LIFTING SET/MULTISET DUALITY

MARK WILDON

1. INTRODUCTION

Vandermonde’s identity

can be proved very simply by interpreting each side as counting the number
of k-subsets of {1,...,a} U{a+1,...,a+ b}. Extending the definition of
binomial coefficients by setting () = z(z —1)...(x —n+1)/n!, for z € C
it holds replacing a and b with arbitrary =,y € C. For a quick proof of this,
let Q(x,y) denote the left-hand side and note that, for each b € Ny, the
polynomial Q(x,b) € Q[z] has roots at all x € Ny. Hence Q(z,b) = 0 € Q[y]
and hence Q(z,y) € Q|z][y] is a polynomial in y having roots at all y € Ny,

so is identically zero. In particular, if we take D € Ny and set x = —D,

kz;<_kD> <nl_)k> =0 (1.1)

for each n € N. Now writing ((lk) )) for the number of k-multisubsets of a

y = D we obtain

set of size D, and recalling (see for instance the previous blog post on the
stars-and-bars identity) that

<—kD)(_1)k _ D(D+1)..]{.;!(D+k— ) (D +:— 1) _ <<1]3>>

we obtain the reformulation

é(_l)k ((?)) (nl—)k> =0 (1.2)

holding for n € N. (If n < D then the sum may be started at k = n — D
with the earlier binomial coefficients vanishing by definition.) The special
case D = n gives the attractive Y_;_o(—=1)* (7)) (}) = 0.

There are of course many other ways to prove either or . For
instance, there is a nice one-line generating function proof using the Binomial
Theorem by multiplying out (1+2)~?(1+2)” and then taking the coefficient
of z".
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The purpose of this note is to prove a ‘high-altitude’ lift of a generalisation
of by interpreting it as the alternating sum of dimensions in a long-
exact sequence of representations of GLp(F'), where F' is an arbitrary field.
(This explains our choice of ‘D’ for ‘dimension’ above.) Having ascended to
this altitude, we then descend in to easy stages to obtain first a symmetric
function identity and second a g-binomial identity lifting .

2. HOOK REPRESENTATIONS OF GENERAL LINEAR GROUPS

Fix D € Ny and let V be the natural D-dimensional representation of
GLp(F') with chosen basis v1,...,vp. Let t(; j denote the entry in position
(i,7) of a Young tableau t. Following the general construction in [I §2],
for each Young tableau t of shape (k, 1"*) with entries from {1,...,D} we
define

k —k
f(t) = Ut(l,l)vt(1,2) . Ut(l,k) (%9 Ut<271) R...Q ”Ut<n7k71) S Sym V® V®(n )

Observe that f(t) is zero if ¢ has a repeated entry in its first column. When
the entries are distinct, we define the GL-polytabloid F(t) by

Ft) =S euf(u)

where the sum is over all (n — k +1)! distinct (k, 1"~*)-tableaux u obtained
from ¢ by permuting the entries in the first column, and ¢, is the sign of the
permutation. The polynomial representation VETIY of GLp(C) is then
the subspace of Sym*V @ V®=k) with standard basis

{F(t):t € SSYT<p(k, 1" ")} (2.1)

For a proof that this subspace is closed under the GLp(F) action see [I,
§2.4]. See [, Remark 2.16] for a proof that our construction agrees with an
earlier construction of James [3, Ch. 26] and so with [2, Ch. 4] in Green’s
lecture notes.

Example 2.1. For example, the GL-polytabloids

i1 o | Vjy Uiy @ Vjy Q@ Uy — Uy Vjy & Vjy @ Vjy
F I = Uy Vip BV, @0y — Uy Uiy B0 B0y
1J2] + Uy Viy ® Vi, ® Vi — Vi,V ® Vi, & V4, -

2Ly Observe that swapping

for iy < is and i1 < ji < j2 form a basis for V!
J1 and j2 gives a new (non-semistandard) tableau t* for which F(t*) = —F(t).
Provided dimV > 3, the GL-polytabloid F'(s) where s is as shown in the
margin; is a highest weight vector of weight (2,1,1) in VLDV, When

