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Recommended Reading and Other Resources

[1] How to think like a mathematician. Kevin Houston,
Cambridge University Press, 2009.

[2] A concise introduction to pure mathematics. Martin Liebeck,
Chapman and Hall, 2000.

[3] Discrete Mathematics. Norman L. Biggs, Oxford University
Press, 2002.

I Printed notes. (But you should also make your own notes.)
I These slides are available from Moodle.
I Problem sheets. Each of the eight marked problem sheets is

worth 1.25% of your overall grade. This mark is awarded for
any reasonable attempt.

I Discuss questions with your colleagues.
I Go to the solutions classes.
I Web: planetmath.org, http://math.stackexchange.com.
I Check your answers to computational problems with computer

algebra packages such as Mathematica.



Part A: Sets, Functions and Complex Numbers

§1 Introduction: Sets of Numbers

One of the unifying ideas in this course is solving equations. I hope
we can all agree this is an useful and interesting thing to do. For
example, consider the equation

x2 + y2 = 25.

How many solutions are there?
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Sets

A set is any collection of objects. These objects are called the
members or elements of the set.

If X is a set and x is an element of X then we write x ∈ X . (This
can be read as ‘x is in X ’, or ‘X contains x ’.) If y is not an
element of X then we write y 6∈ X . For example,
7 ∈ {2, 3, 5, 7, 11, 13} and 8 6∈ {2, 3, 5, 7, 11, 13}.

Exercise 1.2
True or false?

(i) 29 is a member of the set of prime numbers;

True

(ii) 87 is a member of the set of prime numbers;

False

(iii) {2, 3, 5, 7, 11} = {5, 7, 11, 2, 3}.

True
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Sets of Numbers

We write N for the set of natural numbers:

N = {1, 2, 3, 4, . . .}.

We write Z for the set of integers:

Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .}.

A number r/s with r ∈ Z, s ∈ Z and s 6= 0 is said to be rational.
We write Q for the set of rational numbers. Finally we write R for
the set of real numbers.

Some important real numbers are marked below.

πe1 20−1
√

2



Rational and Irrational Numbers
It is an important fact that there are real numbers that are not
rational numbers. For example

√
2 6∈ Q. We say that such

numbers are irrational. So what sort of numbers are rational?

Example 1.3 (See board)

Note that ‘ =⇒ ’ means ‘implies’. If A and B are mathematical
statements then

A =⇒ B

means ‘A implies B’ or equivalently

‘if A is true, then B is true’.

Using implies signs (and more importantly, words!) will help to
clarify the structure of your arguments.

Exercise 1.4
Find a simple expression for 0.99999 . . .. Are you happy with the
answer?
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Number Systems Seen So Far

In this diagram, sets are drawn as regions in the plane.

Note that a set contains all the numbers in the sets drawn inside
it. For example, It is therefore entirely correct to say that 1 is a
real number, or that −1 is a rational number.

NZ

Q R

1, 2, 3, . . .. . . ,−1, 0
1/2
−9/7

√
2

π



Pre-lecture Quiz (Thursday 3 October)
True or False:

(a)
√

2 is a real number
(b)
√

2 is a rational number
(c) 0.123456789 123456789 . . . is a rational number
(d) 3.141592 is a rational number
(e) 1 is a real number
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Pre-lecture Quiz (Thursday 3 October)
True or False:

(a)
√

2 is a real number True
(b)
√

2 is a rational number False
(c) 0.123456789 123456789 . . . is a rational number True
(d) 3.141592 is a rational number True
(e) 1 is a real number True

For (d):
3 141 592

1 000 000
= 3.141592 6= π. (π = 3.14159265358 . . ..)

For (e): 1 is a natural number, and every natural number is also a
real number.



Closure and Equation Solving
One important property of the natural numbers, which I hope you
will agree is obviously true, is that if m, n ∈ N then m + n ∈ N and
mn ∈ N.

Definition 1.5
Let X be a set of numbers. We say that X is
I closed under addition if x + y ∈ X whenever x ∈ X and y ∈ X ;

I closed under multiplication if xy ∈ X whenever x ∈ X and y ∈ X ;

I closed under subtraction if x − y ∈ X whenever x ∈ X and y ∈ X ;

I closed under division if x/y ∈ X whenever x ∈ X , y ∈ X and y 6= 0.

Exercise 1.6
I Is N closed under division?

No: 1/2 6∈ N

I Is Z closed under division?

No: 1/2 6∈ Z.

I Is Q closed under addition?

Yes: But one example is not
enough to prove this.

Closure properties of a set X are closely related to the equations
that can be solved using numbers from X .
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Proof that Q is Closed Under Addition
Let x ∈ Q and y ∈ Q. Since x ∈ Q there exist r , s ∈ Z such that
s 6= 0 and x = r/s. Since y ∈ Q there exist t, u ∈ Z such that
u 6= 0 and y = t/u. Now

x + y =
r

s
+

t

u
=

ru + st

su
.

Hence x + y = m/n where m = ru + st and n = su. Since the
integers are closed under addition and multiplication, we have
m ∈ Z and n ∈ Z. Therefore x + y is rational. �

Exercise 1.7
At the end this proof has one (easily fixed) gap. You might also
object to it for other reasons. Come up with at least one objection.

Mathematical gap: At the end we claimed that x + y = m/n
where n = su. But it is illegal to divide by 0. A careful
mathematician would explain that su is non-zero, and so we are
allowed to divide by it.
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Replies to Some Other Objections
I ‘Why so many words? I thought we were here to do

mathematics.’ Reply: We are, and we did.

That said, the
proof could be given almost entirely using symbols:

x ∈ Q =⇒ x = r/s, r ∈ Z, s ∈ Z
y ∈ Q =⇒ y = t/u, t ∈ Z, u ∈ Z

=⇒ x + y =
r

s
+

t

u
=

ru + st

su
=⇒ x + y = m/n m = ru + st ∈ Z, n = su ∈ Z

su 6= 0 since s 6= 0, u 6= 0.

Comments
I No explanation is given for why m and n are integers.
I The reason why r , s, t, u exist is compressed into the implies

signs after x ∈ Q and y ∈ Q.
I A ‘where’ before the m in m = ru + st would be good style.
I The first and second lines should probably say that s 6= 0 and

t 6= 0.
I There is no statement at any point of what is being proved.
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Symbolic Proofs: What To Avoid
One problem with relying heavily on symbols is that a single slip
can make an argument impossible to follow. It also makes it harder
to put in any explanations. Remember that you will be the reader
in a few months when you are revising for exams.

Here is an example of the sort of thing to avoid.

x = r/s, y = t/u

x + y = ru + st/su

Proved

Some of the main problems:

I What are r , s, t, u?

I Second line should be (ru + st)/su.

I What has been proved? It’s hard to tell because the rational
numbers are not mentioned at any point!

(Chapter 3 of How to Think Like a Mathematician has advice on
writing mathematics. You will be asked to read it next week.)



Replies to Some Other Objections [continued]

I ‘All we showed is that the sum of two fractions is a fraction.
Isn’t this just obvious?’ Reply: maybe it is.

But many obvious
sounding statements have turned out to be false. And we
have to start somewhere: it’s best to get practice at writing
proofs on results that are fairly easy.

We will prove some much more interesting results later in the
course.

I ‘In the proof you assumed that Z is closed under addition and
multiplication. How do we know this?’ Reply: good point.

But at least this proof reduces the problem of showing that Q
is closed under adddition to proving that Z is closed under
addition and multiplication. Most people would be prepared
to take these properties of Z for granted.
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Subsets
If X and Y are sets and every element of X is an element of Y ,
then we say that X is a subset of Y , and write X ⊆ Y . In symbols
the condition X ⊆ Y is

x ∈ X =⇒ x ∈ Y .

For example N is a subset of Z, Z is a subset of Q and Q is a
subset of R. In symbols

N ⊆ Z ⊆ Q ⊆ R.

There is a special notation for defining subsets of a set. For
example if Y is the set of prime numbers and

X = {x ∈ Y : x ≤ 13}
then X is the set of prime numbers x such that x ≤ 13. The set Q
of rational numbers can be defined as

Q = {r/s : r ∈ Z, s ∈ Z, s 6= 0}.
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Example of Subsets

Example 1.8

Let

X = {x ∈ R : x ≥ 2 +
√

5.}
Y = {x ∈ R : x2 − 4x + 1 ≥ 2}

We will show that X ⊆ Y . Is it true that X = Y ?

The symbol ‘⇐⇒ ’ will be used in the proof: if A and B are
mathematical statements then A ⇐⇒ B means that A implies B
and B implies A. So A and B are either both true, or both false.

Remark: We say that X is a proper subset of Y if X is a subset of
Y and X 6= Y .

It is correct to write X ⊆ Y even if X is a proper subset of Y . (If
this was not allowed, the only time it would be correct to write
X ⊆ Y would be when X = Y . Surely this cannot be a sensible
use of notation!)
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Y and X 6= Y .

It is correct to write X ⊆ Y even if X is a proper subset of Y . (If
this was not allowed, the only time it would be correct to write
X ⊆ Y would be when X = Y . Surely this cannot be a sensible
use of notation!)



Venn Diagrams

A Venn diagram is a diagram, like the one on page 6, that
represents sets by regions of the plane. For example, the sets

U = {1, 2, 3, . . . , 9, 10}
X = {n ∈ U : n is even}
Y = {n ∈ U : n is a prime number}

are shown in the Venn diagram below. The region representing X
is shaded.

4, 6

8, 10
3, 5, 71, 9

X Y

U

2



Intersection, Union, Complement

Let X and Y be sets.

I The intersection of X and Y , written X ∩ Y , is the set of
elements that are in both X and Y .

I The union of X and Y , written X ∪ Y , is the set of elements
in at least one of X and Y .

I If X is a subset of a set U then we define the complement of
X in U by X ′ = {y ∈ U : y 6∈ X}.

[Correction: on Thursday I wrote X ′ = {x ∈ P : x is even} as an
example of a subset of the set P of prime numbers. The mark ′

was intended to distinguish X ′ from X (the subset of primes ≤ 13).
But this clashes badly with the notation for complements. Please
change X ′ to Z in your notes for Thursday.]

Exercise 1.9
Draw Venn diagrams representing X ∩ Y , X ∪ Y and X ′.
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De Morgan’s Laws

Claim 1.10 (De Morgan’s Laws)

Let X and Y be subsets of a set U. Then

(i) (X ∪ Y )′ = X ′ ∩ Y ′,

(ii) (X ∩ Y )′ = X ′ ∪ Y ′.
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Administration

I Please put your work for Sheet 1 in one of the boxes. Make
sure your name and student number is on it. It will be
returned in the lecture on Friday.

I Problem Sheet 2 is on Moodle.

I Please take pages 15 to 18 of the handout. (Spare copies of
pages 11 to 14 are available.)



§2 Functions

We need an idea of a function that is broad enough to cover
everything that might be needed in pure mathematics, applied
mathematics, probability and statistics. For example, this should
definitely be a function:

h(t) =





1 if t ≤ 0

1 + 4t − 5t2 if 0 ≤ t ≤ 1

0 if t ≥ 1,

−0.5−1 0.5 1 1.5

0.5

1

1.5

2

time t in seconds

height in metres

h(t)



Definition of Functions

Definition 2.1
Let X and Y be sets. A function from X to Y is a black box such
that, when an element x ∈ X is put in, an element y ∈ Y comes
out. If the function is called f , then we write f : X → Y . The
output for the input x is written f (x).

•

•

•

••

••

X

•
•

•

Y

•

•x

f f (x)

Question: When should two functions be said to be equal?



