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Abstract. Let G be a finite group and let H be a subgroup of G. The
left-invariant random walk driven by a probability measure w on G is the
Markov chain in which from any state x ∈ G, the probability of stepping
to xg ∈ G is w(g). The initial state is chosen randomly according to
a given distribution. The walk is said to lump weakly on left cosets if
the induced process on G/H is a time-homogeneous Markov chain. We
characterise all the initial distributions and weights w such that the
walk is irreducible and lumps weakly on left cosets, and determine all
the possible transition matrices of the induced Markov chain. In the
case where H is abelian we refine our main results to give a necessary
and sufficient condition for weak lumping by an explicit system of linear
equations on w, organized by the double cosets HxH. As an application
we consider shuffles of a deck of n cards such that repeated observations
of the top card form a Markov chain. Such shuffles include the random-
to-top shuffle, and also, when the deck is started in a uniform random
order, the top-to-random shuffle. We give a further family of examples
in which our full theory of weak lumping is needed to verify that the
top card sequence is Markov.
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1. Introduction

Let G be a finite group. We define a weight to be a function on G taking
non-negative real values, at least one of which is positive. Thinking of w as
a measure on G, given any subset K of G, we write w(K) for

∑
g∈K w(g).

The left-invariant random walk on G driven by the weight w is the time-
homogeneous G-valued Markov chain X = (X0, X1, X2, . . . ) with transition
probabilities

P[Xt+1 = xg | Xt = x] =
w(g)

w(G)
.

The starting value X0 may be either deterministic or random. Let H be a
subgroup of G. (Throughout, H and G have these meanings.) Many natural
questions concern the induced random process (X0H,X1H, . . .) taking val-
ues in the set G/H of left cosets of H in G. For instance, if G = Symn and
H = Symn−1, then the left-invariant random walk on G models a sequence
of random shuffles of a deck of n cards, and the induced process on G/H
models the sequence of cards appearing as the top card in the deck after
each shuffle. This is the setting of the extended example of our main results
in §1.2, where we give further justification for our focus on left cosets.

In our stochastic setting, it is natural to start the left-invariant random
walk X at a random starting point X0, distributed according to a chosen
probability distribution α on G. We denote the resulting Markov chain
by MC(α,w). By the main theorem of [8], the induced process on G/H
is a time-homogeneous Markov chain for every initial distribution α if and
only if, for every double coset HxH of H in G, w(gH) is constant over all
gH ⊆ HxH. (See §4 for background on double cosets.) In this case we say
that the random walk on G lumps strongly on the left cosets of H.

Definition 1.1. Let w be a weight.
(a) We say that the left-invariant random walk driven by w lumps weakly

to G/H when started at the distribution α if the induced process (XtH)t≥0

taking values in G/H is a time-homogeneous Markov chain, when X0 is
distributed according to α.

(b) We say the left-invariant random walk driven by w lumps weakly to
G/H if it lumps weakly to G/H for some initial distribution α.

More briefly, if (a) holds we say that MC(α,w) lumps weakly to G/H and
if (b) holds then w lumps weakly or is weakly lumping. We shall see in this
article that weak lumping occurs much more generally than strong lumping,
and has a much deeper theory.

We concentrate on the case when the weight w is irreducible; that is, the
support of w generates G, or equivalently, the random walk X is an irre-
ducible Markov chain, with the uniform distribution as its unique invariant
distribution. We justify this choice in §1.3: we plan to study the reducible
case further in a sequel to this paper.

The main contributions of this paper are:

(1) A complete algebraic description of the set of irreducible weights w
such that the left-invariant random walk on G driven by w lumps
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weakly to G/H when started at the uniform distribution on G (The-
orem 1.2 and Corollary 1.6), together with an algorithm that deter-
mines whether this holds for any given weight w;

(2) For any given irreducible weight w, a complete algebraic description
of the set of probability distributions α on G such that MC(α,w)
lumps weakly to G/H, and a procedure to compute this set (Theo-
rem 1.7).

A key idea is to interpret a weight w on the group G as the element∑
g∈Gw(g)g of the complex group algebra C[G]. As we show in Lemma 3.1,

steps in the Markov chain then correspond to multiplication by w in C[G],
and so we are able to bring representation theory to bear on our problem.
To avoid difficulties caused by working over a non-algebraically closed field,
we must work over C even though weights are real valued.

When read with §2 on the preliminaries we need from Markov chain the-
ory, and §3 on the algebraic preliminaries, we hope this paper will be found
accessible to a broad readership.

1.1. Main results. Given a non-empty subset K of G, the element of C[G]
corresponding to the uniform distribution on K is

ηK =
1

|K|
∑

g∈K
g.

Recall that e ∈ C[G] is an idempotent if e2 = e. For example, ηK is an idem-
potent whenever K is a subgroup of G. Let E(H) be the set of idempotents
of C[H] and let E•(H) be the subset of idempotents e such that ηHe = ηH .
Recall that (Xt)t≥0 denotes the Markov chain MC(α,w).

Theorem 1.2 (Characterisation of weak lumping in terms of idempotents).
Let w be an irreducible weight on G and let α be a distribution on G, both
thought as elements of C[G]. Then MC(α,w) lumps weakly to G/H if and
only if there exists an idempotent e ∈ E•(H) such that

(i) α ∈ C[G]e,
(ii) ew(1− e) = 0,
(iii) (e− ηH)wηH = 0.

In this case, for any t ≥ 0, the conditional distribution of Xt given the
sequence of cosets X0H, ...,XtH always belongs to C[G]e.

Note that C[G]e is a left ideal of C[G]. It follows from the final part
of Theorem 1.2, by averaging over all sequences of cosets X0H, . . . , XtH,
that the distribution of Xt is in C[G]e for every time t. These observations
motivate the following definition.

Definition 1.3. Let L be a left ideal of C[G] of the form L = C[G]e for e ∈
E•(H). We say that the left-invariant random walk driven by an irreducible
weight w lumps weakly to G/H with stable ideal L if ew(1 − e) = 0 and
(e− ηH)wηH = 0.

There may be more than one e ∈ E•(H) such that L = C[G]e. However,
we shall show (see Lemma 5.14) that the conditions ew(1 − e) = 0 and
(e − ηH)wηH = 0 in Definition 1.3 either hold for all choices of e or none,
since they are equivalent to Lw ⊆ L and L(1 − ηH)wηH = 0 respectively.
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We may write ‘w lumps stably for L’ as shorthand for Definition 1.3. It
follows from Theorem 1.2 that if w lumps stably for L then

(a) X = MC(α,w) lumps weakly to G/H for all initial distributions
α ∈ L, and

(b) for any initial distribution α ∈ L and all t, L always contains the
conditional distribution of Xt given X0H, . . . ,XtH.

The card shuffling example in §1.2 demonstrates that stable lumping is in-
teresting even in cases where the left-invariant random walk lumps strongly.
Thus for each e ∈ E•(H), Theorem 1.2 gives a necessary and sufficient
condition for the left-invariant random walk to lump stably for C[G]e. In
Corollary 8.3 we refine Theorem 1.2 to show that, in the irreducible case, all
weakly lumping weights can be obtained by considering real idempotents in
E•(H) ∩ R[H].

Remark 1.4. A left ideal L of C[G] may be expressed as L = C[G]e for
some idempotent e ∈ E(H) if and only if L decomposes as a direct sum of its
projections to the subspaces bC[H] of C[G], i.e. C[G]e =

⊕
b∈G/H bC[H]e.

(Here and throughout, the notation b ∈ G/H means that b varies over a
set of representatives for the left cosets bH of H in G.) This decomposition
shows that, as a left C[G]-ideal, C[G]e is isomorphic to the induced ideal
(C[H]e)

xG
H . (See Definitions 3.12 and 3.15 for the definition of induction and

induced ideals.) This connection between weak lumping and induced ideals
is a recurring theme in this work and critical to the proof of Theorem 1.2.

In Definition 5.11 below we define a Gurvits–Ledoux ideal for an irre-
ducible weight w to be an induced left ideal L of C[G] containing ηG and
such that Lw ⊆ L. We show in Proposition 5.12 that the left-invariant ran-
dom walk driven by w lumps stably for the Gurvits–Ledoux ideal L if and
only if L(1 − ηH)w ⊆ L(1 − ηH). This leads to a practical computational
test for weak lumping, starting at a distribution. By Definition 5.11, Lα,w
is the intersection of all Gurvits–Ledoux ideals containing α.

Corollary 1.5. Let w be an irreducible weight. The Markov chain MC(α,w)
lumps weakly to G/H if and only if Lα,w(1− ηH) ⊆ Lα,w.

In §6, we provide a practical computational procedure to compute Lα,w,
and in particular to compute LηG,w for any given weight w. It is an important
feature of this test that the computation of the left ideal Lα,w and the test
of whether Lα,w(1 − ηH) ⊆ Lα,w may be performed almost entirely within
C[H], making it more efficient than a direct application of the Gurvits–
Ledoux criterion (Theorem 2.6) when H is much smaller than G.

As a corollary, we obtain a practical test for weak lumping, in the wider
sense of Definition 1.1(b). Set Lw = LηG,w.

Corollary 1.6 (Weak lumping test for a weight). Let w be an irreducible
weight. The following are equivalent:

(i) The left-invariant random walk driven by w lumps weakly to G/H;
(ii) MC(ηG, w) lumps weakly to G/H;
(iii) Lw(1− ηH)wηH = 0;
(iv) The left-invariant random walk driven by w lumps weakly to G/H

with stable ideal Lw.
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Dual to the minimal ideal Lw in the previous corollary, we show in §5.3
that for each irreducible weight w there exists a maximal Gurvits–Ledoux
ideal L satisfying L(1−ηH)wηH = 0. We denote this ideal Jw. We provide a
practical computational procedure to compute Jw and use it to describe the
set of initial probability distributions α for which MC(α,w) lumps weakly
to G/H.

Theorem 1.7 (Weak lumping test for an initial distribution). Let w ∈ C[G]
be an irreducible weakly lumping weight. For each distribution α on G, the
Markov chain MC(α,w) lumps weakly to G/H if and only if α ∈ Jw.

Returning to Theorem 1.2, given e ∈ E•(H), let

Θ(e) =
{
w ∈ C[G] : ew(1− e) = 0, (e− ηH)wηH = 0

}
(1.1)

and let

Θ =
⋃

e∈E•(H)

Θ(e).

Theorem 1.2 implies that a weight w lumps weakly in the sense of Defini-
tion 1.1(b) if and only if w ∈ Θ; moreover in this case, as noted above, w
lumps weakly to G/H with stable ideal C[G]e, in the sense of Definition 1.3.
Equivalently, the set of weakly lumping irreducible weights is Γ ∩ ∆ ∩ Θ
where ∆ ⊆ R[G] is the simplex of probability distributions and Γ is the set
of elements of C[G] whose support is not contained in any proper subgroup
of G, i.e.

Γ = C[G] \
⋃

K�G
C[K].

Remarkably, as we show in Lemma 7.1, Θ(e) is a subalgebra of C[G]; that
is, Θ(e) is a vector subspace of C[G] closed under multiplication.

We have an interesting characterisation of when the union defining Θ is
irredundant. To state it, we require Definition 7.16: if the restriction to
the subgroup H of the permutation character of G acting on the cosets
of H contains every irreducible character of H, then we say that H has
full induction restriction. For instance, H has full induction restriction
whenever there is a double coset HxH of the maximum possible size |H|2,
or equivalently, whenever the permutation group of G acting on the left
cosets of H has a base (see [11, §4.13]) of size 2.

Proposition 1.8. The subgroup H of G has full induction restriction if and
only if the union defining Θ is irredundant, in the sense that no subalgebra
Θ(e) is contained in another.

We remark that for each choice of e ∈ E•(H), the conditions in (1.1)
give a finite system of linear equations that define Θ(e). These equations
can be re-expressed so that each equation refers only to values w(g) for
g in a fixed double coset HxH. This is made explicit in Corollary 1.12
and (12.2) and makes Theorem 1.2 a computationally effective result. We
also highlight Proposition 12.6, which states that the number of equations
in an irredundant system of equations for the condition ew(1 − e) = 0 on
C[HxH] is 〈

χC[H]e

y
H∩xHx−1 , (χx

−1

C[H](1−e))
y
H∩xHx−1

〉
.
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Here χC[H]e is the character of the left C[H]-ideal C[H]e, the downwards
arrow denotes restriction, and the inner product is as defined in (1.2) below
taking G = H∩xHx−1; see §3 for the remaining notation. This gives a good
flavour of how representation theory leads to results on our probabilistic
questions.

Let ? denote the algebra anti-involution on C[G] defined, for x ∈ C[G], by

x? =
∑

g∈G x(g)g−1. There is a beautiful duality between the left-invariant
random walk driven by a weight w and its time-reversal, which is the left-
invariant random walk driven by the weight w?. (Note that since w is
real-valued, w? =

∑
g∈Gw(g)g−1.)

Theorem 1.9 (Time reversal). Let e ∈ E•(H) and let w ∈ C[G] be a weight.
The left-invariant random walk on G driven by w lumps weakly to G/H with
stable ideal C[G]e if and only if the left-invariant random walk on G driven
by w? lumps weakly to G/H with stable ideal C[G](1− e? + ηH).

We have seen that strong lumping is a sufficient condition for weak lump-
ing. There is another commonly used sufficient condition for weak lumping,
called exact lumping (see Definition 2.19). In our setting it corresponds to
taking e = ηH in Theorem 1.2. Applying Theorem 1.9 to the characterisa-
tion in [8] of strong lumping, stated as (i) in the corollary below, we obtain a
simple criterion for exact lumping. The weight w in the following corollary
may be reducible.

Corollary 1.10. The left-invariant random walk driven by a weight w
(i) lumps strongly to G/H if and only if w(gH) is constant for left cosets

gH in the same double coset;
(ii) lumps exactly to G/H if and only if w(Hg) is constant for right cosets

Hg in the same double coset.

We remark that Propositions 2.25 and 2.26 give attractive reinterpreta-
tions of strong and exact lumping using conditional independence that may
be applied to this corollary. In Proposition 11.1 we show that this corollary
describes the two extreme cases of a family of results on weak lumping to
G/H indexed by the subgroups of H: strong lumping is the case of the
trivial subgroup, and exact lumping is the case where the subgroup is H
itself.

It is natural to ask for the possible transition matrices of the lumped
process when the left-invariant random walk on G lumps weakly to G/H.
This is addressed by our next main theorem. See §9.1 for the definition of
the orbital matrices MHxH . To orient the more expert reader we remark
that the algebra ηHC[G]ηH in (iii) is isomorphic to the Hecke algebra of
H-bi-invariant functions on the double coset space H\G/H. The weights
appearing in conditions (i), (ii) and (iv) below may be reducible.

Theorem 1.11. Let Q be a stochastic matrix with rows and columns indexed
by G/H. The following are equivalent:

(i) there is a weight w on G such that MC(ηG, w) lumps weakly to G/H
and the lumped chain has transition matrix Q;

(ii) Q is the transition matrix of the induced random walk on G/H driven
by a weight w in ηHC[G]ηH .
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(iii) Q satisfies Q(gH,g′H) = Q(kgH,kg′H) for all g, g′, k ∈ G;
(iv) Q is the transition matrix of the induced random walk on G/H driven

by a weight satisfying the conditions in Corollary 1.10 to lump both strongly
and exactly on G/H.

Our final main result is on the case when H is abelian. In this case the
set E•(H) is finite, and so we can make Theorem 1.2 very explicit. Let Ĥ
denote the set of irreducible linear characters of H and let 1H ∈ Ĥ denote
the trivial character. Let eφ = |H|−1

∑
h∈H φ(h−1)h denote the centrally

primitive idempotent in C[H] corresponding to the irreducible character

φ ∈ Ĥ. Let 〈−,−〉 denote the G-invariant inner product on C[G] defined by
〈∑

g∈G
α(g)g,

∑

k∈G
β(k)k

〉
=

1

|G|
∑

g∈G
α(g)β(g). (1.2)

Given a subspace V of C[G], let V ⊥ = {w ∈ C[G] : 〈v, w〉 = 0 for all v ∈ V }.
Corollary 1.12. Let D be a set of double coset representatives for H\G/H.
The left-invariant random walk on G driven by an irreducible weight w lumps

weakly on the left cosets of H if and only if there exists a subset P ⊆ Ĥ
containing 1H such that for all x ∈ D we have w ∈ ⋂x∈DW

⊥
x , where

Wx =
〈
eβxeγ : β ∈ P, γ ∈ (Ĥ\P ) ∪ {1H}, (β, γ) 6= (1H ,1H)

〉
.