F = C, this vector generates the full representation.
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More generally, a tableau of shape (k, 1”4“) is semistandard if and only
if it is of the form shown below

i1 | 2 i

J1

J2

jnfk

with 71 <o < ... <14 and 71 < <.o.<Jn_k-

As we saw in a special case in the example, each F(t) is antisymmetric
with respect to permutations permuting the entries ji, ..., j,_r forming the
‘leg’ of the hook. Since A"V is isomorphic as a GL(V')-module to the sub-
space of V" of antisymmetric tensors (see for instance [2, §4.4, Example 2]
or the section on exterior powers in [5] — note this is not obvious, and the
analogous result for symmetric powers is false) the map

vEIIY L Symb v @ ARV
defined on the tableau t shown above by F(t) — A(t) where

A(t) = 0,05y ...V, @Uj; AVjy - AVj,
n—k
+ D (D) 051 Vi @ 0y AV A AT A A,
a=1

is a homomorphism of GL(V')-modules. (Here the hat denotes an omitted
term.) It is clear from the standard basis of vELITY in (2.1)) that this map
is injective. Therefore the image is a copy of V&Y inside Sym; V ®
n—k

N7V, we set

VETIY — (A(t) 1t € SSYT<p(n — k, 1¥)). (2.2)
using bold face V for this version of v=k1NY For instance, the element
of Sym?V ® A2V € V@IV corresponding to the GL-polytabloid in the
previous example is

i |io|
A 1] = Vj; Uiy @ Vj; N Vjy — Vjy Vig @ Vg N Vjy + Vjp Uiy @iy AVjy . (23)
|72

3. A LONG EXACT SEQUENCE

3.1. Setup. As motivation for the following definition observe that
above is somewhat reminiscent of the image of the boundary map in simpli-
cial homology. Throughout let n € N, D € Ng and let V be a D-dimensional
F-vector space.
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Definition 3.1. For k such that 1 <n — k < D, define
Sk s Sym*V @ ARV 5 SymFt v @ ARy
by linear extension of

Op—k (U1 Up—g @ WL A+ A Wp)

n—k
a=1

for wy, ..., Up_g,W1,...,wg € V.

For example, the element of Sym? V@AV in (2.3) is 03 (vi, @i, Avjy Avj, ),
and so we immediately get im 65 = VLDV C Sym? V@A?V. In the generic
dimension case where D > n, the maps §, for 1 < r < D form the sequence

0 A" 2n v Anly o
On— _ O e Ok
T GymF V@ AMTRY 228 SymFtly @ AnTR Ly Tk

RL:N Sym" VeV LN Sym"V — 0. (3.1)

Note that since APV is the determinant representation of GL(V), the start
could be rewritten as det 22 V © AP~V 25 If instead D < n then
the terms with A"~V vanish for r < n — D and the non-zero part of the
sequence instead begins

0— Symn—DV ® NPV 5_D> Symn—D—l V& ADP-1y/ 6D__>1 o

where the first term may be rewritten as Sym”~” V @ det. Our aim in this
section is to show that this sequence is exact for general n and D.

Remark 3.2. When D = n, I cannot resist mentioning this high-brow
proof that the sequence is exact, which works whenever F' has characteristic
zero. (Using results from [4] it can be generalized to any odd characteristic.)
Applying the Schur functor to representations of the symmetric group Sp
gives the sequence

0—sgn— AP M — ... 5 AN2M M > F—0

where M is the natural permutation module for Sp. Interpreting AFM as
the vector space of k-dimensional simplices of the solid (D — 1)-dimensional
simplex, this becomes the chain complex of a contractible connected space,
augmented by a final map to F. Therefore the homology vanishes. Now use
that in characteristic zero the Schur functor is invertible.
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3.2. Proof the sequence is long-exact. For the general case, we first
show that the sequence is a complex, i.e. the composition of any two consec-
utive differentials is zero. This is formally almost identical to the calculation
for simplicial homology in Remark

Lemma 3.3. For any k such that 1 <n —k < D the composition
On—kOn_kt1 : Sym* 1@ ARy QymFH @ ARy

s the zero map.