Example 2.2

Let f : {1, 2, 3, 4} → {0, 1, 2, 3, 4} be the function defined by

f (1) = 1, f (2) = 0, f (3) = 1, f (4) = 4.

Define g : {1, 2, 3, 4} → {0, 1, 2, 3, 4} by g(x) = (x − 2)2. Then
f = g , since f (x) = g(x) for all x ∈ {1, 2, 3, 4}.

4 •

3 •

2 •

1 •
X

• 4

• 3

• 2

• 1

• 0

Y

Definition 2.3
Let f : X → Y be a function. The set X of allowed inputs to f is
called the domain of f . The set Y of allowed outputs is called the
codomain of f . The set {f (x) : x ∈ X} of all outputs that actually
appear is called the range of f .

[Correction to top of page 13]



Injective, Surjective, Bijective

Definition 2.5
Let X and Y be sets and let f : X → Y be a function.

(i) We say that f is injective if for all x , x ′ ∈ X ,

f (x) = f (x ′) =⇒ x = x ′.

(ii) We say that f is surjective if for all y ∈ Y there exists x ∈ X
such that f (x) = y .

(iii) We say that f is bijective if f is injective and surjective.



Injective, Surjective, Bijective: Diagrams and Graphs

Example 2.6

For each of the functions f1, f2, f3, f4 drawn as a diagram below, we
will determine which combination of the properties injective,
surjective, bijective it has. (One function has none of these special
properties.)

f1

4 •
3 •

2 •
1 •
X

• 3

• 2

• 1

Y

f2

3 •

2 •

1 •
X

• 4

• 3

• 2

• 1

Y

f3

4 •
3 •

2 •
1 •
X

• 4

• 3

• 2

• 1

Y
f4

3 •

2 •

1 •
X

• 4

• 3

• 2

• 1

Y



Pre-lecture quiz (Thursday 10th October)
The remaining two functions from Example 2.6, and a further
function g : R→ {1, 2, 3} are shown below:

f3

4 •
3 •

2 •
1 •
X

• 4

• 3

• 2

• 1

Y f4

3 •

2 •

1 •
X

• 4

• 3

• 2

• 1

Y

−1 1 2 3 4

1

2

3

4

g(x)

True or False? (Remind yourself of Definition 2.5 first!)

(1) f3 is bijective

(2) f4 is injective

(3) f4 is surjective

(4) The equation g(x) = y has a solution for every y in the
codomain of g .

(5) The equation g(x) = y has at most one solution for every y
in the codomain of g .

(6) g is surjective

(7) g is injective
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−1 1 2 3 4

1

2

3

4
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(1) f3 is bijective True: f3 is injective and surjective
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(4) The equation g(x) = y has a solution for every y in the
codomain of g .

(5) The equation g(x) = y has at most one solution for every y
in the codomain of g .
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(7) g is injective
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Proving that a Function is Injective

Example 2.8

The function f : R→ R, defined by f (x) = x2 − 4x + 1 is neither
injective nor surjective. Let X = {x ∈ R : x ≥ 2}. If we define
g : X → R by g(x) = x2 − 4x + 1 then g is injective.

In the proof we started by supposing that f (x) = f (x ′) and
finished by deducing that x = x ′. This fits exactly with the
definition of injective. (You can if you prefer, use one of the
equivalent definitions seen earlier, but this way often gives the
shortest proofs.)

A bijective function is also called a bijection.

Exercise 2.9
Let X = {x ∈ R : x ≥ 2}. What subset Y of R should you choose
so that the function h : X → Y defined by h(x) = x2 − 4x + 1 is a
bijection?
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Inverse Functions

Suppose that f : X → Y is a bijection. As remarked at the top of
page 14, for each y ∈ Y there exists a unique x ∈ X such that
f (x) = y .

We define the inverse function to f to be the function
f −1 : Y → X which sends y ∈ Y to the unique x ∈ X such that
f (x) = y . In symbols

f −1(y) = x ⇐⇒ f (x) = y .

Exercise 2.10
Suppose that f : X → Y is represented by a diagram, as in
Example 2.6. How can you obtain the diagram representing the
inverse function f −1 : Y → X? [Hint: a complete answer can be
given in four words.]



Graph of a Bijective Function and its Inverse

Let R≥0 = {x ∈ R : x ≥ 0}. The graph below shows the function
f : R≥0 → R≥0 defined by f (x) = x2. The inverse function to f is
f −1(y) =

√
y .

1 2 3 4

1

2

3

4

0

f (x) = x2

f−1(y) =
√

y

(x, f (x))
= (x, x2)

(x2, f−1(x2))
= (x2, x)



Further Examples of Inverse Functions

Example 2.11

Let Y = {y ∈ R : 0 ≤ y < 2}. Let f : R≥0 → Y be the function
defined by h(x) = 2x/(1 + x). For y ∈ Y we have

2x

1 + x
= y ⇐⇒ y +xy = 2x ⇐⇒ y = x(2−y) ⇐⇒ y

2− y
= x .

Hence f (x) = y ⇐⇒ x = y/(2− y). Since y ≥ 0 and 2− y > 0,
the solution x = y/(2− y) is in the domain R≥0 of h.

Therefore f is a bijection with inverse f −1(y) = y/(2− y).

Example 2.12

Let Y = {y ∈ R : −1 ≤ y ≤ 1}. Consider sin : R→ Y . This
function is not bijective, because it is not injective. For example,
sin 0 = sin 2π = 1. To find an inverse we must first restrict the
domain.
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Composing Functions
Let f : X → Y and g : Y → Z be functions. The composition of f
and g is the function gf : X → Z , defined by

(gf )(x) = g
(
f (x)

)
.

Note that gf means ‘do f , then do g ’. One has to get used to
reading function compositions from right to left.

Example 2.13

Let f : {1, 2, 3, 4} → {1, 2, 3} be the function f1 from Example 2.6.
Let g : {1, 2, 3} → {−1, 1} be defined by g(x) = (−1)x .

f

4 •
3 •

2 •
1 •
X

• 3

• 2

• 1

Y
g

Z

• − 1

• 1

Note that f and g are both surjective. Clearly (gf )(3) = 1 and
(gf )(2) = −1. (There are two other elements also sent to −1.) So
for every z ∈ Z there exists x ∈ X such that (gf )(x) = z .
Therefore gf is also surjective.



Composing Functions

Lemma 2.14 (Examinable)

Let f : X → Y and g : Y → Z be functions.

(i) If f and g are injective then gf is injective.

(ii) If f and g are surjective then gf is surjective.

(iii) If f and g are bijective then gf is bijective.

For (ii) see Question 5(a) on Sheet 2.
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Inverse of a Composition of Functions
By (c), if f : X → Y and g : Y → Z are bijections, then
gf : X → Z is a bijection, and so it has an inverse function. To
undo the composition gf : X → Z we must first undo g : Y → Z ,
then undo f : X → Y . Hence

(gf )−1 = f −1g−1.

This result can be useful when finding inverse functions.

Example 2.15

Let

f (x) =

√
2x2

1 + x2
.

We can write f as a composition: f = f3f2f1 where f1(x) = x2,
f2(x) = 2x/(1 + x) and f3(x) =

√
x . In the lecture we will sort out

the domains and codomains of f and f1, f2, f3, and hence find the
inverse to f .



Associativity and Identity Functions

The associative property of composition states that if f : X → Y ,
g : Y → Z and h : Z →W are any functions then

(hg)f = h(gf ) : X →W .

This has a one-line proof.

We will see associativity again in §10 of the course on rings.

Suppose f : X → Y is a bijection. We have seen that f has an
inverse function f −1 : Y → X , with the defining property

f −1(y) = x ⇐⇒ f (x) = y .

What happens when we compose f and f −1?

The identity function on a set X is the function idX : X → X
defined by idX (x) = x for all x ∈ X .
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§3 Complex Numbers

Definition 3.1
A complex number is defined to be a symbol of the form a + bi
where a, b ∈ R. If z = a + bi then we say that a is the real part of
z , and b is the imaginary part of z , and write Re z = a, Im z = b.
We write C for the set of all complex numbers.

Please interpret the ‘complex’ in complex number as meaning
‘made of more than one part’, rather than ‘difficult’. The word
‘imaginary’ is also standard—please do not be put off by it.

Exercise 3.2
Calculate (1 + i)3.



Adding, Subtracting and Multiplying in C

The rules for adding, multiplying and subtracting complex numbers
follow from the property that i2 = −1. If a + bi and c + di ∈ C
are complex numbers in Cartesian form then

(a + bi) + (c + di) = (a + c) + (b + d)i

(a + bi)− (c + di) = (a− c) + (b − d)i

(a + bi)(c + di) = (ac − bd) + (ad + bc)i .

So the set C of complex numbers is closed under addition,
subtraction and multiplication. To see that the complex numbers
are also closed under division, it is useful to think about them
geometrically.
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Argand Diagram: Adding 1 + 2i
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Argand Diagram: Adding 1 + 2i
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Complex Conjugate and Modulus

We define the modulus of z , written |z |, to be
√
a2 + b2. We

define the complex conjugate of z , written z , to be a− bi .

We read |z | as ‘mod z ’ and z as ‘z bar’.

Lemma 3.4 (Examinable)

Let z ∈ C. Then

(a) |z |2 = zz .

(b) If z 6= 0 then 1/z = z/|z |2.

(c) The set C of complex numbers is closed under division.



Number Systems So Far

NZ

Q R C

1, 2, 3, . . .. . . ,−1, 0
1/2
−9/7

√
2

π
i



Example 3.5(2): Equation Solving in C

Consider the simultaneous equations |z | = 5 and z + z = 8.

−1−2−3−4−5 1 2 3 4 5
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−4i

−5i

2i

3i

4i

5i

0

C = {z ∈ C : |z| = 5}
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Example 3.5(2): Equation Solving in C

Consider the simultaneous equations |z | = 5 and z + z = 8.

−1−2−3−4−5 1 2 3 4 5
−i

i

−2i

−3i

−4i

−5i

2i

3i

4i

5i

0

C = {z ∈ C : |z| = 5}

L = {z ∈ C : z + z̄ = 8}

C ∩ L = {4 + 3i, 4− 3i}



Pre-lecture Quiz (Friday 18th October)

Which complex number below is equal to 1/(1− i)?

(A) 1 + i (B) 1
2 + i

2 (C) −1 + i (D) −12 + i
2 .

The number of solutions to the simultaneous equations

Im z = 1 and |z | = 2

is

(A) 0 (B) 1 (C) 2 (D) 3.

Please collect your work at the end of this lecture, if you
have not already done so. The model answers on Moodle to
Sheet 2 have been updated with some common errors.

(Uncollected work festers in the box outside C240, demoralizing
everyone and making the department look untidy.)



Polar Form and Arguments

Any complex number z can be written in the form

z = r(cos θ + i sin θ)

where r ∈ R≥0 and θ is an angle, measured in radians. This is
called the polar form of z . Observe that r = |z |. We say that θ is
an argument of z .

Example 3.6 (See board)

Definition 3.7
Let z ∈ C be non-zero. If z = r(cos θ + i sin θ) where −π < θ ≤ π,
then we say that θ is the principal argument of z , and write
θ = Arg(z).

Quiz: What is the domain of the function Arg?

Arg is a function with domain {z ∈ C : z 6= 0} and codomain
{θ ∈ R : −π < θ ≤ π}. Is it injective? Is it surjective?
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Definition 3.7
Let z ∈ C be non-zero. If z = r(cos θ + i sin θ) where −π < θ ≤ π,
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Principal Arguments

Example 3.8

We will find the principal arguments of the complex numbers shown
on the Argand diagram below in terms of the angles θ and φ.