We emphasise that the subspace Wx of C[G] appearing above is contained
in the double coset HxH and so each perpendicular space in the intersection
supplies dimWx independent equations that must be satisfied by the values
w(g) for g ∈ HxH. This is illustrated in our final example in §13.2.

1.2. Extended example: shuffles that frustrate card counters. This
extended example includes §1.2.4 where we give an infinite family of shuffles
in the symmetric groups Symn that lump weakly but not lump strongly or
exactly.

To get started, consider a deck of four cards, the Queen on top in posi-
tion 1, then the Jack in position 2, then the Ace in position 3 and finally
the King in position 4 at the bottom, as shown in the margin. (We pick

Q 1
J 2
A 3
K 4

this non-obvious order to distinguish more forcefully between positions and
card values.) Permutations in Sym4 act on the deck by permuting positions:
if card C is in position j then, after the shuffle g ∈ Sym4, card C is in
position jg. (Note that we act on the right, and so permutations compose
left-to-right: j(gh) = (jg)h.)

To put this into our algebraic setting, let G = Sym4 and let H =
Sym{2,3,4} be the subgroup of permutations that fix the top card. The left

cosets G/H are H, (1, 2)H, (1, 3)H, (1, 4)H; the left coset (1, k)H is precisely
those permutations moving the card in position k to position 1. The induced
process on left cosets therefore models the changing value of the top card:
‘what a card-counter sees’. A card-counter acquires no useful information
by memorizing the past history of values of the top card if and only if this
induced process is a Markov chain. (We shall see an explicit example of
this shortly.) Dually, the right cosets H\G are H,H(1, 2), H(1, 3), H(1, 4);
the right-coset H(1, k) is precisely those permutations moving the card in
position 1 to position k. As noted earlier by Pang in [28, Example 2.9] the
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induced process on right-cosets models the changing position of the initial
top card, here the Queen: ‘follow the lady’.

Lumping on right cosets. Since the left-invariant random walk (defined for
general G and H) is left-invariant, we have in particular

P[Xt = g′|Xt−1 = g] = P[Xt = hg′|Xt−1 = hg]

for all g, g′ ∈ G and h ∈ H. Hence P[HXt = Hg′|Xt−1 = hg] is constant as h
varies, and any left-invariant random walk lumps strongly on right cosets.
In particular it is always a Markov chain. In our shuffling setup, both claims
are obvious: the position of the Queen after a shuffle depends only on its
position before the shuffle. Since strong lumping implies weak lumping, it
follows that the left-invariant random walk lumps weakly on right cosets
for any weight w and initial distribution. Similarly, if Xt−1 is distributed
uniformly on Hg, then the distribution of Xt conditioned on HXt = Hg′

is uniform on Hg′. Hence the left-invariant random walk lumps exactly
on right cosets, in the sense of Definition 2.19, for any weight w. In our
shuffling setup, this says (for instance) that if we know the Ace, King and
Jack are uniformly distributed on the three positions known not to have the
Queen, then the same is true after the deck is shuffled. These relatively easy
observations contrast with the much deeper theory for left cosets lumping
in this article.

Lumping on left cosets. Since H has two orbits on {1, 2, 3, 4}, there are two
double cosets, H itself, corresponding to the orbit 1H = {1}, and H(1, 2)H
corresponding to the orbit 1(1, 2)H = {2, 3, 4}. The larger double coset is
shown in Figure 1.

1.2.1. Strong lumping. By Corollary 1.10(i), the left-invariant random walk
driven by a weight w lumps strongly to G/H if and only w(gH) is constant
for g ∈ H(1, 2)H, or equivalently, if and only if w

(
(1, 2)H

)
= w

(
(1, 3)H

)
=

w
(
(1, 4)H

)
. (Note the subgroup H is itself a double coset and gives no

restriction.) In Figure 1, the condition is that each row has equal weight.
In particular, this holds whenever the non-identity part of w is uniformly
distributed on any fixed right coset of H. Taking one element of the right
coset H(1, 2) in each left coset of H, together with the identity, we obtain
the random-to-top shuffle 1

4 id + 1
4(1, 2) + 1

4(1, 2, 3) + 1
4(1, 2, 3, 4).

1.2.2. Exact lumping. By Corollary 2.21, the left-invariant random walk
driven by a weight w lumps exactly to G/H if, when started at the uni-
form distribution on G, the distribution conditioned on the sequence of
observations of the value of the top card is uniform on the relevant left
coset. By Corollary 1.10(ii), this holds if and only if w(Hg) is constant for
g ∈ H(1, 2)H, or equivalently, if and only if w

(
H(1, 2)

)
= w

(
H(1, 3)

)
=

w
(
H(1, 4)

)
. Dualizing the previous remarks, this holds whenever each col-

umn in Figure 1 has equal weight, and in particular, whenever the non-
identity part of w is uniformly distributed on any left coset of H. Taking
one element of the left coset (1, 2)H in each right coset of H, together with
the identity, we obtain the top-to-random shuffle 1

4 id + 1
4(1, 2) + 1

4(1, 3, 2) +
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H(1, 4) H(1, 2) H(1, 3)

(1, 4)H

(1, 2)H

(1, 3)H

(1, 2) (1, 3, 2)(1, 4, 3, 2)

(1, 2)(3, 4) (1, 3, 4, 2)(1, 4, 2)

(1, 2, 3) (1, 3)(1, 4, 3)

(1, 2, 4, 3) (1, 3)(2, 4)(1, 4, 2, 3)

(1, 2, 3, 4) (1, 3, 4)(1, 4)

(1, 2, 4) (1, 3, 2, 4)(1, 4)(2, 3)

Figure 1. The double coset H(1, 2)H when G = Sym4 and H =
Sym{2,3,4}. Rows are left cosets and columns are right cosets. For later
use in §1.2.3, the double cosets TxT where T = Sym{2,3} are coloured.
Thus T (1, 3)T = (1, 2)T ∪ (1, 3)T =

{
(1, 3), (1, 2, 3)

}
∪
{

(1, 3, 2), (1, 2)
}

is
dark blue and T (1, 2, 3)T is light blue; in black and white any remain-
ing ambiguity can be resolved by noting that since (1, 4) ∈ NSym4

(T ),
we have T (1, 4) = (1, 4)T and hence H(1, 4) = T (1, 4) ∪ T (1, 4, 3)T and
(1, 4)H = (1, 4)T ∪ T (1, 3, 4)T .

1
4(1, 4, 3, 2). See §10 for more on the time-reversal symmetry between the
random-to-top and top-to-random shuffles.

1.2.3. Weak lumping: weights compatible with an idempotent. Consider the
subgroup T = Sym{2,3} of H = Sym{2,3,4}. The idempotent in C[Sym4]
corresponding to the uniform distribution on T is ηT = 1

2 id + 1
2(2, 3). By

Proposition 11.1, the left-invariant random walk driven by w lumps stably
for C[G]ηT , in the sense of Definition 1.3, if and only if the left-invariant
random walk driven by a weight w lumps exactly on the left cosets G/T
and 1

|TgH|w(TgH) is constant for TgH ⊆ H(1, 2)H. In particular, if the
non-identity part of w is supported on H(1, 2)H, then it is necessary and
sufficient that

• w(Tg) = w
(
Tg(2, 3)

)
for all g ∈ H(1, 2)H;

• w
(
(1, 4)H

)
= 1

2w
(
(1, 2)H

)
+ 1

2w
(
(1, 3)H

)
.

In particular, if 0 ≤ λ ≤ 1 and

w = (1− λ)id + λ
3

(
(1, 4)(2, 3) + (1, 4, 3) + (1, 4, 2, 3)

)
(1.3)

then both conditions hold. (For the first condition, note that T (1, 4) =
{(1, 4)(2, 3), (2, 3)} = T (1, 4)(2, 3) so the condition holds for T (1, 4), and
since (1, 4, 3)(2, 3) = (1, 4, 2, 3), so it holds for T (1, 4, 3) and T (1, 4, 2, 3), the
other relevant cosets.) But since w is neither constant on the rows nor on
the columns in Figure 1, this weight does not lump strongly or exactly.

The probabilistic interpretation is as follows: ask a friend to take the deck
of cards in its starting configuration, and, if a fair coin lands heads, swap
the middle two cards. This gives an initial distribution corresponding to the
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idempotent ηT ∈ C[G]. The deck is then shuffled repeatedly according to
w, and after each shuffle, the top card is revealed. Since MC(ηT , w) lumps
weakly, the sequence of values of the top card is a Markov chain on the
set of cards {A,K,Q, J}. Thus the shuffle frustrates card counters: thanks
to the Markov property, the card counter gets no benefit from memorizing
the past history of the top card. Moreover the distribution, conditioned on
the observation that the card starting in position k is on top, gives equal
probability to g and g(2, 3) for each relevant g, namely those g such that
kg = 1. In the special case when λ = 3

4 and so w gives equal probability 1
4

to each shuffle, the probabilities pk that the card in position k moves to the
top are

k 1 2 3 4

pk
1
4 0 1

2
1
4

and it follows that, at every time, each card is equally likely to be at the top
position. Therefore the sequence of top cards is not only Markov, but in fact
independent and uniformly equidistributed. We remark that the entropy of
w in this case is −4 × 1

4 log2
1
4 = 2; this is the least possible entropy of

a shuffle that induces a weak lumping with these properties. The shuffle
defined with λ = 1

4 , with our chosen initial distribution, is therefore not
only frustrating to card counters, but also fair and efficient!

Finally, we show that while our chosen weight w, namely (1 − λ)id +
λ
3

(
(1, 4)(2, 3) + (1, 4, 3) + (1, 4, 2, 3)

)
, lumps weakly, MC(α,w) may fail to

lump weakly to G/H if the initial distribution is outside C[Sym4]ηT . Started
deterministically at the identity, the pack reads QJAK top-to-bottom. We
have

P[X3 = J | X2 = Q, X1 = Q] = 0

since the event {X2 = Q, X1 = Q} implies that each of the first two shuffles is
the identity, and no shuffle in the support of w moves position 2 to position 1.
On the other hand,

P[X3 = J | X2 = Q] 6= 0,

since the sequence of shuffles

QJAK
(1,4,3)

AJKQ
(1,4)(2,3)

QKJA
(1,4,3)

JKAQ

is consistent with the event {X2 = Q}.
1.2.4. A variation and infinitely many weakly lumping shuffles. Take a deck
of n cards, and shuffle as follows:

Remove the bottom card, insert it under a random card cho-
sen uniformly from the remaining deck, then move the top
card to the bottom.

In the case n = 4, this is the shuffle driven by the weight w above, de-
fined with λ = 0 so that the identity permutation has zero probability. By
Proposition 11.3, this shuffle lumps weakly to left cosets of Sym{2,...,n} inside
Symn, but, as seen in the special case n = 4, it does not lump strongly or
exactly. Proposition 11.1 may be used to give many other such examples of
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infinite families of weakly lumping left-invariant random walks, parametrised
by degree, that do not lump strongly or exactly.

1.2.5. Weak lumping: idempotents compatible with a weight. We have seen
that the left-invariant random walk driven by the weight w defined in (1.3)
weakly lumps for distributions in C[G]ηT . Correspondingly, as expected
from Theorem 1.2 in the case e = ηT , we have

ηTw(1− ηT ) = 0,

(ηT − ηH)wηH = 0.

Consider the weight w′ = ηTw =
(

1
2 id +1

2(2, 3)
)
w corresponding to first

swapping the middle two cards according to a coin-flip, and then shuffling
according to w (defined with general λ). Since ηT is an idempotent and
ηHηT = ηH , the two displayed equations above hold replacing w with w′.
Therefore w′ satisfies the conditions of Theorem 1.2 for e = ηT and, by this
theorem, the weight w′ also weakly lumps for distributions in C[G]ηH . Using
the definition w = (1−λ)1

4 id+λ
(

1
4(1, 4)(2, 3)

)
+ 1

4(1, 4, 3)+ 1
4(1, 4, 2, 3)

)
and

the coset diagram in Figure 1, it is easy to see that

w′ = ηTw = (1− λ)
(

1
8 id +1

8(2, 3)
)

+ λ
8

∑

g∈H(1,2)

g

where the first two summands are 1−λ
4 ηT . It easily follows that w′ satisfies

the condition in Corollary 1.10(i) for strong lumping. This should be ex-
pected from the previous subsection, because w′ includes the randomising
effect of the choice of initial distribution in C[G]ηT . This example also shows
that weak lumping and stable lumping are still of interest, even in the case
when the left-invariant random walk lumps strongly.

We use this example to illustrate the constructive methods of §6 in Ex-
amples 6.1 and 6.2.

1.3. Why irreducible weights? Figure 2 shows a pentagon whose vertices
are labelled by the residue classes modulo 5 and whose front and back faces
are marked F and B, respectively. Let σ be anticlockwise rotation by 2π/5
and let τ be reflection through the vertical axis. These symmetries preserve
the position of the pentagon in the plane and generate the dihedral group
of order 10 with presentation

G = 〈σ, τ : σ5 = τ2 = (στ)2 = 1〉.
Let H = 〈τ〉. Observe that the left coset σiH consists of the permutations
σi and σiτ that move the vertex labelled −i to the top position. Thus the
left-invariant random walk on G lumps weakly on G/H if and only if the
sequence of observations of the label at the top position forms a Markov
chain. By Corollary 5.17, if the driving weight is irreducible, this holds
if and only if the chain lumps exactly or strongly. The weakly lumping
irreducible weights are therefore classified by Corollary 1.10. For example,
the uniform weight on σH = {σ, στ} lumps strongly; the uniform weight
on Hσ = {σ, σ−1τ} lumps exactly, and the uniform weight on {στ, σ−1τ}
lumps strongly and exactly; the latter is expected because the support is a
conjugacy class of G; as we explain in the literature survey in §1.4 below,
this follows from the main theorems of either [8] or [16].
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Figure 2. The pentagon in its fixed position on the plane showing the anti-
clockwise rotation σ by π/5, the reflection τ and the sequence of symmetries
σ, τ, σ, τ . The rotation σ acts on the vertex labels as the 5-cycle (0, 4, 3, 2, 1)
if the front face is uppermost and as the 5-cycle (0, 1, 2, 3, 4) if the back face
is uppermost.

Example 1.13. We take the weight 1 +σ ∈ C[G]. If the initial distribution
α is supported on 〈σ〉, respectively 〈σ〉τ , then at every time, σ permutes the
labels of the pentagon by the 5-cycle (0, 4, 3, 2, 1), respectively (0, 1, 2, 3, 4).
(This is shown visually in Figure 2.) In the first case the induced process
on the top label is the Markov chain on {0, 1, 2, 3, 4} in which the steps
j 7→ j − 1 mod 5 and j 7→ j are equally likely; the same holds in the second
case replacing j − 1 with j + 1. Therefore MC(α,w) lumps weakly to G/H.
Conversely, suppose that α

(
〈σ〉
)
> 0 and α

(
〈σ〉τ

)
> 0. The sequence of

observations of the label at the top position is then of one of the two forms

i, . . . , i, i+ 1, . . . , i+ 1, i+ 2, . . . ,

i, . . . , i, i− 1, . . . , i− 1, i− 2, . . .

where the first label seen other than i is i−1 if at time 0 face F was uppermost
and i+ 1 if at time 0 face B was uppermost. Writing Yt for the label at the
top position at time t, and noting that it is possible that Y4 = 0 and Y5 = 1,
we have P[Y6 = 0 | Y5 = 1, Y4 = 0] = 0 whereas P[Y6 = 0 | Y5 = 1] > 0.
Therefore MC(α, 1 + σ) lumps weakly if and only if α is supported on a
single coset of 〈σ〉.

This example shows that, in the reducible case, the set of initial distribu-
tions α such that MC(α,w) lumps weakly need not be convex. This rules
out any routine generalization of our main result, Theorem 1.2, beyond the
irreducible case. See also Example 2.1 for another illustration of the more
complicated behaviour seen in the reducible case. We believe this case is of
considerable interest and plan to study it further in a sequel to this paper.

1.4. Earlier work. For two excellent surveys of the vast literature on left-
invariant random walks on finite groups we refer the reader to Diaconis [13]
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and Saloff-Coste [33]. In particular, by [33, Proposition 2.3] the left-invariant
random walk on a finite group G driven by a weight w is irreducible if
and only if the support of w generates G, and is aperiodic if and only if
the support of w is not contained in a coset of a proper normal subgroup
of G. As we saw in §1.2 the left-invariant random walk on a symmetric
group models repeated shuffles of a deck of cards. Notable examples where
representation theory has been used to analyse the mixing times of shuffles
include the r-top-to-random shuffle studied in [7], [14], [18] and [29], and
the riffle shuffle, studied in [1] and [4]. The recent book [15] is an excellent
introduction to this area. The left-invariant random walks on general linear
groups, or more broadly, finite groups of Lie type, have also been extensively
studied: see [25, Theorems 1.8, 1.9] and [33, §9.4] for further references.