Proof. The image under 0,41 of the non-zero tensor wuj - --up—1 ® wy A

c AN Wp—gg1 1S

n—k+1
Z (—1)%up - up_qwa @ WL A= AWg A+ AN Wy_fi1. (3.2)

a=1
Fix 8 < ~. Applying d,,—j to the element above we see that u; - - - Uy, waw,®
wy A -+ Awy,_g41 appears once by taking o = 3 and then moving w- to the
symmetric side of the tensor, and once by taking o = v and then moving
wg to the symmetric side of the tensor. The signs are (—1)?(—1)7~! and
(—1)7(—=1)?, respectively, which cancel. Summing over all pairs 1 < 8 <
v < n —k+ 1 accounts for all summands in the image under 8, _g0,—x+1-
The lemma follows. U

We also require the following combinatorial lemma. Given a multiset X
and a set Y, with min X < minY’, let ¢(X,Y’) denote the unique semistan-
dard tableau of shape (| X|, 1/¥1) having first row entries X and first column
entries {min X} UY".

Lemma 3.4. For each k such that 1 <n —k < D we have

SSYT<p(k, 1"%)| + [SSYT<p(k + 1,17 1)| = ((Z)) <Z>

Proof. Let Q be the set of all pairs (X,Y) where X is an k-multisubset of
{1,...,D} and Y is an (n — k)-subset of {1,...,D}. Given (X,Y) € Q
either min X < minY and then

t(X,Y) € SSYT<p(k, 1"7F)
or min X > minY and then
t(X U{minY},Y\{minY}) € SSYT<p(k+1,1"7*71)

as shown in the diagram below.
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min X <minY min X > minY
min X X [ minY X
n—k
Y
n-k| Y

We have therefore defined an injective map from € to SSYT<p(k, 1"%) U
SSYT<p(k + 1,17 %=1, It is easily seen to be surjective. O

Recall that V&IV is the submodule of Sym*V ® /\"_kV defined
in (2.2) as the span of all A(t) for t € SSYT<p(n—k, 1¥). By (3.2), we have
(5n_k+1(vi2 <. U4y & Vi N Ujy VANCEIWAN Un—k) = A(t) (33)

where t is the tableau with first row entries iy,19,...,4; and first column
entries j1,. .., jn—k shown after Example

Proposition 3.5. The sequence is exact and moreover
imd,_ k1 =kerd,_, = vEy
for1<n—k<D.
Proof. Let k be such that 1 <n — k < D and consider the part
Ot GumF 1V @ ARV S Gyl g An—hly Onckst

of the sequence, ignoring the left-most arrow if n — k = D. Let 1 < i; <
o<ig<Dand j; <...<jpr <D withi; < j1. By (3.3), imd, 11 =
V&Y We make two deductions from this: first, by Lemma that

ker 6,,—r C im d,,_r+1, we have
ker §,_j, C VEI"Y, (3.4)
Second, by shifting k& we get
imé, j = V(k+1,1"—k—1)V

By the rank-nullity theorem

dim ker 0, + dimim §,,_; = dim (Symk Ve /\n_kv) - <<Z>> (Z) '

Therefore, by Lemma equality holds in and we have kerd,,_p =
V(k71n7k)V, which (as already used twice in this proof) is imd,_gy1. It
only remains to check the ends: since 6; : Sym" 'V ® V. — Sym"V is
the surjective multiplication map, the sequence is exact at the right-hand
end. At the left-hand end, if D > n then then it is clear that §, : A"V —
V @ A"V is injective. If instead D < n then since APTV = 0, we
have V(=21°)(V) = 0 and implies that 6p : Sym” PV o APV —



7

Sym™ PV © AP~V is injective. (The image is then V(”_D+1’1D71)V.)
The proposition follows. U

3.3. Summary. When D > n we may therefore rewrite the long-exact
sequence as

ver Ay s |
V(ln)v H PR
§n7k+1 V(m+171nik71)v 5n7k v(m+271n7k72)v énfkfl
T gkt T gty T
5 VOV
T gLy

0— A"V 2y

D Sym™V 0. (3.5)

where we recall for ease of reference that the middle part is
- kv, On— A T
S GymP v @ APTRY 22 SymF Ty @ AnTRTLy it
If instead D < n then the sequence begins

n— op, VD275,
0 Sym™ PV e APV =5 v (n—D+1,1P71)y, =

For example, if D = 3 and n = 2 we have
0= AV 2 vev 2% Sym2V 0

a sequence which is well known to split, with V @ V = Sym?V & A%V,
whenever F' does not have characteristic 2. If instead n = 4 then we have

0= VAW 2 Sym2V @ A2V 22 Sym?2V @ AV -2 Sym3V = 0

which can be rewritten as

53 VDY 5 v@y

(2,1,1)
0=V V —= vl — veLY

LI Sym* V.