2 + i

1 + 2i

1 − 2i−1 − 2i

−1 + 2i

θ φ

There is an often misapplied ‘rule’ that Arg(a + bi) = tan−1(b/a).
This only works when a > 0.



Multiplication (and Division) in Polar Form

Example 3.9

Let z = r(cos θ + i sin θ) and w = s(cosφ+ i sinφ) be complex
numbers in polar form. Using the formulae

cos(θ + φ) = cos θ cosφ− sin θ sinφ

sin(θ + φ) = cos θ sinφ+ sin θ cosφ

it follows that

zw = rs
(
cos(θ + φ) + i sin(θ + φ)

)
.

In short: to multiply numbers in polar form, multiply the moduli
and add the arguments.

Exercise 3.10
Let z and w be as in Example 3.10 and suppose that w 6= 0.
Express z/w in polar form.



De Moivre’s Theorem

If θ ∈ R and n ∈ N then

(cos θ + i sin θ)n = cos nθ + i sin nθ.

De Moivre’s Theorem can be proved using mathematical induction
and Example 3.10. We will shortly see a quicker proof, using the
exponential function.

Example 3.11

The n = 3 case of De Moivre’s Theorem implies that

cos 3θ = 4 cos3 θ − 3 cos θ

So we proved an identity about the real cosine function,
cos : R→ R using complex numbers.
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Example 3.11

The n = 3 case of De Moivre’s Theorem implies that

cos 3θ = 4 cos3 θ − 3 cos θ

So we proved an identity about the real cosine function,
cos : R→ R using complex numbers.

Il apparut que, entre deux vérités du domaine réel, le
chemin le plus facile et le plus court passe bien souvent
par le domaine complexe

Paul Painlevé (1900)



De Moivre’s Theorem
If θ ∈ R and n ∈ N then

(cos θ + i sin θ)n = cos nθ + i sin nθ.

De Moivre’s Theorem can be proved using mathematical induction
and Example 3.10. We will shortly see a quicker proof, using the
exponential function.

Example 3.11

The n = 3 case of De Moivre’s Theorem implies that

cos 3θ = 4 cos3 θ − 3 cos θ

So we proved an identity about the real cosine function,
cos : R→ R using complex numbers.

It came to appear that, between two truths of the real
domain, the easiest and shortest path quite often passes
through the complex domain.

Paul Painlevé (1900)



A Cubic Equation

Example 3.12

Let f : R→ R be defined by f (x) = x3 − 12x − 8. [changed from
+8 to −8 in lecture to make end a bit nicer.] If we substitute
x = 4 cos θ then some rearranging shows that f (x) = 0 if and only
if cos 3θ = 1

2 . By Example 3.7 we know that θ = π
9 is one solution.

There are two more, giving as the full set of roots

4 cos π9 , 4 cos 7π
9 , 4 cos 13π

9 .

Exercise: by drawing the graph for cos, and using Example 3.6,
show that cos 3θ = 1

2 ⇐⇒ 3θ = ±π/3 + 2nπ for some n ∈ Z.
Deduce that the roots of f are

4 cos π9 , 4 cos 7π
9 , 4 cos 13π

9 .

Further Exercise: sketch the graph of f and label the roots
correctly. Include the coordinates of the turning points.



Pre-lecture Quiz (Thursday 24th October)

The Argand diagram to the right shows
z1, z2, z3, z4, z5 ∈ C.

What is |z3 − z1|?

Answer: |z3 − z1| = 2
√

2. Geometrically,
|z3 − z1| is the length of the red line.

−1 1 2 3

−i

i

2i

3i

4i

0

z1 z2

z3

z4

z5

(A) (B) (C) (D)

The diagrams above are drawn with the same scale.

Which diagram shows iz1, iz2, iz3, iz4, iz5?

Which diagram shows z1, z2, z4, z4, z5?
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The Argand diagram to the right shows
z1, z2, z3, z4, z5 ∈ C.
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0 ≤ Arg(w) ≤ π/2π/2 ≤ Arg(w) ≤ π

−π < Arg(w) ≤ −π/2 −π/2 ≤ Arg(w) ≤ 0

1

3+bi

(3+bi)2

2!

(3+bi)3

3!

(3+bi)4

4!

(3+bi)5

5!

(3+bi)6

6!

b = π/3



Infinite Sum for e3+πi/3

1

z

z2

2!

z3

3!

z4

4!

z5

5!

z6

6!

b = π/3, z = 3 + bi



Infinite Sum for e3+πi/3

1

z

z2

2!

z3

3!

z4

4!

z5

5!

z6

6! 1 + z

b = π/3, z = 3 + bi



Infinite Sum for e3+πi/3

1

z

z2

2!

z3

3!

z4

4!

z5

5!

z6

6! 1 + z

1 + z +
z2

2!

b = π/3, z = 3 + bi



Infinite Sum for e3+πi/3

1

z

z2

2!

z3

3!

z4

4!

z5

5!

z6

6! 1 + z

1 + z +
z2

2!

1 + z +
z2

2!
+

z3

3!

b = π/3, z = 3 + bi



Infinite Sum for e3+πi/3

1

z

z2

2!

z3

3!

z4

4!

z5

5!

z6

6! 1 + z

1 + z +
z2

2!

1 + z +
z2

2!
+

z3

3!

1 + z +
z2

2!
+

z3

3!
+

z4

4!

b = π/3, z = 3 + bi



Infinite Sum for e3+πi/3

1

z

z2

2!

z3

3!

z4

4!

z5

5!

z6

6! 1 + z

1 + z +
z2

2!

1 + z +
z2

2!
+

z3

3!

1 + z +
z2

2!
+

z3

3!
+

z4

4!

1 + z +
z2

2!
+

z3

3!
+

z4

4!
+

z5

5!

b = π/3, z = 3 + bi



Infinite Sum for e3+πi/3

1

z

z2

2!

z3

3!

z4

4!

z5

5!

z6

6! 1 + z

1 + z +
z2

2!

1 + z +
z2

2!
+

z3

3!

1 + z +
z2

2!
+

z3

3!
+

z4

4!

1 + z +
z2

2!
+

z3

3!
+

z4

4!
+

z5

5!

and so on

b = π/3, z = 3 + bi



Infinite Sum for e3+πi/3

1

z

z2

2!

z3

3!

z4

4!

z5

5!

z6

6! 1 + z

1 + z +
z2

2!

1 + z +
z2

2!
+

z3

3!

1 + z +
z2

2!
+

z3

3!
+

z4

4!

1 + z +
z2

2!
+

z3

3!
+

z4

4!
+

z5

5!

and so on

b = π/3, z = 3 + bi



Infinite Sum for e3+πi/3

1

z

z2

2!

z3

3!

z4

4!

z5

5!

z6

6! 1 + z

1 + z +
z2

2!

1 + z +
z2

2!
+

z3

3!

1 + z +
z2

2!
+

z3

3!
+

z4

4!

1 + z +
z2

2!
+

z3

3!
+

z4

4!
+

z5

5!

and so on

b = π/3, z = 3 + bi



Infinite Sum for e3+πi/3

1

z

z2

2!

z3

3!

z4

4!

z5

5!

z6

6! 1 + z

1 + z +
z2

2!

1 + z +
z2

2!
+

z3

3!

1 + z +
z2

2!
+

z3

3!
+

z4

4!

1 + z +
z2

2!
+

z3

3!
+

z4

4!
+

z5

5!

and so on

b = π/3, z = 3 + bi



Infinite Sum for e3+πi/3

1

z

z2

2!

z3

3!

z4

4!

z5

5!

z6

6! 1 + z

1 + z +
z2

2!

1 + z +
z2

2!
+

z3

3!

1 + z +
z2

2!
+

z3

3!
+

z4

4!

1 + z +
z2

2!
+

z3

3!
+

z4

4!
+

z5

5!

and so on

b = π/3, z = 3 + bi

ez = e3+πi/3



Complex Exponential Function

Definition 3.13
Let z = a + bi ∈ C be a complex number in Cartesian form. We
define the complex exponential function exp : C→ C by

exp(z) = ea(cos b + i sin b).

It is fine to write ez for exp(z).

Exercise 3.14
Show that exp(z + w) = exp z expw for all complex numbers z
and w . [Hint: write z = a + bi , w = c + di and use Example 3.9.]

A complex number written as reiθ where r ∈ R≥0 and θ ∈ R is
said to be in exponential form. It is easy to convert between polar
and exponential form:

z = r(cos θ + i sin θ) ⇐⇒ z = reiθ.
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b = π/3, z = 3 + bi

ez = e3+πi/3 = e3(cos π
3 + i sin π

3 )



Examples of the Complex Exponential Function

Example 3.15

(1) Put z = iπ in the complex exponential function. We get
eiπ = −1, or equivalently,

eiπ + 1 = 0.

This is Euler’s Identity. It relates five fundamental
mathematical constants: 0, 1, e, π and i .

(2) Let θ ∈ R. Put z = nθi in the complex exponential funtion to
get

cos nθ + i sin nθ = enθi = (eθi )n = (cos θ + i sin θ)n.

This proves De Moivre’s Theorem.
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Using Exponential Form to Find Roots
The exponential form has the same lack of uniqueness as the polar
form:

reiθ = seiφ ⇐⇒ r = s and φ = θ + 2nπ for some n ∈ Z.

Example 3.16

See board for solution to equation z3 = 8i .



Using Exponential Form to Find Roots
The exponential form has the same lack of uniqueness as the polar
form:

reiθ = seiφ ⇐⇒ r = s and φ = θ + 2nπ for some n ∈ Z.

Example 3.16

See board for solution to equation z3 = 8i .

−2 0 2

2e3πi/2
=−2i

2i

2eπi/62e5πi/6



Using Exponential Form to Find Roots
The exponential form has the same lack of uniqueness as the polar
form:

reiθ = seiφ ⇐⇒ r = s and φ = θ + 2nπ for some n ∈ Z.

Example 3.16

See board for solution to equation z3 = 8i .

0 ≤ Arg(w) ≤ π/2π/2 ≤ Arg(w) ≤ π

−π < Arg(w) ≤ −π/2 −π/2 ≤ Arg(w) ≤ 0

−2 0 2

2e3πi/2
=−2i

2i

2eπi/62e5πi/6



Using Exponential Form to Find Roots
The exponential form has the same lack of uniqueness as the polar
form:

reiθ = seiφ ⇐⇒ r = s and φ = θ + 2nπ for some n ∈ Z.

Example 3.16

See board for solution to equation z3 = 8i .

0 ≤ Arg(w) ≤ π/2π/2 ≤ Arg(w) ≤ π

−π < Arg(w) ≤ −π/2 −π/2 ≤ Arg(w) ≤ 0

−2 0 2

2e3πi/2
=−2i

2i

2eπi/62e5πi/6
2e2πi/3

2e−2πi/3



Log of a Complex Number

Let z = reiθ be a complex number in exponential form. If z = 0
then there is no w ∈ C such that ew = z , since |ea+bi | = ea and
ea > 0 for all a ∈ R. If z 6= 0 then

ew = z ⇐⇒ w = ln r + (θ + 2πn)i for some n ∈ Z.

Any such number w is called a logarithm of z .

Example 3.17

In exponential form 2i = 2eiπ/2. So the set of logarithms of 2i is

{
ln 2 + (

π

2
+ 2nπ)i for some n ∈ Z

}
.