Weak lumping in general. We refer the reader to §2 for a comprehensive
survey of weak lumping including a characterisation of weak lumping due
to Gurvits and Ledoux [20] that is the basis of all our main results. Earlier
introductory accounts include [24, §6.4] and [28, §2.4].

Weak lumping of the top-to-random shuffle. Applying the RSK correspon-
dence (see for instance [19]) to a permutation σ ∈ Symn one obtains a pair
of standard tableaux (S, T ) of the same shape. For example, σ is a non-
trivial top-to-random shuffle if and only if S and T have shape (n − 1, 1)
and the unique entry in the second row of the insertion tableau S is 2; the
entry in the second row of the recording tableau T is then the position of
the top card after the shuffle. In [18, Theorem 3.1], Fulman proves that
after t steps of the top-to-random shuffle, starting at the identity, the dis-
tribution of the RSK shape of the permutation agrees with the probability
distribution after t steps of a random walk on partitions of n defined using
Plancherel measure, started at (n). Since the RSK shape of the identity
is (n), this might suggest the top-to-random shuffle lump strongly to parti-
tions by taking RSK shapes, but by Proposition 7.2 in [7], this is not the
case. However, in [28, Theorem 3.9], Pang showed that taking RSK shapes
in a modified version of the shuffle does lump weakly on a subspace of dis-
tributions (as in Corollary 2.12) that are constant on sets of permutations
having equal insertion tableau S. This leads to a conceptual proof via weak
lumping of Fulman’s result, which, as Fulman remarks on page 12 of [18]
initially seemed ‘quite mysterious’.

Strong lumping to right cosets. As we saw in §1.2, the left-invariant random
walk lumps strongly on right cosets for any subgroup H of G. In [3, Appen-
dix 1] (where left- and right- are swapped relative to this paper) the authors
prove this fact and describes the transition matrix of the lumped walk. This
fact is used in [28, Example 2.8] to show that the Markov chain on Fn2 driven
by flipping a position chosen uniformly at random lumps strongly by delet-
ing any single bit and in [28, Example 2.9] to give a shuffling example in
which the lumped chain tracks the position of a chosen card. In [28, Exam-
ple 2.11] the case G = Symn and H = Symr ×Symn−r is used to show that
the r-top-to-random shuffle lumps strongly by recording the positions of the
r cards beginning at the top of the deck.
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Strong lumping to left and double cosets. As we explain in §4, the double
cosets of a finite group G for subgroups H and K are the subsets HxK
for x ∈ G. In [16], Diaconis, Ram and Simper prove that if the weight w
is conjugacy-invariant, that is w(g) = w(t−1gt) for all g, t ∈ G, then the
left-invariant random walk lumps strongly to the double cosets H\G/K for
any subgroups H and K. Theorem 1.2 in [16] characterises the stationary
distribution of the lumped chain and gives a good bound on the mixing
time. Later, in [8], Britnell and Wildon gave a necessary and sufficient
condition for the left-invariant random walk to lump strongly to the double
cosets H\G/K. Their Corollary 1.2 implies that a left-invariant random
walk lumps strongly to H\G/H if and only if it lumps strongly to the left
cosets G/H; by Corollary 1.10(i) this holds if and only if w(gH) is constant
for left cosets gH in the same double coset.

Notable examples of strong lumping to left and double cosets. The r-random-
to-top shuffle is the shuffle of a deck of n cards in which r cards, chosen
uniformly at random, are moved to the top of the pack, while maintaining
their relative order. As we saw in the special case r = 1 in §1.2, it lumps
strongly to the left cosets of Symr ×Symn−r; the lumped Markov chain has

states corresponding to the
(
n
r

)
possible sets of labels of the top r cards in

the deck, and in fact it always transitions to a uniform random state. In
[8, §3.2] it is shown that a family of shuffles generalizing the r-random-to-
top shuffle lumps strongly to the double cosets of Symr ×Symn−r in Symn;
the lumped random walks are reversible and have some remarkable spectral
properties. The time reversal of the r-random-to-top shuffle is the r-top-
to-random shuffle, in which the top r cards from the pack are moved to r
positions in the pack chosen uniformly at random, again maintaining the
relative order of the r moved cards and the relative order of the other n− r
cards. By Theorem 1.9, the r-top-to-random shuffle lumps exactly to the left
cosets of Symr ×Symn−r in Symn, and lumps exactly to the double cosets
of Symr ×Symn−r in Symn. These shuffles are notable because the weights
are not conjugacy invariant (except in the trivial case r = n), and so the
full power of the results from [8] and Theorem 1.9 is required.

We refer the reader to [16] for a wealth of further examples of strong
lumping to double cosets of random walks driven by conjugacy invariant
weights: particularly notable is Example 2.3, that the random walk on a
finite group of Lie type driven by multiplication by such a weight lumps
strongly to the double cosets of a Borel subgroup, and so induces a random
walk on its Weyl group.

Weak lumping of other left-invariant random walks. Besides the result of
Pang already mentioned, where the lumping is to partitions, we know of
no substantial examples in the literature of weak lumpings of left-invariant
random walks that are not also strong lumpings. In particular, the present
paper is the first to study weak lumpings of the left-invariant random walk
to left cosets; as our extended examples in §1.2 and §13.2 show, the theory
we develop is broadly applicable. We hope this paper will lead to further
interesting examples of weak lumping.
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1.5. Outline. The outline of this paper is as follows.

• In §2 we present the necessary background from probability the-
ory. In particular Theorem 2.6 and Corollary 2.12 give a short self-
contained proof of a characterisation of weak lumping due to Gurvits
and Ledoux [20].
• In §3 we give the necessary background from representation theory

including a primer on induced representations and the Wedderburn
decomposition.
• In §4 we collect basic results on the double coset decomposition of

groups including a special case of Mackey’s restriction formula.
• In §5 we use Theorem 2.6 to show that weak lumping of the right-

invariant random walk is controlled by the behaviour of left ideals
of C[G] of the form C[G]e where e ∈ E•(H) and to prove Theo-
rem 1.2, Corollary 1.5, Corollary 1.6 and Theorem 1.7.
• In §6 we give efficient computational algorithms for the tests in

Corollary 1.6 and Theorem 1.7, illustrated by the running example
in §1.2.
• In §7 we make a detailed study of the weak lumping algebras Θ(e)

defined in (1.1) and prove Proposition 1.8.
• In §8 we prove Corollary 8.3, which shows that only idempotents

with real coefficients need to be considered in Theorem 1.2 to obtain
all weakly lumping weights.
• In §9 we prove Theorem 1.11.
• In §10 we state and prove Theorem 10.1, a new result relating

duality and time reversal for weak lumping of general finite time-
homogeneous Markov chains, and use it to prove Theorem 1.9 and
Corollary 1.10.
• In §8 we prove Corollary 8.3, which shows that only idempotents

with real coefficients need to be considered in Theorem 1.2 to obtain
all weakly lumping weights.
• In §11 we prove Proposition 11.1; this generalizes part of the shuffling

example in §1.2 and gives a rich supply of left ideals for which the
left-invariant random walk lumps stably.
• In §12 we show how to interpret the conditions in Theorem 1.2 and

our other main results working double coset by double coset.
• In §13 we finish by applying the results of the previous section to

the case where H is abelian, obtaining a very sharp description of
the weakly lumping weights in Proposition 13.2 and proving Corol-
lary 1.12. We finish with an extended example in which G = Sym4

and H = 〈(1, 2, 3, 4)〉.

2. Background from Markov chain theory

In this paper we are concerned with discrete time-homogeneous Markov
chains (DTHMCs) with finite state spaces. A DTHMC is specified by a
state space A, a probability measure µ on A, and a stochastic matrix P
whose rows and columns are indexed by the elements of A. We call µ the
initial distribution, P the transition matrix, and we denote this DTHMC by
X = MC(µ, P ). It is a random variable X = (Xt)t∈N0

with the properties
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that

P[X0 = x] = µ(x), for each x ∈ A,

and for any t ≥ 1 and any sequence x0, . . . , xt ∈ A,

P[X0 = x0, . . . , Xt = xt] = µ(x0)P (x0, x1) . . . P (xt−1, xt).

It follows from this definition that for any t ≥ 0, any y ∈ A, and any
sequence x0, . . . , xt such that P[X0 = x0, . . . , Xt = xt] > 0, we have

P[Xt+1 = y | X0 = x0, . . . , Xt = xt] = P[Xt+1 = y | Xt = xt] = P (xt, y).

In a predecessor to this paper, Britnell and Wildon [8], the term ‘Markov
chain’ refers to a transition matrix, with the initial distribution left unspec-
ified. This is how the term was used in the older probability literature,
for example Kemeny and Snell [24]. In the recent probability literature, a
‘Markov chain’ more often means a stochastic process with a countable state
space. This is the usage here.

We follow the usual convention of probabilists that transition matrices act
on the right on row vectors. Thus the matrix entry P (x, y) or Px,y stands for
the conditional probability that our Markov chain steps next to y given that
it is currently at x. For example, the left-invariant random walk driven by
a weight w has transition matrix P (x, y) = w(x−1y)/w(G). If w(G) = 1 we
say the weight is normalized. The statement that a probability distribution µ
is stationary for P is written algebraically as µP = µ. When µ is stationary
for P and X = MC(µ, P ), we have for each t ≥ 0 that Xt ∼ µ, meaning
that Xt is distributed according to µ.

When X = (Xt)t≥0 is a DTHMC with state space A and f : A → B is
a function, we will write f(X) to mean the discrete time stochastic process
(f(Xt))t≥0. The process f(X) is typically not a Markov chain. This is neatly
illustrated by the deterministic bottom-to-top shuffle of a deck of n ≥ 3 cards
that is initially uniformly distributed among the n! possible orders. It is also
possible for f(X) to be a Markov chain without being time-homogeneous,
as the following example shows.

Example 2.1 (Inhomogeneous Markovian image process). Let n > 2 and
let G = 〈σ, τ | σn, τ2, (στ)2 = 1〉 be the dihedral group of order 2n, as
seen in §1.3 in the case n = 5. Let (Xt)t≥0 be the left-invariant random
walk on G driven by the weight w = 1

2(τ + στ), with initial distribution α.
This weight is irreducible, but the transition matrix of the walk is periodic.
Let H be the order 2 subgroup 〈τ〉. We get an inhomogeneous Markov
process (XtH)t≥0 on G/H if the initial distribution α is either concentrated
on 〈σ〉 or concentrated on 〈σ〉τ . In either case, the transition matrices of
(XtH)t≥0 form an alternating sequence. For any other initial distribution
α, the process (XtH)t≥0 is not a Markov chain.

Definition 2.2 (Weak lumping with a given initial distribution). When
X = MC(µ, P ) and f(X) is a DTHMC, we say that X lumps weakly under
f , and we say that P lumps weakly under f starting in distribution µ.

Definition 2.3 (Weak lumpability). A transition matrix P on a state space
A is weakly lumpable under f if there exists an initial distribution µ on A
such that f(MC(µ, P )) is a DTHMC.
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If the map f is understood in the context, for example, when it is the
quotient map from A = G to B = G/H, we may also talk about weak
lumping to B or on B instead of weak lumping under f . We avoid using
the terms lumping, lumpable, and lumpability on their own, because in some
of the literature (for instance [8]) this has been used to refer to the concept
of strong lumping in the sense of Definition 2.18 below.

2.1. The Gurvits–Ledoux characterisation of weak lumping of time
homogeneous Markov chains. Gurvits and Ledoux [20] characterised
weak lumping of DTHMCs with finite state spaces using linear algebra.
They also considered higher order Markov chains and hidden Markov chains
with probabilistic output functions. In their notation, transition matrices
act on the left on column vectors. To establish our preferred notation and to
keep our paper self-contained, we now give a rapid exposition of some results
from [20] which we will use in our study of weak lumping of left-invariant
random walks from G to G/H. We also introduce a new notion of stable
weak lumping and develop some of its properties.

Let A and B be finite sets and f : A→ B a surjective function. Then A
is partitioned into the non-empty lumps f−1(b) for b ∈ B. The linear map
F : RA → RB induced by f is defined on the canonical bases of RA and RB
by F (ea) = ef(a). Acting on the right on row vectors, F is represented by
the matrix defined by Fa,b = 1 if f(a) = b and 0 otherwise. For any vector

subspace V of RA, we define

V ◦ = V ∩ kerF. (2.1)

The space V ◦ consists of those vectors in V such that the sum of the coor-
dinates over the lump f−1(b) vanishes for each b ∈ B. We also define linear
endomorphisms of RA which act on the right on standard basis vectors (ea
for a ∈ A) by

eaΠb =

{
ea if f(a) = b,

0 otherwise.

Thus Πb is the projection onto the direct summand indexed by b in the
direct sum

RA =
⊕

b∈B
Rf
−1(b).

Since we are using row vectors, the matrices P , F and Πb act on the right.
When V is a linear subspace of RA and M is a linear map with domain RA,
we write

VM = {vM : v ∈ V }.
We also use the above notations adapted to complex vector spaces.

Definition 2.4. If V is a real linear subspace of RA or a complex linear
subspace of CA then we call V a Gurvits–Ledoux space if it satisfies V P ⊆ V
and VΠb ⊆ V for every b ∈ B.

Every Gurvits–Ledoux space V satisfies V =
⊕

b∈B VΠb.

Definition 2.5. For P ∈ Mat(RA) a stochastic matrix and α ∈ RA a
probability distribution, let V (f, P, α) be the minimal vector space V ⊆ RA
such that
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(a) α ∈ V ,
(b) V P ⊆ V ,
(c) VΠb ⊆ V for all b ∈ B.

This definition makes sense because each of conditions (a)–(c) is closed
under intersection and V = RA satisfies (a)–(c). Note that V (f, P, α) is
the minimal real Gurvits–Ledoux space containing α. It is straightforward
to check that the minimal complex Gurvits–Ledoux space containing α is
C⊗R V (f, P, α).

Readers who wish to compare our exposition with that of Gurvits and
Ledoux [20] will find that they take A = {1, . . . , N} and B = {1, . . . ,M},
their map ϕ is our f , and the space we have called V (f, P, α) is called
CS(α,Π., P ) there. We shall not comment further on the translation between
[20] and our notation, but simply state their results in our notation.

We have kerF =
⊕

b∈B(kerF )Πb, so

V (f, P, α)◦ =
⊕

b∈B

(
(V (f, P, α)Πb) ∩ kerF

)
=
⊕

b∈B
V (f, P, α)◦Πb. (2.2)

Considering X = MC(α, P ), we say that a finite sequence (b0, . . . , bt) of
elements of B is an α-possible sequence if P[f(X0) = b0, . . . , f(Xt) = bt] > 0.
For any such sequence, let C(α; b0, . . . , bt) be the conditional distribution of
Xt given f(X0) = b0, . . . , f(Xt) = bt, thought of as a row vector in RA. The
vector space V (f, P, α) is the minimal linear subspace of RA that contains
C(α; b0, . . . , bt) for every α-possible sequence (b0, . . . , bt).

Notice that f(X) is a time-homogeneous Markov chain if and only if
the conditional distribution of f(Xt+1) given f(X0) = b0, . . . , f(Xt) = bt
depends only on the value bt, and is given by the same function for all times
t. In other words, f(X) is a time-homogeneous Markov chain if and only if

C(α; b0, . . . , bt)PF = C(α; b′0, . . . , b
′
t′)PF

whenever (b0, . . . , bt) and (b′0, . . . , b
′
t′) are α-possible sequences and bt = b′t′ .

For each b ∈ B, let

S(α, b) =
{
C(α; b0, . . . , bt) : t ≥ 0, bt = b, (b0, . . . , bt) α-possible

}
.

Observe that

V (f, P, α)Πb =
〈
S(α, b)

〉
.

where, as ever, angled brackets denote the linear span of a set of vectors.
Hence

V (f, P, α)◦Πb = V (f, P, α)Πb ∩ kerF =
〈
µ− ν : µ, ν ∈ S(α, b)

〉
.

We see that the following are equivalent:

• f(X) is a time-homogeneous Markov chain,
• for all b ∈ B, and for all µ, ν ∈ S(α, b), we have (µ− ν)PF = 0,
• for all b ∈ B, we have V (f, P, α)◦ΠbPF = {0}, and
• V (f, P, α)◦PF = 0.

