Representations of Symmetric Groups 3

Throughout let F be a field of prime characteristic p. Unless otherwise stated, all modules are defined over F. If λ is a p-regular partition of n, we denote by D^{λ} the irreducible FS_n -module $S_F^{\lambda}/S_F^{\lambda} \cap (S_F^{\lambda})^{\perp}$.

1. Let λ be a partition of n and let s and t be λ -tableaux. Show that

$$e(s)b_t = \langle e(s), e(t) \rangle e(t).$$

- **2.** Let λ be a partition of n.
 - (a) Show that if λ has at most p-1 parts then $e(t)b_t = \alpha e(t)$ for some $\alpha \neq 0$. Hence show that $\operatorname{End}_{FS_n}(S^{\lambda}) \cong F$.
 - (b) Generalize (a) by using Question 1 and Lemma 5.5 to show that $\operatorname{End}_{FS_n}(S^{\lambda}) \cong F$ whenever λ is *p*-regular.

(In fact this result holds for all partitions when p is odd: see page 7 of the lecture notes or Corollary 13.7 in James' book.)

- **3.** Let μ and ν be partitions of n and suppose that ν is p-regular.
 - (a) Use Theorem 5.8 to show that if D^{ν} is a composition factor of S^{μ} then $\nu \geq \mu$.
 - (b) Show that $S^{\nu}/\operatorname{rad} S^{\nu} \cong D^{\nu}$, so D^{ν} is the unique top composition factor of S^{ν} .
- 4. Show that $(S^{\lambda})^{\star} \cong S^{\lambda'} \otimes \text{sgn}$ where λ' denotes the conjugate partition to λ .
- 5. (a) Let λ be a partition of n. Show that the restriction of $S_{\mathbf{C}}^{\lambda}$ to the alternating group A_n is reducible if and only if λ is self-conjugate.
 - (b) Show that the conjugacy class of S_n labelled by the partition μ splits when the conjugacy action is restricted to A_n if and only if the parts of μ are distinct and have odd size.
- **6.** Let $\bigwedge^r U$ denote the *r*th exterior power of a vector space U. Use the Standard Basis Theorem (Theorem 6.2) to show that $\bigwedge^r S^{(n-1,1)} \cong S^{(n-r,1^r)}$.
- 7. Let λ be a partition of n and let t be a column standard λ -tableau. Let \bar{t} denote the tableau obtained from t by sorting the rows of t into increasing order. By Sheet 1, Question 4, \bar{t} is row-standard. Show that in $S_{\mathbf{Z}}^{\lambda}$,

$$e(t) = e(\bar{t}) + x$$

where x is an integral linear combination of standard polytabloids e(s) for tableaux s such that $\{t\} > \{s\}$ and $t \succ s$. (Here > and \succ refers to the orders defined in Definitions 6.3 and 6.9, respectively.)

- 8. (a) Show that if t is a λ -tableau with two columns of equal length and s is the λ -tableau obtained from t by swapping these columns, then e(s) = e(t).
 - (b) Is there a proof of this result using only the Garnir relations?
- **9.** Let $n, r \in \mathbf{N}$ with $r \leq n/2$. The colexicographic order on r-subsets of $\{1, 2, \ldots, n\}$ is defined by $A \leq B$ if and only if there exists m such that (i) $m \in A, m \notin B$ and (ii) if j > m then $j \in A \cap B$. Show that the order on r-subsets of $\{1, 2, \ldots, n\}$ induced by the order > on (n-r, r)-tabloids agrees with the colexicographic order.
- 10. Given a permutation $g \in S_n$, let P(g) denote the corresponding permutation matrix in $\operatorname{GL}_n(\mathbf{C})$. Prove Brauer's Permutation Lemma, that if $g, h \in S_n$ and P(g) and P(h) are conjugate in $\operatorname{GL}_n(\mathbf{C})$, then g and h are conjugate in S_n .
- 11. Let $n \geq 3$. Find the Gram matrix of the bilinear form \langle , \rangle with respect to the standard basis of $S^{(2,1^{n-2})}$ and verify that Theorem 5.7 holds in this case.
- 12. Let λ be a partition of n and let t be a λ -tableau. Show that in any decomposition of M_F^{λ} as a direct sum of indecomposable modules, there is a single summand which contains S^{λ} and that this module is unique up to isomorphism. [Hint: The Krull-Schmidt Theorem will be helpful.]

(This module is known as the Young module for λ , and is usually denoted Y^{λ} .)

13. Let t be a tableau of shape λ where λ is a partition of n. Let $g \in S_n$. Show that $g \notin R(t)C(t)$ if and only if there exist transpositions $h \in C(t)$ and $k \in R(t)$ such that kgh = g.

If μ is a partition of n, and F is a field, let \widetilde{M}^{μ} to be the quotient of the FS_n -module permutation module spanned by all μ -tableaux by the submodule spanned by

$$\{t + tg : g \in C(t)\}.$$

Thus \widetilde{M}^{μ} can be thought of as the module spanned by all *column* equivalence classes of μ -tableaux, but where swapping two numbers in a column introduces a sign of -1.

14. Let λ and μ be partitions of n.

(a) Show that

$$\operatorname{Hom}_{\mathbf{C}S_n}(M^{\lambda}, M^{\mu})$$

has a basis indexed by zero-one matrices with row sums λ and column sums μ' .

- (b) Show that $\widetilde{M}^{\mu} \cong M^{\mu'} \otimes \text{sgn.}$
- (c) It is known that if $\nu \succeq \lambda$ then M^{λ} has a submodule isomorphic to S^{ν} . (This is proved using semistandard homomorphisms in James' lecture notes.) Using this, Question 4, and (a) and (b), show that if $\lambda \leq \mu$ then there is a zero-one matrix with rows sums λ and column sums μ' .