Exercise 3.18
Consider exp : C→ C. What are the domain, codomain and range
of exp? Is exp surjective? Is exp injective?
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Quadratic Equations

You are probably familiar with how to solve quadratic equations
over the real numbers. Essentially the same method works over C.
Exponential form might be useful for finding square roots.

Lemma 3.19 (Examinable)

Let a, b, c ∈ C and suppose that a 6= 0. The solutions to the
quadratic equation az2 + bz + c = 0 are

z =
−b ± D

2a

where D ∈ C satisfies D2 = b2 − 4ac.

Bear in mind that
√
b2 − 4ac is ambiguous when b2 − 4ac 6∈ R≥0.

See Bonus Question A on Sheet 3 for one problem this causes.
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Example 3.20
Observe that z3 − 1 = (z − 1)(z2 + z + 1). So if z is a third root
of unity other than 1 then z is a solution of z2 + z + 1 = 0. Using
Lemma 3.19 we get

z = −1

2
±
√

3

2
i .

Since the third roots of unity are 1, e2πi/3 and e4πi/3, this shows

that cos 2π
3 = −1

2 and sin 2π
3 =

√
3
2 .

−1 0 1−1/2

−i

i
e2πi/3

e−2πi/3



Fundamental Theorem of Algebra

Theorem 3.21 (Fundamental Theorem of Algebra)

Let n ∈ N and let a0, a1, . . . , an ∈ C with an 6= 0. Then the
equation

anz
n + an−1zn−1 + · · ·+ a1z + a0 = 0

has a solution in C.



An Easyish Quartic

Exercise 3.22
Find all solutions to the quartic equation
z4 + 2z3 + 3z2 + 4z + 2 = 0. (Hint: one solution is in Z.)

Solution. Since

(−1)4 + 2(−1)3 + 3(−1)2 + 4(−1) + 2 = 0,

−1 is a root. So z − (−1) = z + 1 is a factor and

z4 + 2z3 + 3z2 + 4z + 2 = (z + 1)(z3 + z2 + 2z + 2).

Now −1 is again a root of the cubic z3 + z2 + 2z + 2, and we get

z3 + z2 + 2z + 2 = (z + 1)(z2 + 2).

Hence
z4 + 2z3 + 3z2 + 4z + 2 = (z + 1)2(z2 + 2)

and the roots are −1 (twice), i
√

2 and −i
√

2.
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Part B: Natural Numbers and Induction

§4 Induction

A proposition is a self-contained statement which is either true or
false. For example the statement

There is a real number x such that x2 + 1 = 0

is a false proposition. More briefly, we can write

P : The integers are closed under addition.

This defines P to be the true proposition that the integers are
closed under addition. Some statements are too vague or
subjective to be considered propositions. For instance:

Q : Houses in Englefield Green are too expensive.



More propositions
We often want to consider statements that depend on the value of
a variable. For example, for each x ∈ R, define

P(x): x2 − 4x + 1 ≥ 2.

This defines an infinite collection of propositions, one proposition
for each real number. Some of these propositions are true, and
others are false. For example P(6) and P(2 +

√
5) are true, and

P(1) is false.

Example 4.1

For n ∈ N define
Q(n): n2 + n + 41 is a prime number

So we have defined propositions
Q(1): 12 + 1 + 41 is a prime number
Q(2): 22 + 2 + 41 is a prime number
Q(3): 32 + 3 + 41 is a prime number

and so on. In this case Q(1),Q(2), . . . ,Q(39) are all true
propositions. But Q(40) and Q(41) are false.



More Propositions

Example 4.2

For n ∈ N define

P(n) :
The sum of the odd numbers from 1 up to and
including 2n − 1 is equal to n2.

So we have defined propositions

P(1): 1 = 12

P(2): 1 + 3 = 22

P(3): 1 + 3 + 5 = 32

and so on. If you look at a few more cases you will probably be
convinced that P(n) is true for every n ∈ N. But Example 4.1
shows it can be dangerous to make conjectures on limited evidence!



The Principle of Mathematical Induction

Suppose that P(n) is a proposition for each n ∈ N. The Principle
of Mathematical Induction states that if

I P(1) is true

I P(n) =⇒ P(n + 1) for each n ∈ N,

then P(n) is true for all n ∈ N.

Example 4.3

For all n ∈ N we have

1 + 2 + · · ·+ n =
n(n + 1)

2
.



Induction: General Strategy and Example 4.4

(1) Formulate the statement you want to prove as a
proposition P(n), depending on a natural
number n.

(2) Prove P(1). This is called the base case.

(3) Prove that P(n) =⇒ P(n + 1) for each n ∈ N. In
other words: assume P(n) and use it to prove
P(n + 1). This is called the inductive step.

(4) Announce that you have finished!

For the inductive step: imagine you are given a card, that says:

‘The bearer of this card is faithfully promised
that P(n) is true’

You can play this card at any time in your proof of P(n + 1). You
can even play it more than once, if that seems helpful.

Remember, P(n) is a specific proposition concerning the number
n ∈ N. At A-level you might have written n = k to emphasise this.
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Changing the Base Case

Sometimes we need to take the base case to be P(b) for some
b > 1.

Example 4.5

If n ∈ N and n ≥ 4 then 2n ≥ 4n.



Towers of Hanoi

Problem 4.6 (Towers of Hanoi)

You are given a board with three pegs. On peg A there are n discs
of strictly increasing radius. The starting position for a four disc
game is shown below.

A B C

A move consists of taking a single disc at the top of the pile on
one peg, and moving it to another peg. At no point may a larger
disc be placed on top of a smaller disc. Your aim is to transfer
all the discs from peg A to one of the other pegs. How many
moves are required?

Exercise 4.7
Prove by induction on n that no solution can use fewer moves than
the solution found in lectures.



Towers of Hanoi: A Solution for Three Discs

start A B C



Towers of Hanoi: A Solution for Three Discs

start A B C after
move 1

A B C



Towers of Hanoi: A Solution for Three Discs

start A B C after
move 1

A B C

after
move 2

A B C



Towers of Hanoi: A Solution for Three Discs

start A B C after
move 1

A B C

after
move 2

A B C after
move 3

A B C



Towers of Hanoi: A Solution for Three Discs

start A B C after
move 1

A B C

after
move 2

A B C after
move 3

A B C

after
move 4

A B C



Towers of Hanoi: A Solution for Three Discs

start A B C after
move 1

A B C

after
move 2

A B C after
move 3

A B C

after
move 4

A B C after
move 5

A B C



Towers of Hanoi: A Solution for Three Discs

start A B C after
move 1

A B C

after
move 2

A B C after
move 3

A B C

after
move 4

A B C after
move 5

A B C

after
move 6

A B C



Towers of Hanoi: A Solution for Three Discs

start A B C after
move 1

A B C

after
move 2

A B C after
move 3

A B C

after
move 4

A B C after
move 5

A B C

after
move 6

A B C after
move 7

A B C



Towers of Hanoi: A Solution for Three Discs

start A B C

after
move 3

A B C

after
move 4

A B C

after
move 7
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Sigma Notation

Let m, n ∈ Z with m ≤ n. If am, am+1, . . . , an are complex
numbers then we write their sum am + am+1 + · · ·+ an as

n∑

k=m

ak .

This is read as ‘the sum of ak for k from m to n’, or ‘sigma ak for
k from m to n’. We say that k is the summation variable, m is the
lower limit and n is the upper limit.

Exercise 4.8

(i) Express the sums 1 + 3 + · · ·+ (2n − 1) and
1 + 2 + 22 + · · ·+ 2n using Σ notation.

(ii) Calculate
∑3

m=−2m
2.
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More Examples of Sigma Notation

Example 4.9

Let z be a complex number. Then

(i)
∑n

k=1 z =

(ii)
∑n

k=1 k =

(iii)
∑n

k=1 n =

Quiz: (a)
∑2

k=0 k
22k−1 =

(A) 7 (B) 8 (C) 9 (D) something else

(b) If n ∈ N then
∑n

j=1 2j −∑n
k=2 2k−1 =

(A) 1 (B) 2 (C) 2n (D) 2n−1
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Rules for Manipulating Sigma Notation

(1) The summation variable can be renamed:

n∑

k=0

2k =
n∑

j=0

2j .

A similar renaming is possible for sets: {x ∈ R : x2 ≥ 2} is
exactly the same set as {y ∈ R : y2 ≥ 2}.

(2) In a product, expressions not involving the summation variable
can be taken outside the sum:

n∑

j=0

5(j + 1)2 = 5
n∑

j=0

(j + 1)2

and
n∑

j=0

5m(j + m)2 = 5m
n∑

j=0

(j + m)2.

(3) Sums can be split up and terms taken out.

(4) The limits can be shifted.



Example 4.10

Define

P(n) :
n∑

k=1

k2 = 1
6n(n + 1)(2n + 1).

Now consider
∑n+1

k=1 k
2. Split off the final summand using rule (3),

and then use the inductive assumption P(n) to get

n+1∑

k=1

k2 =
n∑

k=1

k2 + (n + 1)2 = 1
6n(n + 1)(2n + 1) + (n + 1)2.

Routine algebraic manipulations give

n+1∑

k=1

k2 = . . . = 1
6(n + 1)(n + 2)(2n + 3)

Hence P(n + 1) is true. Therefore P(n) =⇒ P(n + 1). By
induction P(n) is true for all n ∈ N.
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Correction to Example 4.11
In the lecture, I took the sum over the dark rectangles from k = 1
up to n. But the rectangle for k starts at k/n, and so the last
rectangle is the one from x = (n − 1)/n to x = n/n. So the sum
should have gone from k = 1 up to n − 1. Replace

n∑

k=1

(k + 1

n
− k

n

)(k
n

)2
with

n−1∑

k=1

(k + 1

n
− k

n

)(k
n

)2

and similarly replace

1

n3

n∑

k=1

k2 with
1

n3

n−1∑

k=1

k2

whenever they appear. After using Example 4.10 on
∑n−1

k=1 k
2 the

correct result is

(n − 1)n(2n − 1)

6n3
≤
∫ 1

0
x2 dx ≤ (n − 1)n(2n − 1)

6n3
+

1

n
.



Final Step in Example 4.11

After the lecture a few people asked about cancelling the ns at the
end. Here it is a version with an extra step (and the correct
formulae).

(n − 1)n(2n − 1)

6n3
≤
∫ 1

0
x2 dx ≤ (n − 1)n(2n − 1)

6n3
+

1

n

=⇒ (1− 1/n)1(2− 1/n)

6
≤
∫ 1

0
x2 dx ≤ (1− 1/n)1(2− 1/n)

6
+

1

n

The n3 was used to divide each of the three terms in the
numerator by n.

Dividing n by n gives n/n = 1, which can then be removed from
the product.

The printed notes are correct.



§5 Prime Numbers

In this section we will look at prime numbers and prime
factorizations.

Division with remainder should be familiar from school. It is stated
formally in the next theorem.

Theorem 5.1 (Examinable)

Let n ∈ Z and let m ∈ N. There exist unique integers q and r such
that n = qm + r and 0 ≤ r < m.

The proof shows that q = bn/mc where bxc is the floor function,
seen in Question 3 of Sheet 2. So the existence part of the proof
gives an effective way to find q.



Integer Division

We say that q is the quotient, and r is the remainder when n is
divided by m. If r = 0 then we say that m divides n, or that n is a
multiple of m.

Example 5.2

(i) Let n = 44 and m = 6. Then 44/6 = 72
6 and so, when 44 is

divided by 6, the quotient is 7 and the remainder is 2. Note
that for this calculation it is better to leave the fractional part
as 2

6 than to simplify it to 1
3 .