The third and fourth conditions above are equivalent by (2.2). Finally,

V (f, P, α)◦P ⊆ V (f, P, α)P ⊆ V (f, P, α),
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so we have

V (f, P, α)◦PF = 0 ⇐⇒ V (f, P, α)◦P ⊆ V (f, P, α)◦.

We have proved the following result of Gurvits and Ledoux.

Theorem 2.6 (Gurvits and Ledoux [20, Corollary 9]). The Markov chain
MC(α, P ) lumps weakly under f if and only if V (f, P, α)◦P ⊆ V (f, P, α)◦.

Now consider some non-empty set A ⊂ RA of probability vectors. We ask
whether the image process f(MC(α, P )) is a DTHMC for every α ∈ A, with
a transition matrix that does not depend on the choice of α from A.

Definition 2.7. For P ∈ Mat(RA) a stochastic matrix and A ⊂ RA a
non-empty set of probability vectors, V (f, P,A) =

∑
α∈A V (f, P, α).

It is straightforward to see that V (f, P,A) is the minimal Gurvits–Ledoux
subspace of RA that contains every element of A.

Theorem 2.8 (Gurvits and Ledoux ([20, Corollary 11]) ). For a non-empty
set A of probability vectors in RA, the following are equivalent:

(a) there exists a stochastic matrix Q from B to B such that for every α ∈
A, f(MC(α, P )) is a time-homogeneous Markov chain with transition
matrix Q,

(b) V (f, P,A)◦P ⊆ V (f, P,A)◦,
(c) V (f, P,A)◦PF = 0.

Proof. Since V (f, P,A)P ⊆ V (f, P,A), (b) and (c) are equivalent. Con-
dition (a) implies that V (f, P, α) ⊆ ker(PF − FQ) for each α ∈ A, so
V (f, P,A) ⊆ ker(PF − FQ). Since V (f, P,A)◦F = 0 by definition, we
deduce V (f, P,A)◦PF = 0. Thus (a) implies (c). Now assume (c) and
let α ∈ A. We have V (f, P, α)◦ ⊆ V (f, P,A)◦ so V (f, P, α)◦PF = 0 and
V (f, P, α)◦P ⊆ V (f, P, α)◦ and, by Theorem 2.6, MC(α, P ) lumps weakly
under f . Let Qα be the transition matrix of f(MC(α, P )), which is defined
only on the set

{f(x) : (αPm)x > 0 for some m ≥ 0}.
To complete the proof that (c) implies (a) we must show that the y-rows of
Qα and Qβ agree, for any α, β ∈ A and any y ∈ B such that row y is defined
for both Qα and Qβ. Choose m ≥ 0 such that v = αPmΠy 6= 0, and n ≥ 0
such that w = βPnΠy 6= 0. Then v and w are both supported on the lump
f−1(y), and w(f−1(y))v − v(f−1(y))w ∈ V (f, P,A)◦, so

0 =
(
w
(
f−1(y)

)
v − v

(
f−1(y)

)
w
)
PF

= w
(
f−1(y)

)
vFQα − v

(
f−1(y)

)
wFQβ

= w
(
f−1(y)

)
v
(
f−1(y)

)
ey(Q

α −Qβ).

Hence the y-rows of Qα and Qβ coincide. It follows that (c) implies (a). �

The matrix Q in the above theorem may not be uniquely determined,
because there may be some element b ∈ B such that for any α ∈ A the
Markov chain MC(α, P ) never visits f−1(b).

We shall also make use of the following consequences of Theorem 2.8.
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Corollary 2.9 (Algorithm to test for weak lumping of MC(α, P ) under f).
Begin by setting V0 = 〈αΠb : b ∈ B〉. Then, inductively for t = 0, 1, 2, . . . ,
define

Vt+1 = Vt +
∑

b∈B
VtPΠb.

Let k = inf{t ≥ 0 : Vt+1 = Vt}. Then k ≤ |A| − 1, Vn = Vk for all t > k,
and Vk = V (f, P, α). Hence MC(α, P ) lumps weakly under f if and only if
V ◦k PF = {0}.
Proof. The assertion that k ≤ |A| − 1 follows from the fact that dimV0 ≥ 1,
Vt+1 ⊇ Vt and therefore dimVt+1 ≥ dimVt, for each t ≥ 0, and Vt ⊆ RA so
dimVt ≤ |A| for all t. So

k = inf{t ≥ 0 : dimVt+1 = dimVt} ≤ |A| − dimV0 ≤ |A| − 1.

From the inductive definition of Vt+1 in terms of Vt it is clear that Vk+1 = Vk
implies Vt = Vk for all t > k. Each Vt is the direct sum of its Πb-projections,
and each Vt contains α. Moreover,

VkP ⊆
∑

VkPΠb ⊆ Vk+1 = Vk

so V = Vk is a vector space satisfying conditions (a)–(c) of Definition 2.5.
To show that Vk is the minimal such space, check by induction on t that
any such V must contain Vt for every t ≥ 0, and in particular V ⊇ Vk. �

Definition 2.10 (Stable lumping). Let P ∈ Mat(RA) be a stochastic matrix
and let V be any real vector subspace of RA or complex vector subspace of
CA such that

(a) V contains at least one probability vector.
(b) V P ⊆ V ,
(c) VΠb ⊆ V for all b ∈ B,
(d) V ◦PF = 0 or equivalently V ◦P ⊆ V ◦, where V ◦ := V ∩ kerF .

Then we say that P lumps weakly under f with stable space V , or more
briefly that P lumps stably for V .

If MC(α, P ) lumps weakly under f then P lumps stably for the real vector
space V (f, P, α). The same matrix P may also lump stably for other spaces
V ⊆ RA such that V (f, P, α) ⊆ V . If P lumps stably for a complex vector
space V ⊆ CA then P also lumps stably for the real vector space RA∩V . On
the other hand, if P lumps stably for a real vector space V ⊆ RA then P also
lumps stably for the complexification V ⊗R C. Our reason for considering
complex vector spaces in this paper is that, as remarked in the introduction,
we wish to make use of results in representation theory that hold for the
group algebra C[G], but do not hold for R[G], because R is not algebraically
closed.

Remark 2.11. We show below (see Proposition 5.12) that Definition 2.10
is compatible with Definition 1.3 in the case where P = Pw is the transition
matrix of a left-invariant random walk on a finite group G driven by a weight
w, f is the natural map G → G/H, and the space V ⊆ CG is a left ideal
C[G]e of C[G], where e ∈ E•(H). That is, w lumps stably for C[G]e in the
sense of Definition 1.3 if and only if Pw lumps stably for V in the sense of
Definition 2.10.
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The next result is a corollary of Theorem 2.6; a partial converse to it is
Lemma 2.17.

Corollary 2.12 (Stable spaces as certificates of weak lumping). Suppose
P lumps weakly under f with (real or complex) stable space V , and let α
be any probability vector in V . Then X = MC(α, P ) lumps weakly un-
der f . Moreover, for each t ≥ 0 the conditional distribution of Xt given
f(X0), . . . , f(Xt) always lies in V .

Proof. Conditions (b) and (c) in Definition 2.10 imply that V (f, P, α) ⊆ V ,
and (d) implies that (V ∩ kerF )P ⊆ kerF , so

V ◦(f, P, α)P =
(
V (f, P, α) ∩ kerF

)
P ⊆ (V ∩ kerF )P ⊆ kerF.

We also have from the definition of V (f, P, α) that V (f, P, α)P ⊆ V (f, P, α),
so V ◦(f, P, α)P ⊆ V ◦(f, P, α), which by Theorem 2.6 implies that MC(α, P )
lumps weakly under f .

For any α-possible sequence (b0, . . . , bt), the conditional distribution of
Xt given f(X0) = b0, . . . , f(Xt) = bt is the normalisation of the vector v,
where v = αΠb0 if t = 0, and if t = 1 then v = αΠb0(PΠb1) . . . (PΠbt). By
induction using (b) and (c), we have v ∈ V . �

2.2. The irreducible case.

Lemma 2.13. If P ∈ Mat(RA) is an irreducible stochastic matrix and µ is
its unique stationary distribution then µ ∈ V (f, P, α) for every probability
distribution α on A. Moreover, if P lumps stably for V , then µ ∈ V .

Proof. By the ergodic theorem for irreducible Markov chains (see for in-

stance [24, Theorem 5.1.2(b)]), we have 1
n

∑n−1
i=0 αP

i → µ as n → ∞. The
terms in this convergent sequence belong to V (f, P, α) by properties (a)
and (b) in Definition 2.5. Since V (f, P, α) is a finite-dimensional vector
space, it is topologically closed, hence µ ∈ V (f, P, α). If P lumps stably
for V then we may pick a probability vector α ∈ V and then V (f, P, α) ⊆ V
so µ ∈ V . �

Corollary 2.14 (Weak lumpability of irreducible transition matrices). If
P ∈ Mat(RA) is an irreducible stochastic matrix and µ is its unique station-
ary distribution then P is weakly lumpable under f : A → B if and only if
MC(µ, P ) lumps weakly under f .

Proof. If MC(µ, P ) lumps weakly under f then P is weakly lumpable un-
der f , by the definition of weak lumpability. For the converse, suppose that
MC(α, P ) lumps weakly under f . Then µ ∈ V (f, P, α) by Lemma 2.13. It
follows that V (f, P, µ) ⊆ V (f, P, α) and hence V ◦(f, P, µ) ⊆ V ◦(f, P, α) and
therefore V ◦(f, P, µ)P ⊆ kerF . Since also

V ◦(f, P, µ)P ⊆ V (f, P, µ)P ⊆ V (f, P, µ),

we find
V ◦(f, P, µ)P ⊆ V (f, P, µ) ∩ kerF = V ◦(f, P, µ)

which by Theorem 2.6 implies that MC(µ, P ) lumps weakly under f . �

We remark that Corollary 2.14 was known long before the work of Gurvits
and Ledoux: see for example [24, Theorem 4.6.3]. We believe that the
following observation is new.
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Lemma 2.15 (Lattice of stable spaces for a weakly lumpable irreducible
transition matrix). Let P ∈ Mat(RA) be an irreducible stochastic matrix that
is weakly lumpable under f : A→ B, with unique stationary distribution µ.
The set of real subspaces of RA for which P lumps stably is a lattice under
intersection and sum, with bottom element V (f, P, µ). Likewise the set of
complex subspaces of CA for which P lumps stably is a lattice with bottom
element V (f, P, µ)⊗R C.

Proof. The proof of Corollary 2.14 shows that when P is irreducible, every V
for which P lumps stably must contain µ and hence all of V (f, P, µ), and
if V is complex, then V (f, P, µ)⊗R C ⊆ V .

Next, consider two spaces U and V (both real or both complex) such
that P lumps stably for U and also for V . Let V = U ∩ V . Then µ ∈ U
and µ ∈ V so µ ∈ U ∩ V . We have V P ⊆ UP ⊆ U and likewise V P ⊆ V
so V P ⊆ V . For any b ∈ B, VΠb ⊆ UΠb ⊆ U and likewise VΠb ⊆ V so
VΠb ⊆ V . Finally, V ◦ = U ∩ V ∩ kerF = U◦ ∩ V ◦ so V ◦PF ⊆ U◦PF = 0.
We have shown that P lumps stably for V .

Now let W = U + V . Then µ ∈W and WP = UP + V P ⊆ U + V = W .
We have

W = U + V =
⊕

b∈B
UΠb +

⊕

b∈B
VΠb =

⊕

b∈B
(UΠb + VΠb)

so
WΠb = UΠb + VΠb ⊆ U + V = W

hence W =
⊕

b∈BWΠb. Since P is irreducible and f is surjective, for each

b ∈ B we have µ(f−1(b)) > 0. By Lemma 2.13 we have µ ∈ U and µ ∈ V ,
and so UΠb = 〈µΠb〉 ⊕ U◦Πb, for each b ∈ B, and likewise for V . Hence

WΠb = (U◦Πb + V ◦Πb)⊕ 〈µΠb〉,
and therefore W ◦ = U◦ + V ◦. Finally, W ◦PF = U◦PF + V ◦PF = 0 + 0.
We have shown that P lumps stably for W . �

It follows that for any irreducible P that is weakly lumpable under f ,
there exists a unique maximal space Vmax(f, P ) for which P lumps stably.
It contains V (f, P, α) as a subspace for every initial distribution α such that
MC(α, P ) lumps weakly under f .

Corollary 2.16 (Initial distributions compatible with an irreducible weight).
Let P ∈ Mat(RA) be an irreducible stochastic matrix with unique station-
ary distribution µ. Suppose MC(µ, P ) lumps weakly under the surjective
map f : A → B. Let I be the set of probability distributions α such that
MC(α, P ) lumps weakly under f . Then I is equal to the convex polytope
∆ ∩ Vmax(f, P ), where ∆ is the simplex of probability vectors in RA. More-
over, there exists a unique stochastic matrix Q ∈ Mat(RB) that serves as a
transition matrix for f(MC(α, P )) for every α ∈ I. This Q is given by

Q(i, j) =
1

µ(f−1(i))

∑

x∈f−1(i)

∑

y∈f−1(j)

µ(x)P (x, y). (2.3)

Proof. The characterisation of I is a straightforward corollary of Lemma 2.15
and Corollary 2.12. The existence of a single transition matrix Q from B
to B which serves as a transition matrix for f(MC(α, P )) for every α ∈ I
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follows from Theorem 2.8, by taking A = I and noting that then I ⊂
V (f, P, I) ⊆ Vmax(f, P ) so condition (c) of Theorem 2.8 is satisfied. Be-
cause P is irreducible and f is surjective, there is in fact a unique transition
matrix for f(MC(α, P )), for each α ∈ I. The expression (2.3) for Q in terms
of P and µ is obtained by calculating

P[f(X1) = j | f(X0) = i] =
P[f(X0) = i and f(X1) = j]

P[X0 = i]
.

Note that by the irreducibility of P and the surjectivity of f , the denomi-
nator P[X0 = i] = µ(f−1(i)) is non-zero for each i ∈ B. �

Let us emphasise that in the irreducible case the transition matrix for the
lumped process f(MC(α, P )) is independent of the initial distribution α.
In the reducible case this may fail, as we saw in Example 1.13. It can
even fail in the case where MC(α, P ) lumps weakly under f for every initial
distribution α. An example of this is given by A = {1, 2, 3, 4}, B = {1, 3, 4},
f(1) = f(2) = 1, f(3) = 3, f(4) = 4 and

P =




0 0 2/3 1/3
0 0 1/3 2/3
0 0 1 0
0 0 0 1


 .

Returning to the setting of Corollary 2.16, it follows that Vmax(f, P ) is
the maximal vector subspace V ⊆ RA with the properties

(1) V P ⊆ V ,
(2) VΠb ⊆ V for each b ∈ B, and
(3) V ⊆ ker(PF − FQ).

The space Vmax(f, P ) may therefore be computed by the following linear
algebra algorithm. To begin, set

V =
⊕

b∈B

{
v ∈ Rf−1(b) : v(PF − FQ) = 0

}
.

Note that this V satisfies condition (3) above. While V P 6⊆ V , replace V
by

V ∩
⊕

b∈B

{
v ∈ Rf−1(b) : vP ∈ V

}
.

The dimension of V cannot increase under this operation, and if it does not
decrease then

V =
⊕

b∈B

{
v ∈ Rf−1(b) : vP ∈ V

}

and hence V satisfies conditions (1)–(3) above, i.e. P lumps stably for V .
If W is any space for which P lumps stably, then throughout the algorithm
we have W ⊆ V . Therefore the final V is equal to Vmax. By the assumption
that MC(µ, P ) lumps weakly under f , we have 〈Πbµ : b ∈ B〉 ⊆ Vmax, hence
dimVmax ≥ |B|. Therefore the algorithm terminates after no more than
|A| − |B| replacement steps.

We end with a new result that we shall use in the proof of Proposition 8.5.
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Lemma 2.17 (Probabilistic characterisation of stable lumping). Let P ∈
Mat

(
RA
)

be an irreducible stochastic matrix, let f : A→ B be a surjection,

and let V ⊆ RA be a linear subspace containing at least one probability
vector. Suppose that for every probability vector α ∈ V the Markov chain
X = MC(α, P ) satisfies both

(i) X lumps weakly under f , and
(ii) for t ≥ 0, the conditional distribution of Xt given f(X0), . . . , f(Xt)

always lies in V .
Then P lumps weakly under f with stable space V .

