which two bijective functions are
inverse to one another?



Inverses on One Side

Theorem 7.10
Let X and Y be non-empty sets and let f : X → Y be a function.

(i) f is injective ⇐⇒ there exists a function g : Y → X such that
gf = iX .

(ii) f is surjective ⇐⇒ there exists a function h : Y → X such
that fh = iY .
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§8 Relations

Let X be a set. A relation on X is a subset of X × X . If (x , y) is
in the subset, then we say that x and y are related. More
informally, a relation is a true-or-false statement that depends on
two elements of X .

Example 8.1

(i) Let X = R. Then ‘x < y ’ is a relation on X .

(ii) Let X = Z. Then ‘m − n is even’ is a relation on X .

(iii) Let X be the set of all subsets of {1, 2, 3}. Then A ⊆ B is a
relation on X .

(iv) Let X be the set of people in this room. Then x ∼ y if x can
see y is a relation on X .

Formally, the relation in (i) is the subset
{

(x , y) ∈ R× R : x < y
}
.

Usually it is clearer to specify relations more informally, as in
Example 8.1.



Diagrams
Let X be a set and let ≡ be a relation defined on X . To represent
≡ on a diagram, draw a dot for each element of X . Then for each
x , y ∈ X such that x ≡ y , draw an arrow from x to y . If x ≡ x
draw a loop from x to itself.

Example 8.2

Let X = {1, 2, 3, 4, 5, 6} and let ≡ be the relation defined on X by

x ≡ y ⇐⇒ x − y is even.

The diagram for X is shown below.

1 2

3 4

5 6



Definition 8.4
Let ∼ be a relation on a set X . We say that ∼ is

(i) reflexive if x ∼ x for all x ∈ X ;

(ii) symmetric if for all x , y ∈ X ,

x ∼ y =⇒ y ∼ x ;

(iii) transitive if for all x , y , z ∈ X

x ∼ y and y ∼ z =⇒ x ∼ z .

Exercise 8.5
Let X be the set of people sitting in this lecture room. For each of
the following relations, decide whether it is (1) reflexive, (2)
symmetric and (3) transitive.

(a) x ∼ y if x is sitting in a strictly higher row than y ;

(b) x ∼ y if x and y are in the same row, or x is higher than y ;

(c) x ∼ y if x and y are sitting in the same row;

(d) x ∼ y if x and y are friends.

(e) x ∼ y if x is not y .



Answers to Exercise 8.5

Reflexive Symmetric Transitive

(a) x is sitting in a strictly
higher row than y

False False True

(b) x and y are in the same
row, or x is higher than y

True False True

(c) x and y are sitting in
the same row

True True True

(d) x and y are friends

True1 True False

(e) x is not y

False True False2

1We will suppose that a person is well-disposed towards themselves.

2Take two different people x and y . Then x is not y so x ∼ y and
y is not x so y ∼ x . But x 6∼ x so the relation ∼ is not transitive.
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Equivalence relations and partitions

Suppose that ∼ is an equivalence relation on a set X . For x ∈ X ,
we define the equivalence class of x to be the set

[x ]∼ = {z ∈ X : z ∼ x}.

So the equivalence class of x consists of all the elements of X that
relate to x .

If the relation will be clear we may write [x ] rather than [x ]∼.

Example 8.6

Define a relation ∼ on C by z ≡ w if |z | = |w |. Then ∼ is an
equivalence relation. The equivalence classes are the circles
centred on 0, together with [0]∼ = {0}.



Congruences

Example 8.7

Let n ∈ N. Define a relation on the set of integers Z by a ≡ b if n
divides b − a. [changed from a-b to be consistent with
Definition 9.1] Then ≡ is an equivalence relation. The different
equivalence class are

[0] = {qn : q ∈ Z}
[1] = {1 + qn : q ∈ Z}

...

[n − 1] = {(n − 1) + qn : q ∈ Z}

Quiz: True or false?

(a) 2 ≡ −1

TRUE

(b) [2] = [−1]

TRUE

(c) 6 ∈ [2]

FALSE

(d) 6 ≡ 2

FALSE

(e) −37 ≡ 2

TRUE

(f) [−37] = [−2]

TRUE
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Example 8.7 (Special case n = 3)

Define a relation on the set of integers Z by a ≡ b if 3 divides
b − a. Then ≡ is an equivalence relation. The different
equivalence class are

[0] = {3q : q ∈ Z}
[1] = {1 + qn : q ∈ Z}
[2] = {2 + qn : q ∈ Z}

Here is the argument from the end of last lecture that [n] = [0], in
the special case n = 3:

[3] = {3+qn : q ∈ Z} = {3+(p−1)n : p ∈ Z} = {pn : p ∈ Z} = [0].