(ii) Let n = 63 and m = 7. Then 63/7 = 9 so 7 divides 63. The
quotient is 9 and the remainder is 0.

(iii) Since −13 = −3× 6 + 5, when −13 is divided by 6 the
quotient is −3 and the remainder is 5.



Integer Division Exercise

Exercise 5.3
Find the quotient q and the remainder r when n is divided by m in
each of these cases:

(i) n = 20, m = 7, (ii) n = 21, m = 7, (iii) n = 22, m = 7

(iv) n = 7, m = 22, (v) m = −10, m = 7, (vi) n = 0, m = 1.

Answers:
(i) q = 2, r = 6, (ii) q = 3, r = 0, (ii) q = 3, r = 1

(iv) q = 0, r = 0, (v) q = −2, r = 4, (vi) q = 0, r = 0.
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(iv) q = 0, r = 0, (v) q = −2, r = 4,

(vi) q = 0, r = 0.
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Factorization Into Primes

Definition 5.4
Let n ∈ N and suppose that n > 1.

(i) We say that n is prime if the only natural numbers that divide
n are 1 and n.

(ii) We say that n is composite if it is not prime.

The first few prime numbers are

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, . . . .

By Definition 5.4, the number 1 is neither prime nor composite.



Prime Factorization Example

Example 5.5

Take n = 1998. We might spot that n = 2× 999 and that
999 = 9× 111. Then 9 = 3× 3, and 111 = 3× 37, so

1998 = 2× 3× 3× 3× 37 = 2× 33 × 37.

The tree below records these steps. (For some reason
mathematical trees usually grow downwards.)

1998

2 999

9

3 3

111

3 37



Pre-lecture Quiz (Friday 8 October)

True or False?

(a) 123 is divisible by 3

(b) 1234 is a multiple of 3

(c) 123456789123 is a multiple of 3.
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Infinitely Many Primes
The next theorem, due to Euclid, needs only the existence of prime
factorizations, proved above.

Theorem 5.6 (Examinable)

There are infinitely many prime numbers.

How much should one trust a proof? Euclid’s proof is a
mathematical gem that has been understood and enjoyed by
mathematicians since 300 BCE. Can any reasonable person doubt
that there are infinitely many primes?

Exercise 5.7
The first five prime numbers are p1 = 2, p2 = 3, p3 = 5, p4 = 7,
p5 = 11, p6 = 13. Show that p1 + 1, p1p2 + 1, p1p2p3 + 1,
p1p2p3p4 + 1 and p1p2p3p4p5 + 1 are all prime, but

p1p2p3p4p5p6 + 1 = 2× 3× 5× 7× 11× 13 + 1 = 59× 509.

So the number N in Euclid’s proof is not always prime.
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Unique factorization

Let N0 be the set {0, 1, 2, 3, . . .} of the natural numbers together
with 0.

Theorem 5.8 (Fundamental Theorem of Arithmetic)

Let n ∈ N. Let p1, p2, p3, . . . be the primes in increasing order.
There exists unique ei ∈ N0 such that

n = pe11 pe22 pe33 . . . .

Writing out prime factorizations in the form in this theorem is a bit
long-winded. For example

31460 = 22 × 30 × 51 × 70 × 112 × 131 × 170 × 190 . . . ,

where all the exponents of the primes 17 or more are zero. But
thinking about prime factorizations in this way is useful in proofs.
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Administration

I Please take the first installment of the Part C handout.

I Please take Problem Sheet 7.

I Please put answer to Problem Sheet 6 in the box as it goes
around.



Irrational Numbers (Proved Using Unique Factorization)

Example 5.9

A manufacturer of cheap calculators claims to you that√
3 = 2148105

1240209 . Calculate the prime factorizations of 2148105 and
1240209 (in principle you could do this by repeated division, even
using one of his cheapest calculators). Hence show that he is
wrong.

On Friday we found the prime factorizations

2148105 = 3× 5× 71× 2017

1240209 = 32 × 41× 3361.

Now
√

3 =
2148105

1240209
=⇒

√
3× 1240209 = 2148105

=⇒ 3× 12402092 = 21481052

=⇒ 3× 34 × 412 × 33612 = 32 × 52 × 712 × 20172.

This contradicts unique factorization.



Binary and Other Bases

Example 5.11

To write 145 in base 3:

Divide 145 by 3: 145 = 48× 3 + 1
Divide the quotient 48 by 3: 48 = 16× 3 + 0
Divide the quotient 16 by 3: 16 = 5× 3 + 1
Divide the quotient 5 by 3: 5 = 1× 3 + 2
Divide the quotient 1 by 3: 1 = 0× 3 + 1

We now stop, because the last quotient was 0. Reading the list of
remainders from bottom to top we get

145 = 1× 34 + 2× 33 + 1× 32 + 0× 31 + 1× 30.

Hence 145 is 12101 in base 3. We write this as 145 = 121013.

Our usual way of writing numbers uses base 10. If no base is
specified, as is usually the case, then base 10 is intended.



Writing a Number in Base b

The example above should suggest a general algorithm.

Algorithm 5.12

Let n ∈ N and let b ∈ N. To write n in base b, divide n by b, then
divide the quotient by b, and so on, until the quotient is 0. If
r0, r1, r2, . . . , rk is the sequence of remainders then

n = rkb
k + rk−1b

k−1 + · · ·+ r1b + r0

and n = (rk rk−1 . . . r1r0)b.

In Example 5.11, the base was 3 and the sequence of remainders
was r0 = 1, r1 = 0, r2 = 1, r3 = 2 and r4 = 1.

If time permits we will prove that the algorithm is correct by
induction on k , taking as the base case k = 0.



Binary
Base 2 is known as binary. Binary is particularly important because
computers store and process data as sequences of the binary digits,
or bits, 0 and 1.

Exercise 5.13
Show that 21 = 101012 and write 63, 64 and 65 in binary.

Exercise 5.14
Let n = rk rk−1 . . . r1r0 be a number written in binary. Describe, in
terms of operations on the string of bits rk rk−1 . . . r1r0, how to

(i) Multiply n by 2,

(ii) Add 1 to n,

(iii) Subtract 1 from n,

(iv) Find the quotient and remainder when n is divided by 2.

[Hint: for base 10, you probably learned how to do these at school.
The Mathematica command BaseForm[n,2] will write n ∈ N0

in binary.]



Binary and Computers

For a nice introduction to programming at the level of bits, see
pleasingfungus.com/Manufactoria/.

01001001 01110100 00100000 01101001 01110011 00100000 01100001 00100000
01110100 01110010 01110101 01110100 01101000 00100000 01110101 01101110
01101001 01110110 01100101 01110010 01110011 01100001 01101100 01101100
01111001 00100000 01100001 01100011 01101011 01101110 01101111 01110111
01101100 01100101 01100100 01100111 01100101 01100100 00101100 00100000
01110100 01101000 01100001 01110100 00100000 01100001 00100000 01110011
01101001 01101110 01100111 01101100 01100101 00100000 01101101 01100001
01101110 00100000 01101001 01101110 00100000 01110000 01101111 01110011
01110011 01100101 01110011 01110011 01101001 01101111 01101110 00001010
01101111 01100110 00100000 01100001 00100000 01100111 01101111 01101111
01100100 00100000 01100110 01101111 01110010 01110100 01110101 01101110
01100101 00101100 00100000 01101101 01110101 01110011 01110100 00100000
01100010 01100101 00100000 01101001 01101110 00100000 01110111 01100001
01101110 01110100 00100000 01101111 01100110 00100000 01100001 00100000
01110111 01101001 01100110 01100101 00101110 00001010

It is a truth universally acknowledged, that a single man
in possession of a good fortune, must be in want of a
wife.

Jane Austen (1813)
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Part C: Logic and sets

§6 Logic

In pairs discuss the meaning of the following sentences. Each has
two interpretations that are logically reasonable.

(a) The picture of the woman in the museum.
(b) The lady hit the man with an umbrella.
(c) Nurses help dog bite victim.
(d) Did you see the girl with the telescope?
(e) Walk to Windsor or swim the Channel and climb the

Matterhorn.
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The ambiguities in everyday language are often resolved, either
from the context, or because we are conditioned to expect one
meaning.

In mathematics we instead try to avoid ambiguity by careful use of
mathematical language and symbols. Mathematical language has
some usages that may seem strange at first.



‘And’, ‘or’ and ‘not’

Another word that is used in mathematics in a way that may seem
non-standard is ‘or’. Let P and Q be propositions. (Remember,
this means P and Q can be any propositions!)

(i) P or Q, written P ∨Q, means at least one of P and Q is true.

(ii) P and Q, written P ∧ Q, means P and Q are both true.

(iii) not P, written ¬P, means that P is false.

There is a correspondence between the logical operations ∧, ∨ and
¬ and the set operations ∩, ∪ and set complement.



Example 6.1

Consider the following propositions, depending on a natural
number n.

P(n) : n is even

Q(n) : n is a multiple of 3

Will discuss

(a) ¬P(n) ∧ Q(n), (b) P(n) ∧ Q(n), (c) ¬P(n).

Exercise 6.2
Let R(n) =

(
P(n) ∨ Q(n)

)
∧ ¬

(
P(n) ∧ Q(n)

)
where P(n) and

Q(n) are as in Example 6.1.

(a) State R(n) in words.

(b) Draw a Venn diagram representing the sets
I {n ∈ N : P(n)} I {n ∈ N : Q(n)}
I {n ∈ N : R(n)} I {n ∈ N : ¬P(n) ∧ Q(n)}.



Truth Tables
A concise way to specify a logical operation such as ∨, ∧ or ¬ is by
a truth table, such as the one below for ∨.

P Q P ∨ Q

T T T
T F T
F T T
F F F

Truth tables can be used to prove logical identities. The next
result is the analogue of Claim 1.10 for propositions.

Claim 6.3 (De Morgan’s Laws for propositions)

Let P and Q be propositions. Then the following are true:

(i) ¬(P ∨ Q) ⇐⇒ ¬P ∧ ¬Q,

(ii) ¬(P ∧ Q) ⇐⇒ ¬P ∨ ¬Q.



Implication, Logical equivalence and Tautologies

We have already used =⇒ ‘implies’ and ⇐⇒ ‘if and only if’
many times. Let P and Q be propositions. Stated formally:

I P =⇒ Q means that if P is true then Q is true.

I P ⇐⇒ Q means that P =⇒ Q and Q =⇒ P.

If P ⇐⇒ Q is true then we say that P and Q are logically
equivalent. For example, by Claim 6.3(i), the propositions
¬(P ∨ Q) and ¬P ∧ ¬Q are logically equivalent.

If a proposition is always true, then it is said to be a tautology. For
instance

(P ⇐⇒ Q) ⇐⇒
(
(P =⇒ Q) ∧ (Q =⇒ P)

)

is a tautology, and so is P ⇐⇒ ¬(¬P). See Question 3 on
Sheet 7 for some more examples.



Truth Table for Implication

By definition, P =⇒ Q means ‘if P is true then Q is true’. If P is
false then this statement makes no claim about Q. Therefore if P
is false then P =⇒ Q is true.

This may seem surprising to you. But it is consistent with how we
use implication. Think of P =⇒ Q as a promise: if P is true,
then Q is true. If P is false, then it does not matter whether Q is
true or not: the promise is still kept.

P Q P =⇒ Q

T T T
T F F
F T T
F F T

Notice that there is only one false in the column for P =⇒ Q.

P =⇒ Q is false if and only if P is true and Q is false
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Example 6.4

Logically P =⇒ Q says nothing about Q =⇒ P. For example,
consider these two propositions concerning a real number x .