Proof. By hypothesis, V contains at least one probability vector, say α, so
condition (a) of Definition 2.10 is satisfied. We may apply condition (ii) for
X = MC(α, P ) and average over the distribution of (f(X0), . . . , f(Xt)), to
see that the distribution of Xt lies in V for every t. By considering the mean
of the distributions of X0, . . . , Xt and taking the limit as t→∞, and using
that V is closed, we find that the unique stationary distribution µ for P
also lies in V . Now take an arbitrary β ∈ V . For sufficiently small ε we
have a strictly positive probability vector α = (µ + εβ)/(1 + ε

∑
a∈A βa),

to which we may apply condition (ii). Looking at the distribution of X1

where X = MC(α, P ), we find that αP ∈ V . Since µP = P , we deduce
βP ∈ V , verifying condition (b). Considering the conditional distribution
of X0 given f(X0) = b (which is well-defined for each b ∈ B because α has
strictly positive coordinates) we deduce that (µ+εβ)Πb ∈ V for each b ∈ B.
This holds for all sufficiently small ε, so βΠb ∈ V , verifying condition (c).
Finally, let γ ∈ V ◦, so γF = 0 and in particular

∑
a∈A γa = 0. Then

α+ = µ + εγ and α− = µ − εγ are probability vectors in V for sufficiently
small ε, so by condition (i) and Corollary 2.16 we have α+, α− ∈ Vmax(f, P ).
We have α+F = α−F by construction, so α+−α− = 2εγ ∈ Vmax(f, P )◦ and
hence γPF = 0, verifying condition (d). �

2.2.1. Earlier work of Rubino and Sericola. The set I described in Corol-
lary 2.16 was first characterised by Rubino and Sericola in [31, 32] by an
algorithm that computes the set of extreme vertices of I. As far as we
know, this algorithm may have exponential worst-case complexity because
the number of extreme points of a polytope can be exponentially large in
the dimension and the number of faces of the polyhedron. Indeed, the dual
version of McMullen’s upper bound theorem says that a convex polyhedron
of dimension d defined by N linear inequalities may have at most

(
N − dd/2e
bd/2c

)
+

(
N − bd/2c − 1

dd/2e

)

vertices, and this is sharp; see [27, §5.4 and §5.5]. In addition, Rubino and

Sericola gave an explicit set of
(
|B| + |B|2 + · · · + |B||A|

)
equations in the

entries of α and P , linear in α and polynomial of degree at most |A| in
P , such that MC(α, P ) lumps weakly under f if and only if all of these
equations are satisfied by (α, P ). The set of such pairs (α, P ) is therefore a
semi-algebraic set. More precisely, it is the intersection of an affine algebraic
variety with a product of simplices.
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2.3. Strong lumping. Strong lumping is a special case of weak lumping,
defined by a simple algebraic condition on the transition matrix.

Definition 2.18. A transition matrix P on A lumps strongly under a map
f : A→ B if whenever f(a) = f(a′), for every b ∈ B we have

∑

x∈f−1(b)

P (a, x) =
∑

x∈f−1(b)

P (a′, x).

This property is also known as Dynkin’s condition. If P lumps strongly un-
der f , then for every probability distribution α on A, the time-homogeneous
Markov chain MC(α, P ) lumps weakly under f . In fact, when Dynkin’s con-
dition holds then P lumps stably for V = RA. Indeed, conditions (a)–(c)
of Definition 2.10 hold trivially, and for condition (d) we must check that
(kerF )PF = 0. Since kerF is spanned by vectors of the form ea − ea′
where f(a) = f(a′), this is equivalent to Dynkin’s condition. Now apply
Corollary 2.12.

For the case of a left-invariant random walk on a finite group G, a simple
necessary and sufficient condition for strong lumping to G/H was given by
Britnell and Wildon [8]; see Corollary 1.10.

2.4. Exact lumping. Exact lumping is another special case of weak lump-
ing. It is the opposite extreme: in strong lumping the stable space V certi-
fying weak lumping is as large as possible, satisfying V = RA, while in exact
lumping the stable space is as small as possible, satisfying V ◦ = 0, where
V ◦ is as defined in (2.1).

Definition 2.19. Let α ∈ RA be a probability distribution and P a transi-
tion matrix from A to A. Then we say that MC(α, P ) lumps exactly under
f : A → B if V (f, P, α)◦ = 0. In the case where P is irreducible, with
unique stationary distribution µ, we say that P lumps exactly under f when
MC(µ, P ) lumps exactly under f .

Exact lumping implies weak lumping, by Theorem 2.6, because

V (f, P, α)◦ = 0 =⇒ V (f, P, α)◦ P ⊆ V (f, P, α)◦.

Lemma 2.20. Consider the stationary distribution µ = limn→∞
1
n

∑n−1
i=0 αP

i.
The following are equivalent:

(a) MC(α, P ) lumps exactly under f ,
(b) dim(V (f, P, α)Πb) ≤ 1 for all b ∈ B,
(c) V (f, P, α) =

⊕
b∈B〈µΠb〉.

Proof. Suppose for a contradiction that (a) holds but (b) does not, that is to
say V (f, P, α)◦ = 0 and there exist linearly independent vectors v and v′ in
V (f, P, α)Πb. Then vΠb = ceb and v′Πb = c′eb for some c, c′ ∈ R. So either
c′ = c = 0, in which case v is a non-zero vector in V (f, P, α), or c′v − cv′ is
a non-zero vector in V (f, P, α), a contradiction. Thus (a) implies (b).

To show that (b) implies (c), note µ ∈ V (f, P, α), so V (f, P, α) ⊇⊕b∈B〈µΠb〉.
Now for each lump f−1(b) that is accessible from some point in the support
of α, we have a one-dimensional space V (f, P, α)Πb, which must be 〈µΠb〉,
and for each inaccessible lump we have V (f, P, α)Πb = 〈µΠb〉 = 0.
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To show that (c) implies (a), let v =
∑

b∈B cbµΠb for some coefficients
(cb)b∈B and suppose that v ∈ kerF . Then

0 = vF =
∑

b∈B
cbµΠbF =

∑

b∈B
cb

( ∑

a∈f−1(b)

µ(a)
)
eb.

Hence for each b ∈ B, we have cb
(∑

a∈f−1(b) µ(a)
)

= 0, and so we have
either

∑
a∈f−1(b) µ(a) = 0 or cb = 0. In the former case, µ(a) = 0 for every

a ∈ f−1(b) because µ is a non-negative vector. Hence v =
∑

b∈B cbµΠb = 0,
as required. �

Corollary 2.21. Let P be an irreducible transition matrix and µ its unique
stationary probability distribution. Then the following are equivalent:
• MC(α, P ) lumps exactly under f ,
• MC(µ, P ) lumps exactly under f and αΠb ∝ µΠb for each b ∈ B,
• α belongs to the linear span 〈∑x∈f−1(b) µ(x)ex : b ∈ B〉 and this span is

preserved by right-multiplication by P .

Proof. This is immediate from Lemma 2.20. �

Thus in the irreducible case, exact lumping means that if the Markov
chain is started in its stationary distribution, then at each later time t, con-
ditional on the history of lumps f(X0) = b0, . . . , f(Xt) = bt, the conditional
distribution of Xt on its lump f−1({bt}) is proportional to the restriction of
the stationary distribution to that lump.

It appears that the term ‘exact lumping’ was coined in 1984 by Schweitzer
[34] for the special case where α is the uniform distribution on A and α is
stationary. It is used in this sense in several later papers, for example [9, 26].
Our definition of exact lumping extends this to more general stationary
distributions, and does not require the uniform distribution to be stationary.
This more general notion already appeared in 1976 in Kemeny and Snell [24,
Thm. 6.4.4] (without the name ‘exact’) as a sufficient condition for weak
lumping in the case where P is irreducible and aperiodic and α is the unique
stationary distribution of P . Our definition does not require irreducibility
or aperiodicity.

Exact lumping is very closely related to the well-known Pitman–Rogers
condition. Suppose MC(α, P ) lumps exactly under f . Since V (f, P, α) is
spanned by vectors with non-negative entries, there exists a sub-stochastic
matrix U with rows indexed by B and columns indexed by A such that the
row of U indexed by b is the unique probability vector in V (f, P, α)Πb, if
dim(V (f, P, α)Πb) = 1, and is 0 if dim(V (f, P, α)Πb) = 0. Let Q be the
transition matrix of the lumped process f(MC(α, P )). Then we have

UP = QU. (2.4)

This equation is an algebraic intertwining, and it is often called the Pitman–
Rogers condition, after [30]. The matrix U is often referred to as the link
matrix. Note that (2.4) does not explicitly mention the initial distribution.

Conversely, suppose that P is a stochastic matrix from A to A and
that (2.4) holds for some matrices U and Q, where Q is a stochastic matrix
from B to B and U is a matrix from B to A whose rows are either 0 or
probability vectors, with the property that Ub,a 6= 0 =⇒ f(a) = b. Let α
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be any probability vector that is a convex combination of the non-zero rows
of U . (Note this requires at least one row of U to be non-zero, ruling out
the trivial solution U = 0 of (2.4).) Then V (f, P, α) is a subspace of the row
span of U and so MC(α, P ) lumps exactly under f . Moreover, Q serves as a
transition matrix for the lumped process f(MC(α, P )). Thus the Pitman–
Rogers condition implies exact lumping for suitable initial distributions. In
the case where P is irreducible, the link matrix U is necessarily stochastic.
In fact Pitman and Rogers [30] introduced their intertwining equation as
a sufficient condition for weak lumping in the context of continuous time
Markov chains; the theory in that case is very similar, with the transition
matrices P and Q replaced by generator matrices.

Example 2.22. In the context of a left-invariant random walk on a group G
driven by an irreducible weight w, lumping to G/H, the only stationary
distribution is the uniform distribution ηG, and so exact lumping may be
defined in terms of V = 〈bηH : bH ∈ G/H〉. We have V ◦ = 0 and V =⊕

bH∈G/H VΠb so the only non-trivial condition to check is V P ⊆ P . This

corresponds to the case e = ηH in Theorem 1.2. See Corollary 1.10 for a
simpler characterisation of exact lumping in this case.

2.5. The reversible case. A stationary Markov chain X = MC(α, P ) with
state space A is said to be reversible if for all x, y ∈ A we have

α(x)P (x, y) = α(y)P (y, x).

This implies that for every n ≥ 0 the sequence (X0, . . . , Xn) has the same
joint distribution as its time reversal (Xn, . . . , X0). It also means that the
chain can be extended to be indexed by times in Z, and this extended chain is
equal in law to its own time reversal. The theory of weak lumping simplifies
greatly in the reversible case:

Theorem 2.23 (Burke and Rosenblatt (1958) [10, Thm. 1]). Let P be a
stochastic matrix from A to A and let α be a stationary distribution for P
such that α(x) > 0 for all x ∈ A. Suppose that MC(α, P ) is reversible and
lumps weakly under f : A→ B. Then f is a strong lumping of MC(α, P ).

A close inspection of the proof given in [10] shows that the assumption
of full support may be weakened to assuming that α assigns positive weight
to each lump of at least two elements.

In §10 we will prove a new duality result, Theorem 10.1, which relates the
weak lumping of a stationary finite Markov chain to the weak lumping of its
time reversal, under the mild assumption that the stationary distribution
has full support. A special case (Corollary 10.2) is that for such stationary
Markov chains, time reversal exchanges strong lumping and exact lumping.
Applying this to the reversible case, we obtain the following corollary of
Theorem 2.23.

Corollary 2.24. Under the conditions of Theorem 2.23, f is an exact lump-
ing of MC(α, P ).

2.6. Probabilistic consequences of strong and exact lumping. We
finish with two results that are not logically required but serve to illuminate
the definitions of strong and exact lumping. We maintain our usual notation
in which f : A→ B is a surjective function.
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Proposition 2.25. Suppose that X = MC(α, P ) lumps strongly under f .
Then for all t ≥ 0, Xt and (f(Xt+1), f(Xt+2), . . . ) are conditionally inde-
pendent given f(Xt).

Proof. For every y, b ∈ B, let Q(y, b) denote the common value of
∑

a∈f−1(b)

P (x, a)

over all x ∈ f−1(y). The conditional distribution of (f(Xt+1), f(Xt+2), . . . )
given f(Xt) is determined by its finite-dimensional marginals. From Dynkin’s
condition, it is easy to show by induction over n that, for each t ≥ 0, each
xt ∈ A such that P[Xt = xt] > 0 and each n ≥ 1, we have

P[f(Xt+1) = yt+1, . . . , f(Xt+n) = yt+n | Xt = xt] =
n∏

i=1

Q(yt+i−1, yt+i),

where yt = f(xt). This suffices to demonstrate the conditional independence
because the right-hand side depends on xt only through f(xt). �

Proposition 2.26. Suppose that X = MC(α, P ) lumps exactly under f .
Then for all t ≥ 0, Xt and (f(X0), . . . , f(Xt−1)) are conditionally indepen-
dent given f(Xt).

Proof. Let V = V (f, P, α). Let b0, . . . , bt be any sequence of lumps such
that P[X0 = b0, . . . , Xt − bt] > 0, and let β be the conditional distribution
of Xt given f(X0) = b0, . . . , f(Xt) = bt. From the construction of V we
have β ∈ V . Since β is supported on f−1(bt), we have β ∈ VΠbt . Since
dim(VΠb) ≤ 1 by Lemma 2.20, β is the unique probability vector in VΠbt .
In particular, β is a function of bt alone, which yields the claimed conditional
independence. �

3. Background from character theory

We refer the reader to the textbooks of Benson [5], Dornhoff [17] and
Isaacs [21] for further background on representation theory and characters;
we use the latter two as our basic references in this section. See also [23] for
an excellent introduction. Recall that throughout G is a fixed finite group.

3.1. Group algebras. The group algebra C[G] is, by definition, the |G|-
dimensional vector space of all formal linear combinations

∑
g∈G β(g)g of the

group elements, with coefficients β(g) ∈ C. The multiplication is defined by
bilinear extension of the group multiplication: thus

(∑

x∈G
β(x)x

)(∑

y∈G
γ(y)y

)
=
∑

g∈G

(∑

x∈G
β(x)γ(x−1g)

)
g.

We identify weights onG with non-zero elements of C[G] having non-negative
real coefficients and probability measures on G with non-negative elements
of C[G] whose coefficient sum is 1. We say that a weight with this property
is normalized. As the following lemma shows, this makes C[G] the natural
setting for computing with random walks on G.

Lemma 3.1. In the left-invariant random walk on G driven by a normalized
weight w, if Xt ∼ α then Xt+1 ∼ αw.
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Proof. By definition of the walk

P[Xt+1 = y] =
∑

x∈G
P[Xt+1 = y|Xt = x]α(x) =

∑

x∈G
α(x)w(x−1y) = (αw)(y)

as required. �

It follows that if w is a normalized weight and X0 ∼ α then Xt ∼ αwt for
each t ≥ 0.

3.2. Representations, modules and characters. Let V be a finite-dim-
ensional C-vector space. A representation of G is a homomorphism ρ : G→
GL(V ) from G into the general linear group of invertible linear maps on V .
We may abuse notation and refer to this representation as V . The group
algebra C[G] then acts on V on the left by

(∑

g∈G
w(g)g

)
v =

∑

g∈G
w(g)ρ(g)v.

Thus V becomes a left C[G]-module. (See [17, §1] [21, Definition 1.3] for
the definition of modules for an algebra.) Conversely, given a left C[G]-
module V , there is a corresponding representation ρ : G → GL(V ) defined
by letting ρ(g) be the linear transformation by which g acts on V . It will
often be convenient to pass between these two equivalent languages. The
character of a representation ρ : G → GL(V ), or the corresponding C[G]-
module, is the function χV : G → C defined by χV (g) = tr ρ(g), where tr
denotes trace. Note that χV (1) = dimV .

Example 3.2. The trivial representation of G defined by ρ(g) = (1) ∈
GL1(C) for each g ∈ G has character 1G, defined by 1G(g) = 1 for each g ∈
G. The regular representation of G is the representation afforded by the left
action of G on C[G]. Thus in the canonical basis of C[G] of group elements,
each g ∈ G acts as a |G| × |G|-permutation matrix. It has character φG
defined by φG(1) = |G| and φG(g) = 0 for each non-identity g ∈ G.

The regular representation is the case Ω = G of the following construction.

Example 3.3 (Permutation representations). Suppose that G acts on the
left on a set Ω. The permutation representation of G on Ω, denoted C[Ω],
has underlying vector space with canonical basis {vω : ω ∈ Ω} and action
defined by ρ(g)vω = vgω. If G is a subgroup of SymΩ then we say that C[Ω]
is the natural representation of G.