Quiz: True or false?

(a) 5 ≡ 8

TRUE

(b) 5 ∈ [8]

TRUE

(c) 8 ∈ [5]

TRUE

(d) [5] = [8]

TRUE

(e) 5 ≡ [9]

FALSE

(f) [5] = [9]

TRUE
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Partitions

Definition 8.8
Let X be a set.

(i) We say that subsets A,B ⊆ X are disjoint if A ∩ B = ∅.

(ii) A partition of X is a collection of non-empty subsets of X
such that any element of X is in one of the subsets, and any
two subsets are either equal or disjoint.

For instance, in Example 8.7 the equivalence classes

[0], [1], . . . , [n − 1]

partition Z since they are disjoint and

[0] ∪ [1] ∪ · · · ∪ [n − 1] = Z.

Theorem 8.9
Let ∼ be an equivalence relation on a set X . Then the equivalence
classes [x ]∼ for x ∈ X partition X .



Equivalence Relations and Partitions
By Theorem 8.9, an equivalence relation on a set X gives a
partition of X . Conversely, given a partition of X we can define the
corresponding equivalence relation by defining

x ∼ y ⇐⇒ x and y are in the same subset in the partition.

Hence there is a bijective correspondence between equivalence
relations on a set X and partitions of X .

Example 8.10

An alternative way to define the equivalence relation ∼ in
Example 8.6 would be to start with the partition of C, and define
z ∼ w if and only if z and w are in the same subset in this
partition. Equivalently,

z ∼ w ⇐⇒ either z = w = 0 or z and w are on the same circle
centred on 0.



Sheet 8 Question 6

6. For each of the relations ∼ below on a set X , decide whether
it is (1) reflexive, (2) symmetric, (3) transitive. [Note that
each relation could have several of these properties!]
Give brief explanations or counterexamples as appropriate.

(a) X is the set of people taking MT181, x ∼ y if x and y were
either both present or both absent at the MT181 lecture on
Thursday 22nd November.

(b) X is the set of people taking MT181, x ∼ y if x and y were
both present at the same MT181 lecture in the week this sheet
was issued.

(c) X is the set of people in a lecture room, x ∼ y if x can see the
eyes of y .



How to Show that a Function is Injective

It might help to first look at the definition of injective!

Definition 7.2
Let X and Y be sets and let f : X → Y be a function.

(i) We say that f is injective if for each y ∈ Y there exists at
most one x ∈ X such that f (x) = y .

(ii) We say that f is surjective if for all y ∈ Y there exists x ∈ X
such that f (x) = y .

(iii) We say that f is bijective if f is injective and surjective.

So f (x) is injective if and only if there do not exist x , x ′ ∈ X such
that x 6= x ′ and f (x) = f (x ′).

Almost always the most elegant way to show that f is injective is
to suppose that f (x) = f (x ′) and use the definition of f to show
that x = x ′.
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Example of Contrapositive
Example A. The strategy for showing that a function is injective
recommended in lectures uses the contrapositive. We agreed
that f : X → Y is injective if and only if

x 6= x ′ =⇒ f (x) 6= f (x ′).

This is equivalent, by taking the contrapositive, to

f (x) = f (x ′) =⇒ x = x ′.

(Compare Claim 5.6: taking the contrapositive often helps when
you are trying to prove a statement with one or more negatives.)

Example B. The Prime Minister is on record as saying that he
would implement the recommendations of the Leveson Report, ‘as
long as they are not bonkers’

REPORT NOT BONKERS =⇒ WILL IMPLEMENT.

He has now made it clear that he does not intend to implement
the report. What can you conclude? (Assume for the next 30
seconds that our elected representatives are completely logical.)
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Questionnaires
The batch number is 965003.

The additional questions from the college are:

17. For this course, Library study space met my needs.

18. The course books in the Library met my needs for this course.

19. The online Library resources met my needs for this course.

20. I was satisfied with the Moodle elements of this course.

21. I received feedback on my work within the 4 week norm
specified by College.

Please think seriously about your responses and comments: useful
feedback works both ways!

Write any further comments on the back of the form. In particular,
please answer the old version of Q17: whether you found the speed
too fast, too slow, or about right.

