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Abstract. This paper solves a pursuit–evasion problem in which a

prince must find a princess who is constrained to move on each day

from one vertex of a finite graph to another. Unlike the related and

much studied ‘Cops and Robbers Game’, the prince has no knowledge

of the position of the princess; he may, however, visit any single room he

wishes on each day. We characterize the graphs for which the prince has

a winning strategy, and determine, for each such graph, the minimum

number of days the prince requires to guarantee to find the princess.

1. Introduction

A princess has set a visiting prince the following challenge. She will spend

each day in one of the rooms of her palace, and each night she will move into

an adjacent room. The prince may, at noon each day, demand admittance to

one room. If, within a finite specified number of days, he finds the princess,

she will agree to marry him. Otherwise, he must leave disappointed.

The particular case of a palace consisting of 17 rooms in a row, and a

prince allowed 30 days to search for the princess, was posed by Christian

Blatter as a problem on MathOverflow [2]. In this note we characterize

the palaces in which the prince has a winning strategy. We also determine,

for each such palace, the minimum number of days the prince requires to

guarantee to find the princess.

A large number of related searching games have been studied in the lit-

erature. The closest is the ‘Helicopter Cops and Robbers Game’, solved for

a general number of cops in [7]. The version of this game with a single cop

can be obtained from the problem considered here by varying the rules so

that (i) on the morning of day d, the prince is informed of the location of

the princess on day d − 1; and (ii) on the night of day d − 1 the princess

may move into any room she can reach from her present location by a path

not passing through the room guarded by the prince on day d− 1. Also

related is the ‘Hunter-Rabbit Game’, considered in [5], in which the two
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players are each allowed to move by at most one vertex in each turn, and

are given intermittent knowledge of the other’s location. If instead both

players have complete information, then this problem becomes the original

‘Cops and Robbers Game’, introduced in [6]. See [1] for some recent work

on this problem.

We refer the reader to the annotated bibliography [4] and the recent book

[3] for further background information. The latter includes a useful table on

page 222 summarizing the state of knowledge on many different searching

games. This table is organized by the mobility of the players: our problem

would be classified under ‘Helicopter good guys’ and ‘Medium bad guys’.

The only entry in this cell of the table concerns the game ‘Seepage’, played

on a directed acyclic graph. This game differs fundamentally from ours

in that the searchers have complete information, and their opponent, who

may occupy many vertices simultaneously, moves deterministically along the

directed edges of the graph.

2. Results and proofs

Throughout the paper we shall assume an adversarial model, in which the

princess knows in advance which sequence of rooms the prince will visit, and

avoids him if she can. Since we are concerned only with the existence and

length of guaranteed winning strategies for the prince, this model is clearly

legitimate.

We shall identify a palace with a finite connected simple graph, whose

vertices correspond to rooms, and two vertices are joined by an edge if they

correspond to adjacent rooms. Let T denote the tree with 10 vertices shown

in Figure 1 below. (This tree appears as an example of a graph in which the

rabbit may avoid the hunter in [5, page 27].)

a2
b2
c2

a3
b3

c3

a1
b1

c1

Figure 1. The minimal palace T in which the princess can

avoid the prince.

Theorem 1. Let G be a graph representing a palace. If G is a tree not

containing any subgraph isomorphic to T , then the prince can guarantee
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to find the princess. In any other case, the princess can avoid the prince

indefinitely.

Proof. It is clear that if G contains a cycle then the princess can avoid the

prince while staying at the vertices on this cycle, since from any vertex in

the cycle there are two vertices to which she can proceed, of which the prince

can visit only one.

Suppose that G contains T as a subgraph. This part of the palace consists

of a central vertex and three branches, which we number 1, 2 and 3, each

with three vertices labelled as in Figure 1. We shall show that the princess

can avoid the prince by following a strategy in which on each even day she

is either at the central vertex, or one of vertices b1, b2 or b3. We may assume

that the prince visits one of these vertices on each even day. The princess

determines her moves according to the following principles. If on day d the

princess is at

(1) vertex ci, then she (necessarily) goes to bi on day d + 1;

(2) vertex bi, then she goes to ai on day d + 1, unless the prince is due

to visit ai on day d + 1, in which case she goes to ci;

(3) vertex ai, then she goes to the central vertex on day d + 1, unless

the prince is due to visit the central vertex on day d + 1, in which

case she goes to bi;

(4) the central vertex, then she goes to ai, where branch i is neither the

branch the prince is due to visit on day d + 1, nor the branch j in

which he will next visit vertices aj and bj on two successive days, if

such a branch exists.

To see that this strategy allows the princess to avoid the prince indefi-

nitely, we need only check that she never finds herself at a vertex ci when

the prince is due to visit bi on the next day. Since her visits to ci always

coincide with the prince visiting ai, this necessitates his visiting ai and bi

on successive days. But that implies that he must have visited aj and bj

in some other branch j on successive days, in the time since the princess

last visited the central vertex. And that is impossible, since her rules of

movement would then have taken the princess to ai on the day the prince

visited aj , and back to the central vertex on the day he visited bj .