Since we work with left modules, in the action of SymΩ on Ω we compose
permutations from right to left; thus (gh)(ω) = g(h(ω)) for g, h ∈ SymΩ.
This convention is in force for the examples in this section only.

Irreducible representations. A subrepresentation of a representation ρ : G→
GL(V ) is a subspace W of V such that ρ(g)W ⊆ W for each g ∈ G. A
representation V is irreducible if it does not contain a non-trivial proper
subrepresentation. Representations of finite groups over C are completely
reducible, meaning that one can always write V =

⊕
W W where each sub-

representation W is irreducible. (See [17, Theorem 3.1] or [21, Definition 1.7,
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Theorem 1.9].) We write Irr(G) for the finite set of irreducible representa-
tions of G up to isomorphism, and also for the set of their characters; this
creates no ambiguity in practice.

We now begin a running example using the symmetric group Sym3. By
the general theory (see [22, §4]), the irreducible representations of Symn

are canonically labelled by the partitions of n. Here we give an ad hoc
construction.

Example 3.4 (Irreducible representations of Sym3). The natural represen-
tation of the symmetric group Sym3 on 〈v1, v2, v3〉 decomposes as

〈v1 + v2 + v3〉 ⊕ 〈v1 − v3, v2 − v3〉.
The first summand affords the trivial representation of Sym3 and the sec-
ond an irreducible 2-dimensional representation. The 1-dimensional sign
representation, in which g ∈ G acts as sgn(g) ∈ {+1,−1} is the remain-
ing irreducible representation of Sym3. The corresponding modules are S3,
S21 and S111, respectively; we have S3 ∼= C (the trivial representation) and
S111 ∼= sgn (the sign representation).

By definition C[G]-modules U and W are isomorphic if there is an in-
vertible linear map T : U → W such that gT (u) = T (gu) for all u ∈ U
and g ∈ G. This holds if and only if U and V have the same character.
The character of U ⊕W is χU + χW . The number of times an irreducible
representation U appears as a summand in a direct sum decomposition of V
is 〈χV , χU 〉, where the inner product on characters of G is defined by (1.2).
Thus

〈χV , χW 〉 =
1

|G|
∑

g∈G
χV (g)χW (g). (3.1)

Example 3.5 (Regular representation of Sym3). The characters of Sym3 of
the irreducible C[Sym3]-modules constructed in Example 3.4 are χS3(g) = 1,
χS21(g) = |Fix(g)| − 1 and χsgn(g) = sgn(g) for each g ∈ Sym3. Note
χS3 = 1Sym3

. The regular character of Sym3 decomposes as

φSym3
= χS3 + 2χS21 + χS111 .

This is generalized by the Wedderburn decomposition seen in §3.3 following.

As already seen from the regular representation, C[G] is itself a left C[G]-
module. Moreover, a left C[G]-submodule of C[G] is simply a left ideal in
C[G]. Indeed, both are defined as subspaces L ⊆ C[G] with the property
gL ⊆ L for all g ∈ G.

3.3. Wedderburn decomposition. Modules for algebras are defined by
generalizing the constructions already seen for the group algebra C[G]: see
for instance [17, §1]. For our purposes, besides group algebras, the only
example we need is Matd(C), the algebra of d × d matrices. By a basic
result (see for instance [17, Theorem 2.18(a)]), Matd(C) has a unique irre-
ducible module up to isomorphism, namely the space of column vectors Cn.
Moreover, as a left Matd(C)-module,

Matd(C) = W1 ⊕ · · · ⊕Wd
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where Wi is the left ideal of Matd(C) of matrices zero except in column i.
Each Wi is isomorphic as a Matd(C)-module to the irreducible module Cn.
If V is a d-dimensional vector space we write Mat(V ) for Matd(C); then V
is, up to isomorphism, the unique irreducible module for Mat(V ).

Proposition 3.6 (Wedderburn decomposition). The group algebra C[G]
admits a decomposition

C[G] ∼=
⊕

V ∈Irr(G)

Mat(V )

as a left C[G]-module and as an algebra, where the sum ranges over a set of
representatives of the irreducible representations of G. Moreover the isomor-
phism may be chosen so that if, in one direct sum decomposition of C[G] as
a left C[G]-module, the dimV summands isomorphic to the irreducible C[G]-
module V are V1 ⊕ · · · ⊕ VdimV , then for each i, the image of Vi in Mat(V )
is the left ideal of Mat(V ) of matrices that are zero except in column i.

Proof. See [17, Theorem 3.2]; this is proved using Theorem 2.18 earlier in
[17], from which the ‘moreover’ part is clear. �

A more condensed proof suitable for experts is given in [5, Theorem 1.3.4].
The proposition is also proved in [21, Theorem 1.15], our reference for char-
acter theory, but it takes some work to deduce the version stated above from
the subsequent remarks.

Example 3.7. By Proposition 3.6, the Wedderburn decomposition of Sym3

into algebra summands is

C[Sym3] ∼= Mat1(C)⊕Mat2(C)⊕Mat1(C)

∼= Mat(S3)⊕Mat(S21)⊕Mat(S111)

where, by the ‘moreover’ part, Mat(S21) ∼= S21 ⊕ S21 as a left C[Sym3]-
module. A Weddernburn isomorphism, as in this proposition, therefore
identifies C[Sym3] with the algebra of 4× 4 block matrices




? 0 0 0
0 ? ? 0
0 ? ? 0
0 0 0 ?


 .

In what comes, we favour the more compact diagrams below, which show a
choice of Wedderburn decomposition as in the ‘moreover’ part.

= ⊕ ⊕ ⊕ .

Example 3.8. The symmetric group Sym4 has five irreducible represen-
tations, labelled by the partitions of 4. The Wedderburn decomposition
is

C[Sym4] ∼= Mat1(C)⊕Mat3(C)⊕Mat2(C)⊕Mat3(C)⊕Mat1(C)

∼= Mat(S4)⊕Mat(S31)⊕Mat(S22)⊕Mat(S211)⊕Mat(S1111).
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We can therefore identify C[Sym4] with the algebra of 10×10 block matrices
of the form

.

We continue this example in Example 3.19.

3.4. Idempotents. As we stated in the introduction, an element e ∈ C[G]
is idempotent if e2 = e. It is a basic result that if L is a left ideal in C[G]
(or equivalently, a left C[G]-submodule of C[G]) there exists an idempotent
e ∈ L such that L = C[G]e. Such an idempotent can be constructed by
choosing a linear projection π : C[G] → L and then taking its ‘average’
π = 1

|G|
∑

g∈G g
−1πg. It is routine to check that π is also a projection onto L,

that π commutes with the action of G, and hence that the map π agrees
with x 7→ xe where e = 1

|G|
∑

g∈G g
−1π(g) ∈ L is the image of idG under π.

Thus e is a suitable idempotent. We remark that e is not in general unique:
see Example 3.18; in fact e is unique if and only if it is a sum of distinct
centrally primitive idempotents in the sense defined below.

Example 3.9. The trivial representation of G is isomorphic to the left ideal
of C[G] spanned by the idempotent ηG, defined earlier to be |G|−1

∑
g∈G g.

Lemma 3.10 (Idempotents versus characters). Let e ∈ C[G] be an idempo-
tent and let W be a C[G]-module. Then dim eW = 〈χC[G]e, χW 〉.

Proof. By complete reducibility we may assume that C[G]e is isomorphic
to the irreducible C[G]-module U . It follows easily from the Wedderburn
decomposition that eU is one-dimensional, and eV = 0 if V is an irreducible
C[G]-module not isomorphic to U . Therefore dim eW is the number of
simple modules isomorphic to U in a direct sum decomposition of W into
simple modules; this is the right-hand side. �

By [21, Theorem 2.12] the centrally primitive idempotent for an irreducible
C[G] module V with character χ is

eχ =
|χ(1)|
|G|

∑

g∈G
χ(g−1)g. (3.2)

(The case where V is the trivial module was seen in Example 3.9.) The
image of eχ in the Wedderburn decomposition is zero except in the block
Mat(V ), where it is the identity matrix. It follows easily that eχL = Leχ =
L ∩Mat(V ) for any left ideal L of C[G]. In general a matrix e ∈ Matd(C)
is an idempotent if and only if it is conjugate to a matrix of the form
diag(1, ..., 1, 0, ..., 0).

Example 3.11 (Centrally primitive idempotents of Sym3). The centrally
primitive idempotents for Sym3 are e3 = 1

6

∑
g∈Sym3

(g), e21 = 2
3− 1

3(1, 2, 3)−
1
3(1, 3, 2) and e111 = 1

6

∑
g∈Sym3

sgn(g)g, where (1, 2, 3) and (1, 3, 2) are the
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two 3-cycles in Sym3. In any chosen Wedderburn isomorphism they corre-
spond to the identity matrices in the relevant matrix blocks:

1

, 1

1

,

1

.

A not necessarily central idempotent e is primitive if it cannot be ex-
pressed as a sum f + f ′ with f and f ′ idempotents and ff ′ = ff ′ = 0.
In the previous example, the centrally primitive idempotents e3 and e111

are primitive, since the left ideals that they generate are one-dimensional.
Under the Wedderburn decomposition we have

e21 7−→ 1

1
= 1

0
+

0

1

which shows that e21 is not primitive. We give an explicit decomposition of
e21 working in C[Sym3] in Example 3.18 below.

3.5. Restriction and induction. Fix throughout a subgroup H of G. We
shall often use the restriction and induction functors relating C[G]-modules
to C[H]-modules as defined for modules and characters in [17, §9] and for
characters in [21, Ch. 5].

Definition 3.12 (Restricted and induced modules).
(a) The restriction of a C[G]-module W to H, denoted W↓GH , is the

C[H]-module with the same underlying vector space as W , but the action
defined only on H.

(b) The induction of a C[H]-module U to G, denoted U↑GH , is defined
to be C[G]⊗C[H] U where C[G] is regarded as a right C[H]-module by right
multiplication.

In (b), the space C[G]⊗C[H]U may be defined as the quotient of C[G]⊗U
by the subspace spanned by all gh ⊗ u − g ⊗ hu for x ∈ G, h ∈ H and
u ∈ U . Thus the relation gh ⊗ u = x ⊗ hu holds in C[G] ⊗C[H] U . This
vector space is a C[G]-module with action defined by linear extension of
k(g ⊗ u) = kg ⊗ u for k ∈ G. In many cases one can avoid thinking about
the technical construction using tensor products and instead employ the
following characterisation.

Proposition 3.13 (Characterisation of induced modules). Let U be a C[H]-
module. The following are equivalent for a C[G]-module V :

(i) V ∼= U↑GH ;
(ii) V has a F [H]-submodule X isomorphic to U such that X generates V

as a C[G]-module and dimV = [G : H] dimX;
(iii) V has a F [H]-submodule X isomorphic to U and there is a vector

space decomposition V =
⊕

g∈G/H gX.

Proof. For the equivalence of (i) and (ii), see [2, page 56, Corollary 3]. By
dimension counting one sees that that (ii) implies (iii) and the converse is
obvious. �

Example 3.14. Let Ω = G/H. The permutation module C[Ω] of G acting
on the cosets of H, as defined in Example 3.3, has as a canonical basis
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{vbH : b ∈ G/H}. Observe that X = 〈vH〉 affords the trivial representation
C of H and that dimC[Ω] = |G/H|. Therefore by Proposition 3.13 we have

C[Ω] ∼= C↑GH .

In particular, if U is a left ideal of C[H] then by Proposition 3.13(iii)
the left ideal of C[G] generated by U , namely

⊕
g∈G/H gU , is isomorphic to

U↑GH . Such ideals are ubiquitous in this work. Given a left coset bH ∈ G/H,
Let πbH : C[G]→ C[H] denote the projection map defined by

πbH
(∑

g∈G
x(g)g

)
=
∑

g∈bH
x(g)g.

Definition 3.15. We say that an ideal L of C[G] containing πH(L) is an
induced ideal from H to G.

We typically omit ‘from H to G’ as it is clear from context.

Example 3.16. Observe that 〈ηH〉 is a left ideal of C[H] affording the trivial
representation of H. Therefore, by the remark before Definition 3.15,

〈ηH〉
xG
H
∼= C[G]ηH = 〈bηH : b ∈ G/H〉.

Working directly from Definition 3.12(ii) one could instead show that g ⊗
ηH → gηH defines a C[G]-isomorphism C[G]⊗C[H] 〈ηH〉 ∼= C[G]ηH ; this is a
routine, but somewhat technical, check.

The following proposition justifies the name ‘induced ideal’ and general-
izes the features seen in the previous example.

Proposition 3.17. Let L be a left ideal of C[G] containing πH(L). Setting
U = πH(L), we have

(i) U is a left ideal of C[H];
(ii) L = C[G]U ;
(iii) L =

⊕
b∈G/H bU ;

(iv) there is an isomorphism of left C[G]-modules L ∼= U↑GH ;
(v) there exists an idempotent e ∈ C[H] such that L = C[G]e.

Proof. Since L is a left ideal of C[G] we have C[H]U ⊆ L and since C[H]
is closed under multiplication by elements of H, we have C[H]U ⊆ C[H].
Therefore C[H]U ⊆ L ∩ C[H] = U , proving (i). Since L is a left ideal of
C[G], L contains

⊕
b∈G/H bU , and since

L ∩ bC[H] ⊆ b(L ∩ C[H]) = bU,

it follows that L =
⊕

b∈G/H bU . This proves (ii) and (iii); now (iv) follows

from Proposition 3.13(iii). Finally by the remark at the start of §3.4, applied
to the left ideal U of C[H], there exists an idempotent e ∈ C[H] such that
U = C[H]e. It now follows easily from (iii) that L = C[G]e. �

Example 3.18 (Primitive idempotents of Sym3). We remarked after Ex-
ample 3.11 that the centrally primitive idempotents e3 = ηSym3

and e111 =
1
6

∑
g∈Sym3

sgn(g)g are primitive. Let H = Sym{2,3}. The natural action of

Sym3 on {1, 2, 3} corresponds to the action of Sym3 on the left cosets of H.
(More formally, the map gH 7→ g(1) is a permutation isomorphism.) By
Example 3.16, the natural permutation representation 〈v1, v2, v3〉 for Sym3
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(seen earlier in Example 3.4) is isomorphic to the left ideal C[G]ηH , by an
isomorphism satisfying v1 7→ ηH . We saw earlier that 〈v1, v2, v3〉 ∼= S3⊕S21

where S3 is the trivial module. Therefore subtracting ηSym3
from ηH we

obtain

f = ηH−ηSym3
= 1

3 idSym3
− 1

6(1, 2, 3)− 1
6(1, 3, 2)− 1

6(1, 2)− 1
6(1, 3) +1

3(2, 3).

Since ηSym3
is central, f is an idempotent such that C[Sym3]f ∼= S21. Tak-

ing f ′ = e21 − f gives an explicit decomposition of the central primitive
idempotent e21 into primitive idempotents, as promised after Example 3.11.
It is worth noting that there is nothing canonical about this decomposition:
indeed f may be replaced with any conjugate ufu−1 for a unit u ∈ C[G].
The images of ηH , ηG and f = ηH − ηG are shown below, with respect
to the Wedderburn decomposition C[Sym3] = C[Sym3]ηG +

(
C[Sym3]f +

C[Sym3]f ′
)

+ C[Sym3]e111:

= ⊕ .

Definition 3.12 extends to characters and representations in the obvious

way: let χW↓GH be the character of W↓GH and let χU↑GH be the character

of U↑GH .

Example 3.19. Let H = Sym3 and G = Sym4. Refer to Examples 3.4, 3.7
and 3.8. We have

(1) χ3↑Sym4
Sym3

= χ4 + χ31,

(2) χ21↑Sym4
Sym3

= χ31 + χ22 + χ211, and

(3) χ111↑Sym4
Sym3

= χ211 + χ1111.

In each case the character of Sym4 is obtained by adding a box to the relevant
partition of 3, in all possible ways. (See [22, Ch. 9] for the general result.)
Corresponding to the Wedderburn decomposition

C[Sym3] ∼= S3 ⊕ S21 ⊕ S21 ⊕ S111

from Example 3.7, there is a choice of Wedderburn isomorphism for C[Sym4]
such that

C[Sym4] ∼= C[Sym3]
xSym4

Sym3

∼= ⊕ ⊕ ⊕

where the four summands are the modules induced from the summands of
C[Sym3] displayed above and the blocks are ordered from top-left to bottom-
right 4, 31, 22, 211, 1111. This isomorphism is chosen so that tensoring by
the sign representation S1111 corresponds to rotating diagrams by a half-
turn; note that S31 ⊗ sgn ∼= S211 and S22 ⊗ sgn ∼= S22. We return to this
example in Example 7.5.