Please leave the form on the desk at the front. If you do not want
it to pass through my hands (so I may not see your comments for
six months) return it directly to the Maths Office, McCrea 243.



Administration

I Please pass your answers to Sheet 9 to the person in your left.
The person at the end of each row should put all work in the
box and pass it down to the next row.

I Problem Sheet 10 will be issued tomorrow. Answers to
Sheet 9 will be put on Moodle later today.

I Please take pages 39 and 40 of the printed notes.



Part D: Rings and fields

§9 Introduction to Rings: Integers Modulo n

We begin with a formal definition of the relation introduced in
Example 8.7.

Definition 9.1
Let n ∈ N. Given a, b ∈ Z, we say that a is congruent to b modulo
n, and write

a ≡ b mod n

if n divides b − a. Let Zn = {[0], [1], . . . , [n − 1]} be the set of
equivalence classes under this relation, so

[r ] = {r + qn : q ∈ Z}.

If n ∈ N and a, b ∈ Z then

a ≡ b mod n⇐⇒ [a] = [b].



Examples of Congruences

Since the distinct equivalence classes in Zn are [0], [1], . . . , [n − 1],
any integer is congruent to one of 0, 1, . . . , n − 1 mod n.

Exercise 9.2
Recall that a square number is a number of the form n2 where
n ∈ N0.

(i) Calculate 0, 1, 4, 9, 16, 25, 36, . . . modulo 4. State and prove a
conjecture on the pattern you observe.

(ii) Is 2015 the sum of two square numbers?

Exercise 9.3
Find the following:

(i) 27× 33 mod 10;

(ii) 7× 33 mod 10;

(iii) 27× 3 mod 10;

(iv) 7× 3 mod 10.



Addition and Multiplication in Zn

Lemma 9.4
Let n ∈ N and let r , r ′, s, s ′ ∈ Z. If r ≡ r ′ mod n and s ≡ s ′ mod n
then r + s ≡ r ′ + s ′ mod n and rs ≡ r ′s ′ mod n.

Definition 9.5
Let n ∈ N. Given [r ], [s] ∈ Zn we define

[r ] + [s] = [r + s]

and
[r ][s] = [rs].

Lemma 9.6
The definitions of addition and multiplication in Definition 9.5 are
well-defined.



Example 9.7

The addition and multiplication tables for Z5 are shown below. For
example, the entry in the addition table in the row for [4] and the
column for [2] is

[4] + [3] = [2]

since 4 + 3 = 7 and 7 ≡ 2 mod 5.

+ [0] [1] [2] [3] [4]

[0] [0] [1] [2] [3] [4]

[1] [1] [2] [3] [4] [0]

[2] [2] [3] [4] [0] [1]

[3] [3] [4] [0] [1] [2]

[4] [4] [0] [1] [2] [3]

× [0] [1] [2] [3] [4]

[0] [0] [0] [0] [0] [0]

[1] [0] [1] [2] [3] [4]

[2] [0] [2] [4] [1] [3]

[3] [0] [3] [1] [4] [2]

[4] [0] [4] [3] [2] [1]



Exercise 9.2 Revisited

Exercise 9.2
Recall that a square number is a number of the form n2 where
n ∈ N0.

(i) Calculate 0, 1, 4, 9, 16, 25, 36, . . . modulo 4. State and prove a
conjecture on the pattern you observe.

(ii) Is 2015 the sum of two square numbers?

Working in Z4 = {[0], [1], [2], [3]} we can give an alternative
solution. Let r ∈ N0. Then

I [r ] = [0] =⇒ [r ]2 = [0]2 = [0]

I [r ] = [1] =⇒ [r ]2 = [1]2 = [1]

I [r ] = [2] =⇒ [r ]2 = [2]2 = [4] = [0]

I [r ] = [3] =⇒ [r ]2 = [3]2 = [9] = [1]



Administration

I If your surname begins with
I A–F your work is in the red folder
I G–M your work is in the blue folder
I N–S your work is in the green folder
I T–Z your work is in the yellow folder

I Please remember to put your full name and/or student
number on your work.

I There are model answers on Moodle for Sheet 9.

I Answers to Sheet 10 and to the sheet of revision questions on
Part C of the course will be put on Moodle on Monday 17
December.

I Office hours: Tuesday 11am, Wednesday 11am, Thursday
2pm (no office hour on Friday).