P(x) : x ≥ 2 +
√

5

Q(x) : x2 − 4x + 1 ≥ 2

Then P(x) =⇒ Q(x) for every x ∈ R. But Q(−10) is true and
P(−10) is false, so Q(−10) 6=⇒ P(−10). Correspondingly, as
seen in Example 1.8,

{x ∈ R : P(x)} ⊆ {x ∈ R : Q(x)},

and −10 is in the right-hand set, but not in the left-hand set.



Final Thoughts on Truth Table for Implication

P Q P =⇒ Q

T T T
T F F
F T T
F F T

(a) From discussion after the lecture, the following seems to be
persuasive (and mathematically correct):

P =⇒ Q is a promise: if P is true, then Q is true. This
promise is only broken if P is true and Q is false. So if we
have to assign a truth value to P =⇒ Q then we must
always assign true except when P is true and Q is false.

(b) The consequence that any true proposition implies any other
true proposition is maybe a little bit alarming. It is more
general than the way you are encouraged to use =⇒ in
arguments: write P =⇒ Q if you’ve shown that P is true
and there is some simple reason why Q follows.



Quiz on Implication

Exercise 6.5
Which of the following propositions are true for all x ∈ R?

(a) P(x): x ≥ 4 =⇒ x ≥ 3,

(b) Q(x): x ≥ 3 =⇒ x ≥ 4,

(c) R(x): x2 − 2x − 3 = 0 =⇒ x = −1, x = 3 or x = 37,

(d) S(x): x ≥ 0 and x2 − 2x − 3 = 0 =⇒ x = 3,

Which of the following propositions are true for all x , y ∈ R?

(e) T (x , y): x2 = y2 =⇒ x = y ,

(f) U(x , y): x3 = y3 =⇒ x = y .

When can =⇒ be replaced with ⇐⇒ ?

(g) In court, the prosecutor says

‘If the defendant is guilty then he had an acommplice’.

The defendant states ‘That’s false’. What can you conclude?
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(a) P(x): x ≥ 4 =⇒ x ≥ 3, True

(b) Q(x): x ≥ 3 =⇒ x ≥ 4, False

(c) R(x): x2 − 2x − 3 = 0 =⇒ x = −1, x = 3 or x = 37, True

(d) S(x): x ≥ 0 and x2 − 2x − 3 = 0 =⇒ x = 3, True

Which of the following propositions are true for all x , y ∈ R?

(e) T (x , y): x2 = y2 =⇒ x = y , False

(f) U(x , y): x3 = y3 =⇒ x = y . True

When can =⇒ be replaced with ⇐⇒ ?

(g) In court, the prosecutor says

‘If the defendant is guilty then he had an acommplice’.

The defendant states ‘That’s false’. What can you conclude?
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When can =⇒ be replaced with ⇐⇒ ?

(g) In court, the prosecutor says

‘If the defendant is guilty then he had an acommplice’.

The defendant states ‘That’s false’. What can you conclude?



Proof by Contrapositive

Claim 6.6
Let P and Q be propositions. Then P =⇒ Q and ¬Q =⇒ ¬P
are logically equivalent.

P Q P =⇒ Q ¬Q ¬P ¬Q =⇒ ¬P
T T T F F T
T F F T F F
F T T F T T
F F T T T T

Switching to the contrapositive can be useful first step in a proof,
particularly when statements appear in negated form.

Claim 6.7
Let a ∈ Q and let x ∈ R. If x 6∈ Q then x + a 6∈ Q.
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Quiz

(1) Cards. You are shown a number of cards. Each card has a
letter printed on one side, and a number printed on the other.
Four cards are put on a table. You can see:

(A) o (B) t (C) 5 (D) 6

Which cards would you turn over to test the conjecture: ‘If a card
has a vowel on one side then it has a prime on the other’? (Turn
over all the cards that might disprove the conjecture.)

(2) Alcohol. In the far-off land of Erewhon, only people over the
age of 18 are allowed to drink alcohol in public. If your job is to
enforce this law, who of the following would you investigate?

(A) A person drinking a glass of wine

(B) A person drinking coke

(C) Someone clearly over 50 with an unidentifable drink

(D) Someone who looks about 16 with an unidentifiable drink

(Investigate all the people who might be committing an offence.)
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Quiz (Wason Selection Task)

(1) Cards. You are shown a number of cards. Each card has a
letter printed on one side, and a number printed on the other.
Four cards are put on a table. You can see:

(A) o (B) t (C) 5 (D) 6

Which cards would you turn over to test the conjecture: ‘If a card
has a vowel on one side then it has a prime on the other’? (Turn
over all the cards that might disprove the conjecture.)

(2) Alcohol. In the far-off land of Erewhon, only people over the
age of 18 are allowed to drink alcohol in public. If your job is to
enforce this law, who of the following would you investigate?

(A) A person drinking a glass of wine

(B) A person drinking coke

(C) Someone clearly over 50 with an unidentifable drink

(D) Someone who looks about 16 with an unidentifiable drink

(Investigate all the people who might be committing an offence.)



Using Implication to Clarify Proofs
It is often tempting to start with the statement we are trying to
prove, and manipulate it until it becomes obviously true. But this
is only valid if every step is reversible.

Exercise 6.9
Criticize and improve the following proof that 2n ≥ 6n for all n
such that n ≥ 5.

P(n) = 2n ≥ 6n where n ≥ 5.

P(5) = 25 ≥ 6× 5. True.

P(n + 1) where n ∈ N, n ≥ 5.

2n+1 ≥ 6(n + 1)

2n ≥ 3n + 3

6n ≥ 3n + 3

3n ≥ 3

Hence by the Principle of Mathematical Induction, P(n)
is true for all n ∈ N when n ≥ 5.
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Question 6 on Sheet 6

Define a function d : N→ N so that d(n) is the number of natural
numbers m such that n is divisible by m. For example, 12 is
divisible by 1, 2, 3, 4, 6 and 12, so d(12) = 6.

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

d(n) 1 2 2 3 2 4 2 4 3 4 2 6 2 4 4 5

(d) Describe, in terms of their prime factorizations, the natural
numbers n such that (i) d(n) = 3 and (ii) d(n) = 4.



Proving that Two Sets are Equal

Question 2(c) of Sheet 7 shows that (P ∨ Q) ∧ R and
(P ∧ R) ∨ (Q ∧ R) are logically equivalent. The corresponding set
theory identity is (i) below.

Claim 6.10
Let X , Y and Z be sets. Then

(i) (X ∪ Y ) ∩ Z = (X ∩ Z ) ∪ (Y ∩ Z ),

(ii) (X ∩ Y ) ∪ Z = (X ∪ Z ) ∩ (Y ∪ Z ).

The proof will use the following principle: if A and B are sets then

A = B ⇐⇒ A ⊆ B and B ⊆ A.

This if often a good way to show that two sets are equal.



‘For all’ and ‘exists’
Let P(x) be a propositions depending on an element x of a set X .

• If P(x) is true for all x ∈ X , then we write (∀x ∈ X )P(x).
• If there exists an element x ∈ X such that P(x) is true, then

we write (∃x ∈ X )P(x).

The negation of

• (∀x ∈ X )P(x) is (∃x ∈ X )¬P(x).
• (∃x ∈ X )P(x) is (∀x ∈ X )¬P(x).

Exercise 6.11
Sometimes the set X in ∀x ∈ X is indicated by inequalities.

(∀ε > 0)Q(ε) means that Q(ε) is true for all ε in the set of
positive real numbers,

(∀n ≥ N)S(n) means that S(n) is true for all n ∈ N such that
n ≥ N.

Let a1, a2, a3, . . . be real numbers. Write down the negation of

(∃` ∈ R)(∀ε > 0)(∃N ∈ N)(∀n ≥ N) |an − `| < ε.
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Definitions

Definitions are a frequent source of confusion. Here is the
definition of prime from Definition 5.4.

Let n ∈ N and suppose that n > 1. We say that n is
prime if the only natural numbers that divide n are 1
and n.

By convention, when ‘if’ is written in a definition, it means ‘if and
only if’.

Exercise 6.12
In examinations you may be asked to give some definitions. Here is
a typical question and a sadly not atypical answer.

‘What does it mean to say that f : X → Y is injective’?

Answer: f (x) 6= f (x ′). So f is injective if there aren’t
two arrows in the same dot, like f (x) = x + 1.

Criticize this answer.



Extras: Exercise 6.13. Assume P , Q, R .
P: If it is raining then the sky is cloudy.

RAIN =⇒ CLOUD

Q: If it rains in the morning then Prof. X carries his umbrella all day.

MORNING RAIN =⇒ UMBRELLA

R: People who carry umbrellas never get soaked.

UMBRELLA =⇒ NOT SOAKED

Which of the following statements can be deduced from P, Q and R?
(Next slide has all the answers.)

A: A cloudy sky is a necessary condition for rain.

B: A cloudy sky is a sufficient condition for rain.

C : It is raining only if the sky is cloudy.

D: Rain in the morning is a necessary condition for Prof. X to carry his
umbrella.

E : Rain in the morning is a sufficient condition for Prof. X to carry his
umbrella.

F : Rain falling implies that the sky is cloudy.

G : The sky is cloudy implies that rain is falling.

H: If Prof. X is soaked then it did not rain this morning.
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Extras: Exercise 6.13. Assume P , Q, R .
P: If it is raining then the sky is cloudy.

RAIN =⇒ CLOUD

Q: If it rains in the morning then Prof. X carries his umbrella all day.
MORNING RAIN =⇒ UMBRELLA

R: People who carry umbrellas never get soaked.
UMBRELLA =⇒ NOT SOAKED

Which of the following statements can be deduced from P, Q and R?
(Next slide has all the answers.)

A: A cloudy sky is a necessary condition for rain. True

B: A cloudy sky is a sufficient condition for rain. False

C : It is raining only if the sky is cloudy. True

D: Rain in the morning is a necessary condition for Prof. X to carry his
umbrella. False

E : Rain in the morning is a sufficient condition for Prof. X to carry his
umbrella. True

F : Rain falling implies that the sky is cloudy. True

G : The sky is cloudy implies that rain is falling. False

H: If Prof. X is soaked then it did not rain this morning. True



§7 Sets and Counting

Definition 7.1
Let X be a set. We say that X is finite if it has finitely many
elements, and infinite otherwise. The size of a finite set X is its
number of elements. We denote the size of X by |X |,
Note that |X | is read as ‘mod X ’.

Reminder of elements of a set and subsets of a set.
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Elements, Subsets and Sizes

Exercise 7.2
State the truth value (true or false) of each of the propositions
below.

(a) 1 is an element of N
(b) {1} is an element of N
(c) | x ∈ R : x2 = −1}| = 0

(d) |{z ∈ C : z3 = 1}| = 3

(e)
∣∣{N,Q, {0, 1}

}∣∣ = 3

(f) The set of natural numbers is infinite

(g) The empty set is a subset of every set

(h) The empty set is an element of every set
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Elements, Subsets and Sizes

Exercise 7.2
State the truth value (true or false) of each of the propositions
below.

(a) 1 is an element of N True

(b) {1} is an element of N False

(c) | x ∈ R : x2 = −1}| = 0 True

(d) |{z ∈ C : z3 = 1}| = 3 True
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}∣∣ = 3 True

(f) The set of natural numbers is infinite True
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(h) The empty set is an element of every set False



Principle of Inclusion and Exclusion

Let X and Y be finite sets. In the sum |X |+ |Y | we count each
element of X once, and each element of Y once. So the elements
of X ∩ Y are counted twice, once as elements of X , and once as
elements of Y . If we subtract |X ∩ Y | to correct for this
overcounting, we get

|X ∪ Y | = |X |+ |Y | − |X ∩ Y |.