We end this subsection with a fundamental result relating induced and
restricted modules and characters. Below the subscripts G and H indicate
the group relevant to the character inner product defined in (3.1).
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Proposition 3.20 (Frobenius reciprocity). If U is a C[H]-module and W
is a C[G]-module then

〈
χU
xG
H , χW

〉
G

=
〈
χU , χW

yG
H

〉
H
.

Proof. See [17, Theorem 9.4(c)], [21, Lemma 5.2] for proofs with minimal
prerequisites, or, for an elegant and conceptual proof using the tensor-hom
adjunction, [5, Proposition 2.8.3]. �

3.6. Borel and parabolic subalgebras. We continue with some basic
results on subalgebras of Matd(C) needed in the proof of Proposition 1.8.
Proofs are included to make the article self-contained and to introduce some
ideas relevant to the proof of this proposition. Recall that a subalgebra P of
Matd(C) is parabolic if there is a chain of subspaces Cd ⊃ V1 ⊂ . . . ⊃ Vr ⊃ 0
such that P = {T ∈ Matd(C) : T (Vi) ⊆ Vi for 1 ≤ i ≤ r}. In this case we
write

P = Stab(Cd ⊃ V1 ⊃ . . . ⊃ Vr ⊃ 0).

Observe that if M is an invertible matrix then

MPM−1 = Stab
(
Cd ⊃M(V1) ⊃ . . . ⊃M(Vr) ⊃ 0

)
. (3.3)

Stated slightly informally, the following lemma is that parabolic subalgebras
are self-normalizing.

Lemma 3.21. Let P be a parabolic subalgebra of Matd(C). Let M be an
invertible matrix in Matd(C). If MPM−1 = P then M ∈ P .

Proof. Let P = Stab(Cd ⊃ V1 ⊃ . . . ⊃ Vr ⊃ 0) be a parabolic subalgebra of
Matd(C). Observe that V1 is the greatest proper subspace of Cd preserved
by P , and inductively, Vi is the greatest proper subspace of Vi−1 preserved
by P , for each i. Thus P determines the chain of subspaces Cd ⊃ V1 ⊃
. . . ⊃ Vr ⊃ 0. It now follows from (3.3) that MPM−1 = P if and only
if M(Vi) = Vi for each i, or equivalently, if and only if M is an invertible
matrix in P . The lemma follows. �

We define the standard Borel subalgebra of Matd(C) to be its subalgebra
of invertible lower triangular matrices. Equivalently, if Ci is the subspace
of Cd of column vectors zero in their top d− i positions, then the standard
Borel subalgebra is Stab(Cd ⊃ Cd−1 ⊃ . . . ⊃ C1 ⊃ 0). We say that a
subalgebra of Matd(C) is Borel if it is conjugate by an invertible matrix
to the standard Borel. We say that a parabolic subalgebra of Matd(C) is
standard if it contains the standard Borel subalgebra.

Lemma 3.22. A parabolic subalgebra is standard if and only if it is equal
to Stab(Cd ⊃ Cd1 ⊃ . . . ⊃ Cdr ⊃ 0) for some d > d1 > . . . > dr > 0.

Proof. The ‘if’ direction is clear from the equivalent definition of the stan-
dard Borel algebra just given. For the ‘only if’ direction, let P = Stab(Cd ⊃
V1 ⊃ . . . ⊃ Vr ⊃ 0) be a standard parabolic subalgebra. Let B be its sub-
group of invertible lower triangular matrices. Observe that the orbits of B
on Cd are {0} and Oi for 1 ≤ i ≤ d, where

Oi = {v ∈ Cd : v1 = . . . = vi−1 = 0, vi 6= 0}.
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If V is a subspace of Cd such that P (V ) ⊆ V then since B(V ) = V , the
subspace V is a union of orbits of these orbits. Applying this observation to
each Vi in turn we find that Vi = Cdi where di = dimVi, for each 1 ≤ i ≤ r.
Hence P = Stab(Cd ⊃ Cd1 ⊃ . . . ⊃ Cdr ⊃ 0) as required. �

Proposition 3.23. Each parabolic subalgebra of Matd(V ) is conjugate to a
unique standard parabolic.

Proof. Let P = Stab(Cd ⊃ V1 ⊃ . . . ⊃ Vr ⊃ 0) be a parabolic subalgebra of
Matd(C). Starting with Vr and working backwards, one may construct an
invertible matrix M such that M(Vi) = CdimVi for each 1 ≤ i ≤ r. By (3.3)
we have MPM−1 = Stab(Cd ⊃ CdimV1 ⊃ . . . ⊃ CdimVr ⊃ 0). By the ‘if’
direction of Lemma 3.22, MPM−1 is a standard parabolic. By (3.3), the
dimensions of the Vi are preserved by conjugacy. Therefore MPM−1 is the
unique standard parabolic conjugate to P . �

3.7. Right idealizers. We finish our algebraic background with a result on
idealizers needed in the proof of Theorem 1.2. Given a left ideal L in C[G]
its right idealizer RIdC[G](L) is the largest subspace W of C[G] such that L
is a right ideal in W . Note that since L is closed under multiplication, W
contains L. In symbols,

RIdC[G](L) = {w ∈ C[G] : Lw ⊆ L}.

Lemma 3.24. Let e ∈ C[G] be an idempotent, let L = C[G]e be a left
ideal of C[G]. Then RIdC[G](L) = C[G]e + (1 − e)C[G]. Moreover, the
Wedderburn component of RIdC[G](L) in the block Mat(V ) is (up to a choice

of isomorphism) the parabolic subalgebra Stab(Cd ⊃ Cr ⊃ Cd)

r

d−r

d−rr

where r is the multiplicity of the irreducible module V in L and d = dim(V ).

After this lemma, the formula RIdC[G](L) = C[G]e + (1 − e)C[G] can be
represented (on each Wedderburn block) as

= + .

Proof of Lemma 3.24. By the Wedderburn decomposition in Proposition 3.6,
we can write e =

∑
V ∈Irr(G) eV in a unique way, where eV is the part of e sup-

ported on the Wedderburn block Mat(V ). Moreover, since each Wedderburn
block is an algebra, we deduce that eV is an idempotent for every V ∈ Irr(G).
Up to a choice of Wedderburn isomorphism, we can identify each eV with
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the diagonal matrix diag(1, ..., 1, 0, ..., 0) with exactly r = 〈χC[G]e, ψV 〉 ones.
This gives

C[G]e = and (1− e)C[G]e = .

Checking the claims is now a linear algebra exercise. �

Remark 3.25. Note that the right idealizer of a left ideal and its normalizer
are closely related. Indeed, let L be a left ideal. Then working in the group
C[G]× of invertible elements of C[G], we have

NC[G]×L = {w ∈ C[G]× : w−1Lw = L} = {w ∈ C[G]× : Lw = L} = RIdC[G](L)∩C[G]×

where the second equality holds because L is a left ideal and the third
because Lw = L if and only if Lw ⊆ L for invertible elements w.

4. Double cosets

In this section we collect some basic results on double cosets, giving a short
algebraic proof of a key ‘averaging’ lemma and a special case of Mackey’s
restriction formula. Fix throughout this section a finite group G and sub-
groups T and H of G. By definition, the double coset TxH is the set
{txh : t ∈ T, h ∈ H}.

4.1. Counting results. It is clear that TxH is a union of left cosets of H,
and also a union of right cosets of T . The different expressions for elements
of TxH all come from the equation

txh = tsxs′h (4.1)

where s ∈ T ∩ xHx−1 and so s′ = x−1s−1x ∈ xTx−1 ∩H. It follows that

TxH = {txh : t ∈ T, h ∈ (x−1Tx ∩H)\H}
= {txh′ : t ∈ t/(T ∩ xHx−1), h ∈ H}.

Thus TxH is a disjoint union of the right cosets Txh for h in a set of
representatives for the right cosets of x−1Tx ∩H in H, and also a disjoint
union of the left cosets txH for t in a set of representatives for the left cosets
of T∩xHx−1 in T . This is shown diagrammatically below, using the identity
as one coset representative in each case.

Tx

xH

Txh

txH

· · ·
h ∈ (x−1Tx ∩H)\H

...

t
∈
T
/
(T

∩
x
H
x
−
1
) x xh

tx txh

By (4.1), each box has |T ∩ xHx−1| = |x−1Tx ∩ H| different elements of
HxH. Denoting this common value by r, there are |T |/r rows and |H|/r



WEAK LUMPING ON LEFT COSETS 39

columns. By counting elements we obtain the equation r|T ||H|/r2 = |TxH|,
or equivalently

|TxH| |x−1Tx ∩H| = |H| |T |. (4.2)

As an immediate application of (4.2) we prove the following key ‘averaging’
lemma. Recall from the start of §1.1 that if K ≤ G is a subgroup then
ηK = |K|−1

∑
k∈K k ∈ C[G], where C[G] is the group algebra defined in §3.1.

Lemma 4.1. For w ∈ C[G] we have
(i) ηTw is constant on each right coset Tg in TxH and its common value

on Tx is w(Tx)/|T |;
(ii) wηH is constant on each left coset gH in HxH and its common value

on xH is w(xH)/|H|;
(iii) ηTwηH is constant on TxH and its common value on the double coset

is w(TxH)/|TxH|.

Proof. We have (ηTwv)(x) = |T |−1
∑

t∈T w(tx); this is w(Tx)/|T |, as re-
quired for (i). The proof of (ii) is dual. By (i) and (ii) each weight in
ηTC[G]ηH is constant on TxH. Let the common value of ηTwηH be c. By
(i), then (ii), then (4.2), we have

c =
(wηH)(Tx)

|T | =
1

|T ||H|
∑

h∈H
w(Txh) =

|x−1Tx ∩H|
|T ||H| w(TxH) =

w(TxH)

|TxH|

as required. �

We outline an alternative proof of (iii) that probability-minded readers
will find very intuitive: one can sample uniformly at random from TxH by
choosing t ∈ T and h ∈ H according to the distributions ηT and ηH and then
taking txh. Hence the expected value of w on TxH, namely w(TxH)/|TxH|,
is the common value of ηTwηH on TxH.

4.2. Mackey’s rule for the trivial representation. We have seen that
the orbits of T acting on the left on the set G/H of left cosets are each of
the form {txH : t ∈ T}, and that the stabiliser of the distinguished orbit
representative xH is T ∩ xHx−1.

Lemma 4.2 (Mackey’s rule for the trivial representation). Let C be the
trivial representation of H. There is an isomorphism of left C[H]-modules

C
xG
H

y
H
∼=

⊕

x∈H\G/H

C
xH
H∩xHx−1 ,

where the sum ranges over a set of double coset representatives for H\G/H.

Proof. Taking T = H in the remark before the lemma, it follows that the
C[H]-permutation module of H acting transitively on its orbit {hxH : h ∈
H} of left cosets is C

xH
H∩xHx−1 . �

This result is generalized by Lemma 12.4 below.
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5. A characterisation of weak lumping of left-invariant
random walks

Recall that in our standing notation H is a fixed subgroup of the finite
group G. In this section we work throughout with an irreducible weight
w and characterise the initial distributions α such that the left-invariant
random walk driven by w with initial distribution α lumps weakly to the
left cosets G/H, in the sense of Definition 1.1(a).

5.1. The minimal Gurvits–Ledoux space and minimal Gurvits–
Ledoux left ideal. Recall from before Definition 3.15 that if bH ∈ G/H
then πbH : C[G]→ C[G] is the projection map onto the coset bH, defined by
πbH

(∑
g∈G x(g)g

)
=
∑

g∈bH x(g)g. By Definition 2.5, the minimal complex
Gurvits–Ledoux vector space for the left-invariant random walk driven by
w started at the probability distribution α ∈ C[G] is the intersection of all
vector subspaces V of C[G] satisfying

(V0) α ∈ V ,
(V1) V w ⊆ V ,
(V2) πbH(V ) ⊆ V for all bH ∈ G/H.

Note this intersection is well-defined as C[G] satisfies (V0), (V1) and (V2)
and each of the conditions is closed under intersection. We denote this
minimal vector space by Vα,w. To compare with the definitions in §2.1, Vα,w
can be identified with C⊗RV (f, P, α) where P is the transition matrix of the
left-invariant walk driven by w and f is the left coset mapping G → G/H.
Note that Vα,w is a complex vector subspace of the group algebra C[G].

Recall that if T is a non-empty subset of G then ηT = |T |−1
∑

t∈T t ∈ C[G].

Lemma 5.1. Let w be an irreducible weight. If V is a subspace of C[G]
satisfying (V0), (V1) and (V2) then ηG ∈ V .

Proof. Since w is irreducible, the unique stationary distribution of the left-
invariant random walk is ηG ∈ C[G]. As in Definition 2.5, V is a com-
plex Gurvits–Ledoux space containing a probability vector α, so V ⊇ C⊗R
V (f, P, α). By Lemma 2.13, ηG ∈ V (f, P, α). �

Proposition 5.2. If w is an irreducible weight then VηG,w ⊆ Vα,w.

Proof. If V is a subspace of C[G] satisfying (V0), (V1) and (V2) for α then,
by Lemma 5.1, V satisfies (V0) for ηG, and hence V contains the minimal
complex Gurvits–Ledoux space VηG,w. The proposition follows by taking
the intersection over all such V . �

Lemma 5.3. The subspace VηG,w is a left ideal of C[G]. Moreover, πH(VηG,w)
is a left ideal of C[H] and VηG,w = C[G]

(
πH(VηG,w)

)
is an induced ideal.

Proof. For readability, let L = VηG,w. To show that L is a left ideal it suffices
to show that k−1L ⊇ VηG,w for each k ∈ G, since by multiplying by k we
then obtain L ⊇ kL. Setting g = k−1 we therefore check that gL satisfies
(V0)–(V2). We may then deduce gL ⊇ L by minimality of L:

(V0) gηG = ηG ∈ L by (V0) for L;
(V1) (gL)w ⊆ gL since Lw ⊆ L by (V1) for L;
(V2) since πbHg = gπg−1bH , we have πbH(gL) = gπg−1bH(L) ⊆ gL by

(V2) for L.
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Hence L is a left ideal of C[G]. Again by (V2) for L, we have πH(L) ⊆ L.
Therefore by Proposition 3.17(ii), L = C[G]

(
πH(L)

)
. �

Thus VηG,w, which a priori was merely a subspace of C[G], is in fact an
induced ideal in the sense of Definition 3.15.

5.2. Application of the Gurvits–Ledoux characterisation to prove
Corollary 1.6. Let CG/H be the vector space of complex valued functions
on G/H and let Λ : C[G]→ CG/H be the linear map induced by the canon-
ical quotient map G 7→ G/H defined by g 7→ gH.

Lemma 5.4. ker Λ = C[G](1− ηH).

Proof. We have x ∈ ker Λ if and only if
∑

g∈bH x(g) = 0 for each b ∈ G, and

so if and only if x ∈⊕b∈G/H bC[H](1− ηH) = C[G](1− ηH). �

Given a vector subspace V of C[G], let V ◦ denote the subspace V ∩ker Λ,
in accordance with (2.1). We introduce a further property:

(V3) V ◦w ⊆ V ◦.
Since ker Λ and Vα,w have bases consisting of real vectors, V ◦α,w also has a
basis consisting of real vectors, which span the real vector space V (f, P, α)◦.
Moreover, V (f, P, α)◦P ⊆ V (f, P, α)◦ if and only if V ◦α,ww ⊆ V ◦α,w. Thus in
this setting the conclusion of Theorem 2.6 may be written as follows:

MC(α,w) lumps weakly to G/H if and only if Vα,w satisfies (V3). (?)

We use (?) to prove Corollary 1.6. The following lemmas are required.

Lemma 5.5. Let w be an irreducible weight. If (V3) holds for Vα,w then
(V3) holds for VηG,w.

Proof. We have V ◦ηG,ww ⊆ VηG,ww ⊆ VηG,w. By Proposition 5.2 we have
VηG,w ⊆ Vα,w. Hence

V ◦ηG,ww = (VηG,w ∩ ker Λ)w ⊆ (Vα,w ∩ ker Λ)w = V ◦α,ww ⊆ V ◦α,w ⊆ ker Λ

and so V ◦ηG,ww ⊆ VηG,w ∩ ker Λ = V ◦ηG,w. �

Lemma 5.6. Let V be a subspace of C[G] satisfying (V2). Suppose that
ηG ∈ V . Then V ◦ = V (1− ηH).