We have established that if G has a subgraph isomorphic to T then the

prince has no winning strategy. Conversely, if G is a tree with no subgraph

isomorphic to T then the prince has a remarkably simple strategy that will

guarantee to find the princess. Let P be a path of maximal length ` in G and

let the vertices in P be numbered from 0 up to ` in the order they appear

in P . It will be useful to take a black-and-white colouring of the vertices
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Figure 2. A solvable palace with maximal path of length 7.

of G that induces a bipartition of G; for definiteness we shall suppose that

vertex 0 is white.

Any non-leaf vertex in G is either in P or adjacent to a vertex in P .

Therefore the prince can begin at vertex 1 on day 1 and take a walk to

vertex `− 1 that visits all non-leaf vertices en route, never leaves P for two

consecutive days, never visits a vertex in G \ P more than once, and never

visits a lower-numbered vertex in P after a higher-numbered one. We call

such a walk a linear search. For example, in the graph shown in Figure 2

above, the prince might visit vertices in the order 1, 2, 2a, 2, 3, 3a, 3, 4, 5,

5a, 5, 5a′, 5, 6.

We claim that if on day 1 the princess is at a black vertex, then the

prince will find her in the course of his linear search. This is easily proved

by induction, observing that if the prince has not found the princess when

he visits vertex j for the final time, then the princess is on this day at a

vertex of the same colour as j, whose nearest vertex in P is j + 1 or higher.

If when the prince visits vertex ` − 1 the princess still eludes him, then he

knows that on this day the princess is at a vertex of the opposite colour to

vertex `−1. The prince may therefore be certain of finding the princess if he

now performs a linear search of the opposite parity to the first: for instance,

he can simply reverse his walk, beginning at vertex ` − 1 on the following

day, and ending at vertex 1. �

Definition 2. A strategy for the prince consisting of a linear search followed

immediately by another linear search of the opposite parity will be called a

linear strategy.

Let us say that a graph is solvable if the prince has a strategy that guar-

antees to find the princess. The existence of a linear strategy shows that any

solvable palace can be solved by a prince constrained so that the vertices

he visits on consecutive days are either adjacent or the same. Furthermore,

he needs to be permitted to remain at the same vertex only once. (It is
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obviously necessary in any solution that the prince should change his black–

white parity at least once, since otherwise he can never find a princess who

starts with the opposite parity to himself.)

In the problem as posed, the prince is free to visit any vertex on any

day, and it seems somewhat remarkable that this extra freedom is never

required. Equally surprising is that a linear strategy is optimal, in that

it uses the minimum number of days required to be certain of finding the

princess. The proof of this fact occupies the remainder of this paper.

Definition 3.

(1) We say that a leaf vertex in the graph of a palace is removable if it

is adjacent to a vertex of degree at least 3.

(2) We say that a palace is reduced if its graph has no removable leaves.

(3) If G is a graph, we define its reduction G− to be the graph obtained

by repeatedly removing removable leaves from the graph of G, one

at a time, until no removable leaves remain. (It is clear that G− is

well-defined up to graph isomorphism.)

For example, the reduction of the palace shown in Figure 2 is obtained

by deleting the leaf attached to each of vertices 2 and 5, and any three of

the four leaves attached to vertex 6.

The next lemma shows that G is solvable if and only if G− is solvable,

and that when either is solvable, the optimal solutions to G and G− require

the same number of days.

Lemma 4. Let G be the graph of a palace and let H be obtained by removing

a removable leaf from G. Then G can be solved in d days if and only if H

can be solved in d days.

Proof. Fix a numbering of the vertices of G and assign to each vertex in H

the corresponding number in G. Let vertex z be the leaf removed from G to

make H. It suffices to show that if the prince has a winning strategy in H,

in which he visits vertex ai on day i, for 1 ≤ i ≤ n, then the sequence of

visits (a1, . . . , an) also wins for the prince in G. If not, then there is a day d

and a walk

(w1, . . . , wd−2, wd−1, z, wd+1, wd+2, . . . , wn)

for the princess in G such that wr 6= ar for all r 6= d. Since z is a leaf in G,

there is a vertex y such that wd−1 = wd+1 = y. Since the leaf z is removable,

vertex y has at least two neighbours in H. Hence there exists x 6= z such

that x is adjacent to y in H and x 6= ad. Now

(w1, . . . , wd−2, y, x, y, wd+2, . . . , wn)
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is a walk for the princess that defeats the prince’s strategy on H, which

contradicts the hypothesis that his strategy is winning on H. �

Our second main result is as follows.

Theorem 5. Let G be the graph of a solvable palace and suppose that the

reduction G− of G has exactly m vertices, where m ≥ 3. Then G can be

solved in 2m− 4 days by a linear strategy, and G cannot be solved in fewer

days by any strategy.

For example, a palace whose graph is a path is certainly reduced. Theo-

rem 5 therefore implies that 30 days are the minimum that will suffice for

the 17-room palace in Blatter’s version of the problem [2].