For example, if z ∈ X ∩ Y then z is counted in |X |, |Y | and in
|X ∩ Y |, for a total contribution of 1 + 1− 1 = 1.

If X and Y are contained in a universe set U then, since

|(X ∪ Y )′| = |U| − |X ∪ Y |

we have
|(X ∪ Y )′| = |U| − |X | − |Y |+ |X ∩ Y |.
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Exercise on Inclusion / Exclusion

Exercise 7.3
At the University of Erewhon, there are 100 students. At each
algebra lecture there are 65 students and at each analysis lecture
that are 70 students. Let b be the number of students doing both
algebra and analysis.

(i) If b = 50, how many students are doing neither algebra nor
analysis?

(ii) What is the greatest possible value of b?

(iii) What is the least possible value of b?



Principle of Inclusion and Exclusion for Three Sets

Claim 7.4
If X , Y and Z are finite sets then

|X∪Y ∪Z | = |X |+|Y |+|Z |−|X∩Y |−|Y ∩Z |−|Z∩X |+|X∩Y ∩Z |.

Exercise 7.5
Suppose that X , Y , Z are subsets of a finite universe set U. Use
Claim 7.4 to write down a formula for the size of

∣∣(X ∪ Y ∪ Z )′
∣∣.

Example 7.6

Let an be the number of dots in the nth diagram below. So
a1 = 1, a2 = 7, a3 = 19, a4 = 37, and so on.

, , , , . . .

We will use Claim 7.5 to find a formula for an.



Cartesian Products

Exercise 7.8
Let

X = {x ∈ R : 1 ≤ x ≤ 3}
Y = {y ∈ R : 1 ≤ y ≤ 2}.

Decide on the truth value of the following propositions.

(a) (1, 2) = (2, 1)

(b) {1, 2} = {2, 1}
(c) (5/2, 3/2) ∈ X × Y

(d) (3/2, 5/2) ∈ X × Y

(e) Y × Y ⊆ X × Y

(f) X ⊆ Y

(g) ∅× X ⊆ ∅× Y
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(g) ∅× X ⊆ ∅× Y



Cartesian Products

Exercise 7.8
Let

X = {x ∈ R : 1 ≤ x ≤ 3}
Y = {y ∈ R : 1 ≤ y ≤ 2}.

Decide on the truth value of the following propositions.

(a) (1, 2) = (2, 1) False

(b) {1, 2} = {2, 1} True

(c) (5/2, 3/2) ∈ X × Y True

(d) (3/2, 5/2) ∈ X × Y False

(e) Y × Y ⊆ X × Y True

(f) X ⊆ Y False

(g) ∅× X ⊆ ∅× Y True



Independent Choices

Suppose that X and Y are finite sets. The number of ordered pairs
(x , y) with x ∈ X and y ∈ Y is |X ||Y |, since we have |X | choices
for x and |Y | independent choices for y . Hence |X × Y | = |X ||Y |.

Example 7.9

A menu offers a choice of 3 starters, 5 main courses, and 2
desserts.

(a) How many three course meals can be ordered?

(b) How many two course meals can be ordered?



Part D: Integers and rings

§8 Euclid’s Algorithm and Congruences

Definition 8.1
Let m, n ∈ N. We say that d ∈ N is the greatest common divisor
of m and n, and write gcd(m, n) = d , if d is the greatest natural
number that divides both m and n.

Example 8.2 See board

Exercise 8.3
Find gcd(m, n) in each of these cases:

(i) m = 310, n = 42,

(ii) m = 23, n = 46,

(iii) m = 31460, n = 41 991 752.

Hint: on page 38 we saw that 31460 = 22 × 5× 112 × 13. You do
not need to factor m completely to find the gcd.
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Euclid’s Algorithm

Lemma 8.4 (Examinable)

Let m, n ∈ N. Let n = qm + r . Then

gcd(n,m) = gcd(m, r).

Algorithm 8.5 (Euclid’s Algorithm)

Let n, m ∈ N. Find the quotient q and the remainder r when n is
divided by m.

• If r = 0 then m divides n and gcd(n,m) = m.

• Otherwise repeat from the start with m and r .



Example 8.6

Let n = 3933 and let m = 389. The equations below show the
quotient and remainder at each step of Euclid’s Algorithm:

3933 = 10× 389 + 43

389 = 9× 43 + 2

43 = 21× 2 + 1

2 = 2× 1.

Hence gcd(3933, 389) = 1.

Example 8.7: Work backwards to get

1 = 43− 21× 2

= 43− 21× (389− 9× 43)

= 190× 43− 21× 389

= 190× (3933− 10× 389)− 21× 389

= 190× 3933− 1921× 389.



Congruences

Definition 8.8
Let m ∈ N. Let n, n′ ∈ Z. If n − n′ is divisible by m then we say
that n is congruent to n′ modulo m, and write n ≡ n′ mod m.

{. . . ,−5, 0, 5, . . .}

{. . . ,−4, 1, 6, . . .}
{. . . ,−3, 2, 7, . . .}

{. . . ,−2, 3, 8, . . .}
{. . . ,−1, 4, 9, . . .}

Example 8.9

(a) Since 5848 = 2× 2652 + 544, we have 5848 ≡ 544 mod 2652.

(b) −7 ≡ 10 mod 17 since −7− 10 is divisible by 17.

(c) 27× 33 ≡ 17× 33 ≡ 7× 33 ≡ 7× 3 ≡ 1 mod 10. Exercise:
make up a similar example working modulo 5.



Congruent Numbers

Lemma 8.10 (Examinable)

Let m ∈ N and let r , r ′, s, s ′ ∈ Z. If r ≡ r ′ mod m and s ≡ s ′ mod
m then

(i) r + s ≡ r ′ + s ′ mod m,

(ii) rs ≡ r ′s ′ mod m.

Lemma 8.10 justifies many manipulations with congruences.

For example, suppose we know that 2x ≡ 1 mod 5. Let r = r ′ = 3
and let s = 2x , s ′ = 1. Then by Lemma 8.11 we have
3× 2x ≡ 3× 1 mod 5. This simplifies to x ≡ 3 mod 5.



Solving Congruences

Exercise 8.11

(a) Find x ∈ Z such that 0 ≤ x < 11 and x + 9 ≡ 7 mod 12.

x = 10 is the unique such x

(b) Find an x ∈ Z such that 3x ≡ 2 mod 5.

x = 4, or x = −1, or x = 9 or . . .

(c) Find all x ∈ Z such that 3x ≡ 2 mod 5.

3x ≡ 2 mod 5 ⇐⇒ x = 4 + 5q for some q ∈ Z
⇐⇒ x ≡ 4 mod 5

When the modulus m is larger, Euclid’s algorithm can be used.

Example 8.12′ See board.

The printed notes have a similar example using larger numbers.

Not all congruences can be solved. For example 2x ≡ 3 mod 4 has
no solution, because 2x is always even, but any number congruent
to 3 modulo 4 is odd.
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The ISBN Code
An ISBN is a sequence of length 10 with entries from

{1, 2, . . . , 9,X}.
The check digit is chosen so that if u1u2u3u4u5u6u7u8u9u10 is an
ISBN then the check equation

10∑

j=1

(11− j)uj ≡ 0 mod 11

holds. It might be necessary to take 10 as a check digit. In this
case the letter X is used to stand for 10.

Exercise 8.13

(a) Suppose that an error is made in position 8, and the ISBN is
miscopied as 1-4398-3568-5. Show that the error will be
detected because the check equation no longer holds.

(b) Suppose that the digits in positions 8 and 9 are swapped, and
so 1-4398-3589-5 is written down. Show again that the error
will be detected.



The Square Code

The square code is the set of all sequences

(u1, u2, u3, u4, u1 + u2, u3 + u4, u1 + u3, u2 + u4)

where u1, u2, u3, u4 ∈ {0, 1} and the addition is done modulo 2.

Exercise: Alice wants to send Bob a number m between 0 and 15.
She writes m in binary as m = 23b3 + 22b2 + 21b1 + 20b0 and then
sends Bob the codeword in the Square Code starting b3b2b1b0 . . .

Imagine you are Bob and you receive 10011001. What do you
think Alice’s number is?

(A) 8 (B) 9 (C) 11 (D) 13.
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The Square Code as a Party Trick

Question i can be stated more briefly as: is the ith position of the
codeword for your number equal to 1?

1 Is your number 8, 9, 10, 11, 12, 13, 14 or 15?
2 ” ” ” 4, 5, 6, 7, 12, 13, 14 or 15?
3 ” ” ” 2, 3, 6, 7, 10, 11, 14 or 15?
4 ” ” ” 1, 3, 5, 7, 9, 11, 13 or 15?
5 ” ” ” 4, 5, 6, 7, 8, 9, 10 or 11?
6 ” ” ” 1, 2, 5, 6, 9, 10, 13 or 14?
7 ” ” ” 2, 3, 6, 7, 8, 9, 12 or 13?
8 ” ” ” 1, 3, 4, 6, 9, 11, 12 or 14?



§9 Relations and the Integers Modulo m

The following definition generalizes the congruence relation.

Definition 9.1
Let X be a set. A relation on X is a black box which, given an
ordered pair (x , x ′) where x , x ′ ∈ X , outputs either yes or no. A
yes means x is related to x ′, and a no means x is not related to x ′.

≡
(x , x ′)

yes or no

Two relations on a set X are equal if they agree on all ordered
pairs (x , x ′). As for functions, it is irrelevant how the black box
arrives at its answer.



Examples of Relations

Example 9.2

(i) Fix m ∈ N. Let n, n′ ∈ Z. For the input (n, n′), let the black
box output yes if n ≡ n′ mod m and no otherwise. This
defines the congruence modulo m relation on Z.

(ii) Let P be the set of all subsets of {1, 2, 3}. Given an ordered
pair (X ,Y ) of elements of P, let the black box output yes if
X ⊆ Y and no otherwise.

Relations can be defined more briefly. For example, suppose that
X = {1, 2, 3, 4, 5, 6}. Then

x relates to y ⇐⇒ x < y

defines the relation ‘strictly less than’ on X . An analogous relation
can be defined replacing X with any other subset of R.



Diagrams

Let X be a set and let ∼ be a relation defined on X . To represent
∼ on a diagram, draw a dot for each element of X . Then for each
x , y ∈ X such that x ∼ y , draw an arrow from x to y . If x ∼ x
draw a loop from x to itself.

Example 9.3

Let X = {1, 2, 3, 4, 5, 6}. The relation x ≡ y mod 2 on X is:

1 2

3 4

5 6

Exercise: Draw a similar diagram for the relation on
{1, 2, 3, 4, 5, 6} defined by

x ∼ y ⇐⇒ x − y is even and x > y .
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Properties of relations

Definition 9.4
Let ∼ be a relation on a set X . We say that ∼ is

(i) reflexive if x ∼ x for all x ∈ X ;

(ii) symmetric if for all x , y ∈ X ,

x ∼ y =⇒ y ∼ x ;

(iii) transitive if for all x , y , z ∈ X ,

x ∼ y and y ∼ z =⇒ x ∼ z .

A relation that is reflexive, symmetric and transitive is said to be
an equivalence relation.

Example 9.5

Fix m ∈ N. The congruence relation n ≡ n′ mod m is an
equivalence relation on Z.



More on Relations

In general a relation can have any combination of the properties
reflexive, symmetric and transitive. See Question 2 of Sheet 10.