Definition 9.8
Suppose that R is a set on which addition and multiplication are
defined, so that given any two elements x , y ∈ R, their sum x + y
and product xy are elements of R. We say that R is a ring if the
following properties hold:

(1) (Commutative law of addition) x + y = y + x for all x , y ∈ R;

(2) (Existence of zero) There is an element 0 ∈ R such that 0 + x = x
for all x ∈ R;

(3) (Existence of additive inverses) For each x ∈ R there exists an
element −x ∈ R such that −x + x = 0, where 0 is the element in
property (2);

(4) (Associative law of addition) (x + y) + z = x + (y + z) for all
x , y , z ∈ R;

(5) (Existence of one) There exists an element 1 ∈ R such that
1x = x1 = x for all x ∈ R;

(6) (Associative law of multiplication) (xy)z = x(yz) for all x , y , z ∈ R;

(7) (Distributivity) x(y + z) = xy + xz and (x + y)z = xz + yz for all
x , y , z ∈ R.



Rings and Fields

Claim 9.9
The number systems Z, Q, C and Zn for n ∈ N are rings.

Definition 9.10
A ring R is commutative if xy = yx for all x , y ∈ R. A
commutative ring R is a field if for all non-zero x ∈ R there exists
an element y ∈ R such that xy = yx = 1, where 1 is the one
element in property (5). We say that y is the inverse of x and
write y = x−1.

For example, Z5 is a field. The inverses of the non-zero elements
can be found from the multiplication table in Example 9.7. They
are

[1]−1 = [1], [2]−1 = [3], [3]−1 = [2], [4]−1 = [4].

Theorem 9.11
If p is prime then Zp is a field.



More Examples of Fields

Some further examples of fields are Q, R and C. Example 1.14
gives a more unusual example of a field.

Example 9.12

Let K be the subset of R defined by

K = {a + b
√

2 : a, b ∈ Q}.

Then K is a ring. Properties (1), (4), (6) and (7) in Definition 9.8
hold because K is closed under addition and multiplication and
these properties are known to hold for R. Properties (2) and (5)
hold because 0, 1 ∈ K . Property (3) holds because if a + b

√
2 ∈ K

then −a− b
√

2 ∈ K . Finally the inverse of the non-zero element
a + b

√
2 ∈ K is

(a + b
√

2)−1 =
a− b

√
2

a2 − 2b2
.

So K is a field.



General Properties of Rings

Claim 9.13
Let R be a ring.

(i) There is a unique zero element in R satisfying property (2).

(ii) There is a unique one element in R satisfying property (5).

Let 0 be the unique zero element in R and let 1 be the unique one
element.

(iii) For each x ∈ R there exists a unique y ∈ R such that
y + x = x + y = 0.

(iv) We have 0x = 0 = x0 for all x ∈ R.

(v) We have −x = (−1)x = x(−1) for all x ∈ R.

(vi) For each x ∈ X, −(−x) = x.

(vii) For all x, y ∈ R we have −(xy) = (−x)y = y(−x) and
(−x)(−y) = xy.

(viii) 0 = 1 if and only if R = {0}.



Administration

I Please take the final installment of the lecture notes.

I Please also take and complete a questionnaire about the
course.

I Please collect previous homework! (The box outside my office
is almost full.)



ISBNs: An Application of Congruences
All recent books have an International Standard Book Number (ISBN)
assigned by the publisher. In the system used before 2007, each book is
given a sequence of length 10 with entries from {1, 2, 3, 4, 5, 6, 7, 8, 9,X}.
For example A Concise Introduction to Pure Mathematics has ISBN

1-4398-3598-5

• 1 identifies the country of publication;

• 4398 identifies the publisher (Productivity Press, an imprint of CRC
Press);

• 3598 is the item number assigned by the publisher

• 5 is the check digit.

The check digit is chosen that if u1u2u3u4u5u6u7u8u9u10 is an ISBN then

10∑

j=1

(11− j)uj = 10u1 + 9u2 + · · ·+ 2u9 + u10 ≡ 0 mod 11.

If a single digit is miscopied, this will be revealed by the check digit.

It might be necessary to take 10 as a check digit. In this case the letter X
is used to stand for 10.



§10 Polynomial rings

We will define polynomials rings over arbitrary fields. The main
examples of fields to bear in mind are Q,R,C and Zp for a prime p.