The hypothesis m ≥ 3 rules out only the trivial cases where the original

graph G has either one or two vertices; in these cases G may be solved in

one or two days respectively, and it is clear that no fewer days suffice.

We first establish that Theorem 5 holds for a particular class of reduced

palaces.

Lemma 6. Let k ≥ 2 and let S be the star graph consisting of a central ver-

tex x together with k disjoint paths of length 2 beginning at x. Let a1, . . . , ak

be the vertices adjacent to x and let b1, . . . , bk be the vertices (other than x)

adjacent to a1, . . . , ak, respectively. In any winning strategy for the prince,

the prince must visit vertex x on 2k−2 days. For each i, there are two days

on which he visits a vertex in the set Bi = {ai, bi}.

Proof. Take a black-and-white colouring of S, with the central vertex and

the vertices bi coloured white, and the vertices ai coloured black. We may

suppose that the princess is constrained to visit white vertices on even days.

Her strategy is a variation on the strategy used in the palace T in Figure 1.

If on day d the princess is at

(1) vertex bi then she (necessarily) goes to ai on day d + 1;

(2) vertex ai then she goes to the central vertex unless the prince is due

to visit the central vertex on day d+ 1, in which case she goes to bi;

(3) the central vertex, then she goes to ai, where Bi is whichever branch

is the last that the prince is due to visit in the days after d.

It is clear that if the prince is to find a princess who is following this strategy,

then he must do so in one of the vertices ai, on a day when she has just

proceeded there from bi. Hence, by the rules of movement of the princess, he

must have visited all of the other branches Bj for j 6= i in the time since the

princess last visited the central vertex. But the princess will always visit the

central vertex on an even day, unless the prince is due to visit it that day. It



FINDING A PRINCESS IN A PALACE 7

follows that the prince must make at least k − 1 visits to the central vertex

on consecutive even days. The situation in which the princess is constrained

to visit white vertices on odd days is similar, and so the prince must visit

the centre at least 2k − 2 times overall to defeat a princess with no parity

constraint.

Finally it is obvious that the prince must visit each branch Bi on at least

two days, for otherwise the princess may avoid him by alternating between

the two vertices in a single branch. This completes the proof. �

We are now ready to prove Theorem 5.

Proof. By Lemma 4 we may assume that G is reduced, and so G itself has m

vertices. By Theorem 1, G is a tree. If m ∈ {3, 4} then G is a path, and

it is easy to check that a linear strategy gives a solution of length 2m − 4,

which is clearly optimal in either case. So we assume that m > 4.

Write B for the set of leaf vertices, A for the set of vertices which are

adjacent to leaves, and Q for the set of vertices which are in neither A

nor B. (We shall see shortly that Q is the vertex set of a path in G, but

this is not required until the final stage of the proof.)

Since G is reduced, each vertex in A has degree exactly 2, and has exactly

one of its neighbours in B; we thus have |A| = |B|, and since A, B and Q are

pairwise disjoint, it follows that 2|A| + |Q| = m. Two vertices of A cannot

be adjacent since m > 4, and so each must have a neighbour in Q.

If v ∈ Q then the ball of radius 2 about v is a star graph of the type

described in Lemma 6. It follows from the lemma that each such vertex

must be visited at least 2d(v)− 2 times in any winning strategy, where d(v)

is the degree of the vertex v. On the other hand, if a ∈ A then a has a

neighbour b ∈ B and another neighbour v in Q. Now {a, b} forms a branch

of the star graph centred on v; Lemma 6 tells us that any winning strategy

must include two visits to {a, b}. We therefore have a lower bound L on the

length of a winning strategy, given by

L = 2|A|+
∑
v∈Q

(2d(v)− 2).

Consider the edges of G. Since it is a tree, there are m − 1 of them. Of

these, there are |A| between A and B, and a further |A| between Q and A;

the rest connect elements of Q. It follows that the sum of vertex degrees of

elements of Q is ∑
v∈Q

d(v) = 2(m− 1)− 3|A|.
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We therefore have

L = 4(m− 1)− 4|A| − 2|Q| = 4(m− 1)− 2m = 2m− 4,

as required.

It remains to be shown that a linear strategy succeeds on day 2m− 4 or

earlier. Let P be a path of maximal length ` in G. Then it follows from

Theorem 1 that the `−4 vertices of P which are neither leaves nor adjacent

to leaves, are precisely the vertices of Q. In following a linear strategy, the

prince starts at an element of A, visits every element of A exactly twice,

never visits B, and visits each vertex v ∈ Q precisely 2(d(v) − 1) times. It

follows that this strategy achieves the lower bound L, as claimed. �

We end by stressing the fact that if the prince follows a linear strategy

then he never visits a leaf vertex. We leave it as an exercise for the reader

to show that this property is shared by all optimal strategies. The proof

of Theorem 5 now shows that the multiset of vertices visited by the prince

in an optimal solution of a graph G is uniquely determined by G. This is

consistent with a stronger conjecture: that the only optimal strategies are

linear strategies.
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