Exercise 9.7
Let X be the set of people sitting in a full lecture room. For each
of the following relations, decide whether it is (i) reflexive, (ii)
symmetric and (iii) transitive.

(a) x ∼ y if x and y are sitting in the same row,

(b) x ∼ y if x is sitting in a strictly higher row than y ,

(c) x ∼ y if x and y are friends.



Equivalence relations and partitions
Suppose that ∼ is an equivalence relation on a set X . For x ∈ X ,
we define the equivalence class of x to be the set of all elements of
X that relate to x . In symbols

[x ] = {z ∈ X : z ∼ x}.

For example, the equivalence classes for the relation x ≡ y mod 2
on the set {1, 2, 3, 4, 5, 6} are

[0] = [2] = [4] = {0, 2, 4}
[1] = [3] = [5] = {1, 3, 5}

1 2

3 4

5 6



Main Theorem on Equivalence Classes

Theorem 9.8
Let ∼ be an equivalence relation on a set X . Let x , y ∈ X .

(i) x ∈ [x ]∼,

(ii) x ∼ y ⇐⇒ [x ]∼ = [y ]∼,

(ii) x 6∼ y ⇐⇒ [x ]∼ ∩ [y ]∼ = ∅.

Thus, by (i), every element of X lies in an equivalence class, and
by (ii) and (iii), X is a disjoint union of the distinct equivalence
classes.

The proof of Theorem 9.8 is non-examinable and will be skipped if
time is pressing. See Theorem 31.13 in How to think like a
mathematician for a careful (and exhaustively analysed) proof.



The Number System Zm of Integers Modulo m.
Fix m ∈ N. Let

Zm = {[n] : n ∈ Z}
be the set of equivalence classes for congruence modulo m.

For example, Z5 = {[0], [1], [2], [3], [4]}.

[0] = [5] = [−5] = . . .

[1] = [5] = . . .

[−3] = [2] = . . .

[−2] = [3] = . . .

[4] = [9] = [−1] = . . .

0
5

10

−5

−10

1
6

16

−4

−9

2

7

−3

3 8
−2 4

9−1
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Addition and Multiplication in Zm

We turn the set Zm of equivalence classes into a number system
by defining addition and multiplication as follows.

Definition 9.9
Fix m ∈ N. Given [r ], [s] ∈ Zm we define [r ] + [s] = [r + s] and
[r ][s] = [rs].

Exercise 9.10
Recall that a square number is a number of the form n2 where
n ∈ N.

(i) Calculate 12, 22, 32, 42, 52, 62, 72, . . . modulo 4. State and
prove a conjecture on the pattern you observe.

(ii) Is 2015 the sum of two square numbers?



Addition and Multiplication Tables

Example 9.11

The addition and multiplication tables for Z5 are shown below. For
example, the entry in the addition table in the row for [4] and the
column for [3] is

[4] + [3] = [2]

since 4 + 3 = 7 and 7 ≡ 2 mod 5.

+ [0] [1] [2] [3] [4]

[0] [0] [1] [2] [3] [4]

[1] [1] [2] [3] [4] [0]

[2] [2] [3] [4] [0] [1]

[3] [3] [4] [0] [1] [2]

[4] [4] [0] [1] [2] [3]

× [0] [1] [2] [3] [4]

[0] [0] [0] [0] [0] [0]

[1] [0] [1] [2] [3] [4]

[2] [0] [2] [4] [1] [3]

[3] [0] [3] [1] [4] [2]

[4] [0] [4] [3] [2] [1]

You may omit [0] from the multiplication table if you prefer.



§10 Rings
Definition 10.1
Suppose that R is a set on which addition and multiplication are
defined, so that given any two elements x , y ∈ R, their sum x + y
and product xy are elements of R. Then R is a ring if

(1) (Commutative law of addition) x + y = y + x for all x , y ∈ R,

(2) (Existence of zero) There is an element 0 ∈ R such that 0 + x = x for all
x ∈ R,

(3) (Existence of additive inverses) For each x ∈ R there exists an element
−x ∈ R such that −x + x = 0, where 0 is the element in property (2),

(4) (Associative law of addition) (x + y) + z = x + (y + z) for all x , y , z ∈ R,

(5) (Existence of one) There exists an element 1 ∈ R such that 1x = x1 = x
for all x ∈ R,

(6) (Associative law of multiplication) (xy)z = x(yz) for all x , y , z ∈ R,

(7) (Distributivity) x(y + z) = xy + xz and (x + y)z = xz + yz for all
x , y , z ∈ R.

The number systems Z, Q, C and Zm for m ∈ N are rings.



Fields

Definition 10.2

(i) A ring R is commutative if xy = yx for all x , y ∈ R.

(ii) A commutative ring R is a field if for all non-zero x ∈ R there
exists an element y ∈ R such that xy = yx = 1, where 1 is
the one element in property (5). We say that y is the inverse
of x and write y = x−1.

Some familiar examples of fields are Q, R and C. More
interestingly, Z5 is a field.

Theorem 10.3 (Examinable)

If p is prime then Zp is a field.

Example 10.4

See board.



Properties of Rings

Lemma 10.5
Let R be a ring.

(i) There is a unique zero element in R satisfying property (2).

(ii) There is a unique one element in R satisfying property (5).

(iii) For each x ∈ R there exists a unique y ∈ R such that
y + x = x + y = 0.

(iv) If x , z ∈ R and x + z = x then z = 0.

(v) We have 0x = 0 = x0 for all x ∈ R.

(vi) We have −x = (−1)x = x(−1) for all x ∈ R.

(vii) For all x ∈ R we have −(−x) = x . [typo x ∈ R, not x ∈ X ]

(viii) For all x , y ∈ R we have

−(xy) = (−x)y = y(−x) and (−x)(−y) = xy .

(ix) 0 = 1 if and only if R = {0}.



Polynomial Rings

We define polynomial rings over an arbitrary field: the main
examples to bear in mind are Q, R, C and Zp for prime p.

Definition 10.6
Let F be a field. Let F [x ] denote the set of all polynomials

f (x) = adx
d + ad−1x

d−1 + · · ·+ a1x + a0

where d ∈ N0 and a0, a1, a2, . . . , ad ∈ F . If d = 0, so f (x) = a0,
then f (x) is a constant polynomial.

When writing polynomials we usually omit coefficients of 1, and do
not include powers of x whose coefficient is 0. For example,
in Z2[x ], we write x2 + [1] rather than [1]x2 + [0]x + [1].

The x in f (x) is called an indeterminate. You can think of it as
standing for an unspecified element of F .
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Ring Structure of F [x ]

Polynomials are added and multiplied in the expected way.

Example 10.7

In Z3[x ], we have

(x4 + [2]x3 + [1]) + ([2]x4 + x2 + [1])

= ([1]x4 + [2]x3 + [1]) + ([2]x4 + [1]x2 + [1])

= ([1] + [2])x4 + [2]x3 + [1]x2 + ([1] + [1])

= [0]x4 + [2]x3 + [1]x2 + [2]

= [2]x3 + x2 + [2]

and

(x + [1])(x + [2]) = x2 + ([1] + [2])x + [1][2] = x2 + [2].
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= [0]x4 + [2]x3 + [1]x2 + [2]

= [2]x3 + x2 + [2]

and

(x + [1])(x + [2]) = x2 + ([1] + [2])x + [1][2] = x2 + [2].



Ring Structure of F [x ]

Polynomials are added and multiplied in the expected way.

Example 10.7

In Z3[x ], we have

(x4 + [2]x3 + [1]) + ([2]x4 + x2 + [1])

= ([1]x4 + [2]x3 + [1]) + ([2]x4 + [1]x2 + [1])

= ([1] + [2])x4 + [2]x3 + [1]x2 + ([1] + [1])

= [0]x4 + [2]x3 + [1]x2 + [2]

= [2]x3 + x2 + [2]

and

(x + [1])(x + [2]) = x2 + ([1] + [2])x + [1][2] = x2 + [2].



Polynomial Division

Definition 10.8
Let f (x) = adx

d + ad−1xd−1 + · · ·+ a2x
2 + a1x + a0 where

ad 6= 0.

(i) We say that d is the degree of f (x) and write deg f (x) = d .

(ii) The leading coefficient of f (x) is ad . If ad = 1 we say that
f (x) is monic.

The degree of zero polynomial f (x) = 0 is undefined.

Theorem 10.9
Let F be a field, let f (x) ∈ F [x ] be a non-zero polynomial and let
g(x) ∈ F [x ]. There exist polynomials q(x), r(x) ∈ F [x ] such that

g(x) = q(x)f (x) + r(x)

and either r(x) = 0 or deg r(x) < deg f (x).
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Examples of Polynomial Division

Example 10.10

(1) Working in Q[x ], let g(x) = 3x2 + 2x − 1 and let
f (x) = 2x + 1. Then

g(x) = (32x + 1
4)f (x)− 5

4

so the quotient is q(x) = 3
2x + 1

4 and the remainder is
r(x) = −5

4 . If instead we take h(x) = x + 1 then

g(x) = (3x − 1)h(x).

So when g(x) is divided by h(x) the quotient is 3x − 1 and
the remainder is 0.

(2) Working in Z3[x ], let g(x) = x4 + x3 + [2]x2 + x + 1 and let
f (x) = x2 + x . Then

g(x) = (x2 + [2]x)f (x) + 2[x ] + 1.

So the quotient when g(x) is divided by f (x) is x2 + [2]x and
the remainder is 2[x ] + 1.



Remainder Theorem

Theorem 10.11
Let F be a field and let f (x) ∈ F [x ] be a polynomial. Let c ∈ F .
Then

f (x) = q(x)(x − c) + r

for some polynomial q(x) ∈ F [x ] and some r ∈ F. Moreover
f (c) = 0 if and only if r = 0.



Example of Remainder Theorem

Example 10.12

Working in Z3[x ], let g(x) = x4 + x3 + [2]x2 + x + [1] as in
Example 10.10(2). Since

g([1]) = [1] + [1] + [2] + [1] + [1] = [6] = [0],

the Factor Theorem says that x − [1] divides g(x). Division gives

g(x) = (x − [1])(x3 + [2]x2 + x + [2]).

The cubic x3 + [2]x2 + x + [2] also has [1] as a root. Dividing it by
x − [1] gives

g(x) = (x − [1])2(x2 + [1]).

Therefore g(x) has [1] as a root with multiplicity 2, and no other
roots in Z3.



Polynomials in C[x ]

We end with a corollary of Theorem 10.9 that gives a stronger
version of the Fundamental Theorem of Algebra (Theorem 3.21).

Corollary 10.13

Let f (x) ∈ C[x ] be a polynomial of degree n. There exist distinct
w1,w2, . . . ,wr ∈ C and m1, . . . ,mr ∈ N such that

m1 + · · ·+ mr = n

and

anz
n + an−1zn−1 + · · ·+ a1z + a0

= an(z − w1)m1(z − w2)m2 . . . (z − wr )mr .



Almost all the Comments

I don’t think the library is a welcoming place to study
. . . I suggest to improve the library. There are no
extraneous notes for the course on moodle, the lecturer
should put his notes for us to study from as well.

Reply: the 60+ pages of notes I have written/am writing for this
course are all on Moodle. You also have detailed answers to all the
problem sheets. There is nothing ‘extra’ I am keeping from you.

The tutor explained things well: Do not have a tutor

Clarification: for the first three questions, ‘tutor’ means your
lecturer.

Please turn off air conditioning in the lecture hall during
winter mornings.

Reply: the controls are at the front.
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