4. SPECIALIZATIONS OF THE LONG-EXACT SEQUENCE

4.1. Preliminaries. We use the following lemma. Given a polynomial rep-
resentation M of GLp(F), let far(x1,...,zp) denote its character on the
diagonal matrix diag(z1,...,zp).

Op_
Lemma 4.1. Let 0 — My =% My =5 oo 220 v 9% My 2% 0 be a

long exact sequence of polynomial representations of GL(V). Then

14
> (=1 fag, =0.

k=0
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Proof. By a generalisation of the rank-nullity theorem we have far, = fiers, +
fims,- By exactness, im 6 = ker d;_1 for 1 < k < £. Therefore the alternat-
ing sum is

)4 )4
fMo + Z(_l)kfker(Sk + Z(_l)kfker(;k,l = fMo - fker<50 =0
k=1 k=1
as required. O

Since it may be useful in generalizations of this note, we mention that
extending an arbitrary long exact sequence

4 1
My =5 My — - — M; =% M,

by ker §; at the start and coker dg = Mj/im g at the end and then applying
Lemma |4.1| gives the more general

¢
D (=1)F fay, = (=1)F dimker 6 + fary — fimoo (4.1)
k=0

which can be reformulated for any long exact sequence in an abelian cate-
gory A, by replacing characters with isomorphism classes in the Grothendieck
group Ky(A). An important special case is the generalized Euler’s formula
F—E+4V =2—2g for a triangulation of an orientable surface of genus g.

4.2. Symmetric functions. Recall that hy is the complete homogeneous
symmetric function of degree k and ey, is the elementary symmetric function

of degree k. Taking V' of dimension D as usual, we have hy(z1,...,zp) =
fSymkV(xlv e ,l’D) and ek(xl, e ,l’D) = f/\kv(fL‘l, e ,:L'k).

Corollary 4.2. Forn € N and D € Ng we have

Z(_l)khk(l‘la cee 7$D)en—k(gjla s 71:D) =0.
k

Proof. Observe that e, g(z1,...,2p) = 0 unless 0 < n — k < D, or equiv-
alently, n — D < m < D. From hg(z1,...,xp) we require just that m > 0.
The sum is therefore over k such that max(0,n — D) < m < D. The result
now follows by applying Lemma to Proposition (3.5 O

It is a nice exercise to give an alternative proof of this corollary us-
ing Young’s rule or Pieri’s rule to express the product hie,_; as the sum
S(n—k,1¥) T S(n—k+1,1+-1) and then cancelling terms, almost exactly as in the
proof of Lemma, [4.1



4.3. g-binomial coefficients. Define the g-number [k]; by [k]; = (¢" —
)/(g—1)=1+q+---+¢*1, the g-factorial by [k],! = [kls[k — 1]4---[1]4
and the g-binomial coeficient

We mention that one combinatorial interpretation of the g-binomial coeffi-
cients is that ¢F(k—1)/2 Bﬂ = ZXQ{O,l,...,n—l} ¢ and so up to a power of g,
[Z] is the principal specialization of ey:

peln -
¢ ”/Q[k] =er(l,q,...,¢" ). (4.2)

By the bijection between k-multisubsets of {0,1,...,n — 1} and k-subsets
of {0,1,...,n+ k — 2} defined by adding j — 1 to the jth smallest element,
we obtain the dual identity

[H+Z_1]=hML%~w¢lU- (4.3)

In particular the g-binomial coeficients are polynomials in ¢q. (At least this
is the case for our definition: there is an alternative definition, very useful
for quantum groups, where ¢g-binomial coefficients are Laurent polynomials.)
By convention [Z] = 0 if k£ is negative, and it vanishes by definition if k£ > n.

Corollary 4.3. We have

e e LI
n—r q T q

r

Proof. Apply (4.2) and (4.3]) to Corollary and then change the summa-
tion variable by setting r equal to n — k. O

The non-zero terms in the sum come from r such that 0 < r < min(n, D).
Again it is a very instructive exercise to find a combinatorial proof of this
identity.

Corollary 4.4. We have

s (7))

Proof. Take ¢ =1 in Corollary O

In particular, by changing summation variables once again, we obtain ([1.2)),
our original motivation.
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