Definition 10.1
Let F be a field. Let F [x ] denote the set of all polynomials

f (x) = a0 + a1x + a2x
2 + · · ·+ adx

d

where d ∈ N0 and a0, a1, a2, . . . , ad ∈ F . If d = 0 so f (x) = a0
then we say that f (x) is a constant polynomial. If ad 6= 0 then we
say that ad is the leading coefficient of f (x).

I If ai = 1 we write x i rather than 1x i .

I If ai = 0 we omit the term x i rather than writing 0x i .

For example, in Q[x ], we write x2 + 1 rather than 1x2 + 0x + 1.



Polynomial rings

Polynomials are added and multiplied in the natural way.

Example 10.2

In Z3[x ], we have

(x4 + [2]x3 + [1]) + ([2]x4 + x2 + [1])

= ([1] + [2])x4 + [2]x3 + x2 + ([1] + [1])

= [2]x3 + x2 + [2]

and

(x + [1])(x + [2]) = x2 + ([1] + [2])x + [1][2] = x2 + [2].

Theorem 10.3
Let F be a field. Then F [x ] is a ring with zero the constant
polynomial 0 and one the constant polynomial 1.



Polynomial Division

Definition 10.4
If f (x) = a0 + a1x + a2 + · · ·+ adx

d where ad 6= 0, then we say
that d is the degree of the polynomial f (x), and write deg f = d .

Theorem 10.5 (Division Algorithm)

Let F be a field, let f (x) ∈ F [x ] be a non-zero polynomial and let
g(x) ∈ F [x ]. There exist polynomials q(x), r(x) ∈ F [x ] such that

g(x) = q(x)f (x) + r(x)

and either r(x) = 0 or deg r(x) < deg f (x).

We say that q(x) is the quotient and r(x) is the remainder when
g(x) is divided by f (x).



Example 10.6

Working in Q[x ], let g(x) = 3x2 + 2x − 1 and let f (x) = 2x + 1.
Then

g(x) = (32x + 1
4)f (x)− 5

4

so the quotient is q(x) = 3
2x + 1

4 and the remainder is r(x) = −5
4 .

If instead we take h(x) = x + 1 then

g(x) = (3x − 1)h(x).

So when g(x) is divided by h(x) the quotient is 3x − 1 and the
remainder is 0.

Example 10.7

Working in Z3[x ], let g(x) = x3 + x2 + [2] and let
f (x) = x2 + [2]x + [1]. Then

g(x) = (x + [2])f (x) + x

so the quotient when g(x) is divided by f (x) is x + [2] and the
remainder is x .
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Factor Theorem

Theorem 10.8
Let F be a field and let f (x) ∈ F [x ] be a polynomial. Let c ∈ F .
Then

f (x) = q(x)(x − c) + r

for some polynomial q(x) ∈ F [x ] and some r ∈ F. Moreover
f (c) = 0 if and only if r = 0.

This theorem is very useful when solving polynomial equations.

Example 10.9

Let f (x) = x3 − 3x2 + 7x − 5 ∈ C[x ]. The sum of the coefficients
is 1− 3 + 7− 5 = 0 so f (1) = 0. Dividing f (x) by x − 1 gives

f (x) = (x − 1)(x2 − 2x + 5).

Hence the roots of f (x) are 1, 1 + 2i and 1− 2i .



We end with a corollary of Theorem 10.8 that gives a stronger
version of the Fundamental Theorem of Algebra (Theorem 2.9).

Corollary 10.10

Let F be a field and let f (x) ∈ C[x ] be a polynomial of degree n.
Then f has at most n roots in F . Moreover if F = C then f has
exactly n roots in C.

Theorem 2.9 (Fundamental Theorem of Algebra)

Let n ∈ N and let a0, a1, . . . , an ∈ C with an 6= 0. Then the
equation

anz
n + an−1zn−1 + · · ·+ a1z + a0 = 0

has a solution in C.
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Questionnaires
You must return a quesionnaire. Unless 15 more are
returned, the response rate will be less than the 75%
required by the college.

The batch number is 965003.

The additional questions are:

17. For this course, Library study space met my needs.

18. The course books in the Library met my needs for this course.

19. The online Library resources met my needs for this course.

20. I was satisfied with the Moodle elements of this course.

21. I received feedback on my work within the 4 week norm
specified by College.

Please write any further comments on the back of the form. (In
particular, please answer the old version of Q17: whether you
found the speed too fast, too slow, or about right.)

Comments so far: (1) BLT1 is too cold. There is a thermostat at
the front. Or close the door at the back. (2) More examples.
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