Proof. By (V2), V =
⊕

b∈G/H V ∩ bC[H] where V ∩ bC[H] = πbH(V ). By

(V0) and (V2) we have πH(ηG) = ηH ∈ V . Given u ∈ bC[H] we have uηH ∈
〈bηH〉, hence each subspace πbH(V ) is closed under right multiplication by
the idempotent 1− ηH . Now using V ◦ = V ∩ ker Λ and Lemma 5.4 we have

V ◦ =
( ⊕

b∈G/H

πbH(V )
)
∩
( ⊕

b∈G/H

bC[H](1− ηH)
)

=
⊕

b∈G/H

πbH(V )(1− ηH).

Therefore V ◦ = V (1− ηH), as required. �

Lemma 5.7. If L is an induced left ideal from H to G containing ηG then
L◦ = L(1− ηH).

Proof. By Proposition 3.17(iii), L satisfies (V2). Now apply Lemma 5.6. �



42 EDWARD CRANE, ÁLVARO GUTIÉRREZ, ERIN RUSSELL, AND MARK WILDON

For ease of notation, from now on we shall write Lw for VηG,w; note that
by Lemma 5.3, Lw is a left ideal of C[G], so this is consistent with our usual
notational conventions.

Corollary 1.6 (Weak lumping test for a weight). Let w be an irreducible
weight. The following are equivalent:

(i) The left-invariant random walk driven by w lumps weakly to G/H;
(ii) MC(ηG, w) lumps weakly to G/H;
(iii) Lw(1− ηH)wηH = 0;
(iv) The left-invariant random walk driven by w lumps to G/H with stable

ideal Lw.

Proof of Corollary 1.6. Suppose that (i) holds, so there exists a starting
distribution α such that MC(α,w) lumps weakly to G/H. Then, by (?),
the minimal Gurvits–Ledoux vector space Vα,w satisfies (V3). By Proposi-
tion 5.2, using our hypothesis that w is irreducible, Lw is contained in Vα,w.
By Lemma 5.5, Lw also satisfies (V3). Hence, by the ‘if’ direction of (?),
MC(ηG, w) lumps weakly to G/H, proving (ii).

By the ‘only if’ direction of (?), (ii) implies in particular that Lw satisfies
(V3), that is, L◦ww ⊆ Lw. By Lemma 5.3, Lw is an induced ideal and so by
Lemma 5.7, L◦w = Lw(1 − ηH). Therefore Lw(1 − ηH)w ⊆ Lw(1 − ηH). In
particular

Lw(1− ηH)wηH ⊆ Lw(1− ηH)ηH = 0,

where the final equality holds because (1 − ηH)ηH = 0. This proves (iii)
and shows that (iii) is equivalent to L◦ww ⊆ L◦w. This is condition (d) in
Definition 2.10, and conditions (a), (b) and (c) in this definition hold by
(V0), (V1), (V2) for Lw. Therefore (iii) implies (iv), namely that the left-
invariant random walk driven by w lumps stably for the left ideal Lw. In
particular, the left-invariant random walk lumps weakly when started at ηG,
which implies (i) on taking α = ηG. �

5.3. The maximal Gurvits–Ledoux ideal Jw. Playing an equally im-
portant role to the induced left ideal Lw = VηG,w, which by Proposition 5.2
should be thought of as the minimal Gurvits–Ledoux space for ηG and w,
we will shortly define the maximal Gurvits–Ledoux ideal Jw. The following
two lemmas are implied by Lemma 2.15 but for the reader’s convenience we
give short proofs here in the language of group algebras. Recall property
(V2) of a subspace V of C[G] is that πbH(V ) ⊆ V for all bH ∈ G/H.

Lemma 5.8. Let V and W be subspaces of C[G] satisfying (V2) and both
containing ηG. Then (V +W )◦ = V ◦ +W ◦.

Proof. By Lemma 5.6 we have V ◦ = V (1− ηH) and W ◦ = W (1− ηH), and
since V +W also satisfies (V2) and contains ηG, we also have (V +W )◦ =
(V +W )(1− ηH). The lemma follows. �

Recall that (V1) and (V3) are the properties that V w ⊆ V and V ◦w ⊆ V ◦,
respectively; (V2) has just been used.

Lemma 5.9. Properties (V1), (V2) and (V3) are closed under addition of
vector subspaces that contain ηG.
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Proof. Let V and W be vector subspaces of C[G] satisfying (V1)–(V3). Then
(V +W )w = V w+Ww ⊆ V +W giving (V1) and πbH(V +W ) = πbH(V ) +
πbH(W ) ⊆ V +W , giving (V2). Finally (V3) holds by Lemma 5.8. �

By Corollary 1.6 and (?) in §5.2, if the left-invariant random walk lumps
weakly to G/H in the sense of Definition 1.1(b), then Lw (the new name
for VηG,w) satisfies (V1), (V2), and (V3). We can thus consider the unique
maximal subspace of C[G] satisfying these properties, which we denote Jw.

Lemma 5.10. Suppose that the irreducible weight w lumps weakly to G/H.
The maximal subspace Jw of C[G] containing ηG and satisfying properties
(V1), (V2), and (V3) is a left ideal of C[G]. Moreover, πH(Jw) is a left ideal
of C[H] and Jw = C[G]

(
πH(Jw)

)
is an induced ideal.

Proof. We check in a very similar way to the proof of Lemma 5.3 that if g ∈ G
then gJw satisfies conditions (V1), (V2), and (V3). Then, by maximality of
Jw it follows that gJw ⊆ Jw, and hence Jw is a left ideal. We leave checking
(V1) and (V2) to the reader. To check (V3), note that ker Λ = C[G](1−ηH)
is a left ideal of C[G] and so

g(V ◦) = g(V ∩ ker Λ) = gV ∩ g ker Λ = gV ∩ ker Λ = (gV )◦.

The end is exactly as in the earlier proof: by (V2) we have πH(Jw) ⊆ Jw
and so by Proposition 3.17(ii), Jw = C[G]

(
πH(Jw)

)
. �

We call Jw the maximal Gurvits–Ledoux ideal for w. As a complex vector
space, Jw = C ⊗R Vmax(f, P, α). We now use Jw to prove Theorem 1.7.
See §6 for its algorithmic counterpart.

Theorem 1.7 (Weak lumping test for a distribution). Let w ∈ C[G] be an
irreducible weakly lumping weight. For each probability distribution α, the
Markov chain MC(α,w) lumps weakly to G/H if and only if α ∈ Jw.

Proof. Suppose MC(α,w) lumps weakly to G/H. Consider the minimal
space Vα,w satisfying (V0), (V1), and (V2). By (?) in §5.2, it also satis-
fies (V3). By maximality, Jw contains Vα,w and so α ∈ Jw. Conversely,
suppose that α ∈ Jw. That is, Jw satisfies (V0). By definition, Jw satisfies
(V1), (V2), and (V3). Since Jw = C⊗R Vmax(f, P, α), if α ∈ Jw is a proba-
bility vector then α ∈ Vmax(f, P, α) and hence, by Corollary 2.12, MC(α,w)
lumps weakly to G/H. �

5.4. Gurvits–Ledoux ideals: the general case and the proof of The-
orem 1.2. We have seen that the minimal Gurvits–Ledoux vector space Lw
and the maximal Gurvits–Ledoux vector space Jw controlling weak lumping
of a weight w to G/H are induced left ideals of C[G]. This motivates the
following definition.
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Definition 5.11. Let L be a left ideal of C[G]. We say L is a Gurvits–Ledoux
ideal for w if

(L0) ηG ∈ L,
(L1) Lw ⊆ L, and
(L2) L is an induced ideal from H to G.

We say that a Gurvits–Ledoux ideal for w is weakly lumping if

(L3) L◦w ⊆ L◦,
We denote by Lα,w the minimal Gurvits–Ledoux ideal containing the distri-
bution α.

We immediately justify the term ‘weakly lumping’ in this definition.

Proposition 5.12. Let L be a Gurvits–Ledoux ideal for the weight w. The
left-invariant random walk driven by w lumps weakly to G/H with stable
space L if and only if L◦w ⊆ L◦.
Proof. We use the basic fact proven in Lemma 3.1 that right-multiplication
by w is right-multiplication by the transition matrix P of the left-invariant
random walk driven by w. Conditions (a), (b), and (c) of Definition 2.10 are
satisfied when V is taken to be any Gurvits–Ledoux ideal L. Condition (d)
reduces to L◦w ⊆ L◦. �

Corollary 5.13. If there exists a Gurvits–Ledoux ideal L for the weight w
such that L◦w ⊆ L◦, then the left-invariant random walk driven by w lumps
weakly to G/H.

Proof. This follows from Proposition 5.12 and Corollary 2.12. �

It is now natural to ask how L◦ can be computed. This has an appealing
answer in terms of idempotents. Observe that if L is a Gurvits–Ledoux
ideal for w then by Proposition 3.17(v) and (L2) there exists an idempotent
e ∈ C[H] such that L = C[G]e. By (L0), L contains ηG, and so ηGe = ηG.
Applying the projection map πH we obtain ηHe = ηH . Hence e ∈ E•(H),
the set of idempotents of C[H] such that ηHe = ηH . Now by Lemma 5.7,

L◦ = L(1− ηH) = C[G]e(1− ηH) = C[G](e− eηH) = C[G](e− ηH).

Thus L◦ is concretely described by idempotent multiplication. Similarly,
the following lemma translates conditions (L1) and (L3) into the language
of idempotents.

Lemma 5.14. Let L = C[G]e be an induced left ideal of C[G], for some
e ∈ E•(H). For w ∈ C[G] we have

(i) Lw ⊆ L if and only if ew(1− e) = 0;
(ii) L◦w ⊆ L◦ if and only if (e− ηH)w(1− e+ ηH) = 0.

Moreover (i) and (ii) are together equivalent to
(iii) ew(1− e) = 0 and (e− ηH)wηH = 0.

Proof. Observe that if f is an idempotent then C[G]f = {x ∈ C[G] : x(1 −
f) = 0}. Applying this with f = e and then f = e− ηH (using Lemma 5.7)
we get

Lw ⊆ L ⇐⇒ C[G]ew ⊆ C[G]e ⇐⇒ C[G]ew(1− e) = 0 ⇐⇒ ew(1− e) = 0



WEAK LUMPING ON LEFT COSETS 45

proving (i) and very similarly that L◦w ⊆ L◦ if and only if (e − ηH)w(1 −
e + ηH) = 0 proving (ii). Now multiplying ew(1 − e) = 0 on the left by
1 − ηH we get (e − ηH)w(1 − e) = 0. Therefore, given that ew(1 − e) = 0,
the conditions (e− ηH)w(1− e+ ηH) = 0 and (e− ηH)wηH are equivalent.
This proves (iii). �

The following further remarks connect Definition 5.11 with the definitions
and results presented so far.

(1) If w is an irreducible weight then, as in Lemma 2.13, then it follows
from (L1) that ηG ∈ Lα,w. Thus in the irreducible case (L0) could be
replaced by the condition that L contains some probability vector.

(2) By (V2), the subspace Vα,w of C[G] originally defined in §5.1 is closed
under the projection maps. Therefore

Vα,w =
⊕

b∈G/H

πbH(Vw,α) =
⊕

b∈G/H

bπH(b−1Vw,α)

and it follows that the left ideal of C[G] generated by Vα,w is C[G]U
where U =

∑
b∈G/H πH(b−1Vw,α). It is therefore an induced ideal and

so Lα,w is simply the smallest ideal containing the subspace Vα,w.

(3) By Lemma 5.3, the minimal Gurvits–Ledoux space VηG,w is an induced
left ideal of C[G], and so we have

VηG,w = Lw = LηG,w

where the second equality holds by definition. (Note the first equality
is the change in notation introduced after the proof of Lemma 5.7, so
our usage of Lw is consistent throughout.)

(4) By Lemma 5.10, the maximal Gurvits–Ledoux space Jw is an in-
duced left ideal and since, by its definition in Lemma 5.10, it satisfies
(V3), the left-invariant random walk driven by w lumps stably for the
ideal Jw.

We can now prove Theorem 1.2 and Corollary 1.5, which we restate below.

Theorem 1.2. Let w be an irreducible weight on G and let α be a distribu-
tion on G, both thought as elements of C[G]. Then MC(α,w) lumps weakly
to G/H if and only if there exists an idempotent e ∈ E•(H) such that

(i) α ∈ C[G]e,
(ii) ew(1− e) = 0,

(iii) (e− ηH)wηH = 0.
In this case, for any t ≥ 0, the conditional distribution of Xt given the
sequence of cosets X0H, ..., Xt−1H always belongs to C[G]e.

Proof. Suppose that MC(α,w) lumps weakly to G/H. Recall that Jw is
the maximal Gurvits–Ledoux ideal for w defined in §5.3. By Theorem 1.7,
proved at the end of §5.3, we have α ∈ Jw, giving (i). As seen at the start
of §3.4, there exists an idempotent e ∈ C[H] such that Jw = C[G]e. Since
ηG ∈ Jw by (L0), we have e ∈ E•(H). By Lemma 5.14 and (L2) and (L3), e
satisfies (ii) and (iii).

Conversely, suppose that there is an idempotent e ∈ E•(H) satisfying (i),
(ii) and (iii). Set L = C[G]e. By (i), L contains α. By Lemma 5.14(ii)
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and (iii), Lw ⊆ L and L◦w ⊆ L◦. Therefore by Proposition 5.12, MC(α,w)
lumps weakly to G/H with stable ideal L. In particular MC(α,w) lumps
weakly.

The final claim restates the analysis preceding Theorem 2.6. �

Corollary 1.5. The Markov chain MC(α,w) lumps weakly to left cosets of
G/H if and only if L◦α,ww ⊆ L◦α,w.

Proof. Suppose that MC(α,w) lumps weakly to left cosets of H. Then by
Theorem 1.2, there exists an idempotent e ∈ E•(H) satisfying conditions
(i), (ii), and (iii) from this theorem. By Lemma 5.14 and by minimality,
we have Lα,w ⊆ C[G]e. In particular, by (iii), we have (e − ηH)wηH = 0
and so C[G]e(1 − ηH)wηH = 0 and thus Lα,w(1 − ηH)wηH = 0. Again by
Lemma 5.14, this becomes (L3), as desired.

Conversely suppose that L◦α,ww ⊆ L◦α,w. Then an idempotent generator
of Lα,w satisfies conditions (i), (ii), and (iii) of Theorem 1.2. �

5.5. Corollaries for strong and exact lumping. We summarise the re-
sults of this section for these two special cases. Strong lumping is defined
in Definition 2.18. Note that conditions (iii)–(vi) in both propositions are
independent of α.

Proposition 5.15 (Characterisations of strong lumping). Let w be an ir-
reducible weight. The following are equivalent:

(i) the left-invariant random walk driven by w lumps strongly to G/H;
(ii) MC(α,w) lumps weakly to G/H for all initial distributions α;
(iii) Jw = C[G] and J◦w = C[G](1− ηH);
(iv) C[G] is a weak lumping Gurvits–Ledoux ideal for w;
(v) (ker Λ)w ⊆ ker Λ;
(vi) (1− ηH)wηH = 0;
(vii) For each g ∈ G, w(hgH) is constant for h ∈ H.

Proof. As we explained after Definition 2.18, strong lumping implies weak
lumping starting at an arbitrary initial distribution. Hence (i) implies (ii).
In this case, by Theorem 1.7, Jw = C[G], and then J◦w = C[G](1 − ηG)
by Lemma 5.7, giving (iii). It is clear from Definition 5.11 that C[G] is a
Gurvits–Ledoux ideal for any weight. By definition C[G] is weakly lumping
for the weight w if and only if C[G]◦w ⊆ C[G]◦; this holds by (V3) for
Jw = C[G]. Hence (iii) implies (iv). By definition, C[G]◦ = ker Λ so (v) is
a restatement of (iv). Now (v) implies (vi) by taking e = 1 in Lemma 5.14
and (vi) implies (vii) by Lemma 4.1(ii). Finally suppose that (vii) holds.
The Dynkin condition for strong lumping (see Definition 2.18) is that

∑

x∈bH
w(a−1x) =

∑

x∈bH
w(a′

−1
x)

for all left cosets bH, all a, a′ ∈ G such that aH = a′H, and all x ∈ G.
Equivalently, w(a−1bH) = w((ah)−1bH) for all a, b ∈ G and h ∈ H, and
this holds by (vii) since (ah)−1bH = h−1a−1bH. Hence (vii) implies (i),
completing the cycle. �

Exact lumping is defined in Definition 2.19.
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Proposition 5.16 (Exact lumping). Let w be an irreducible weight. The
following are equivalent:

(i) the left-invariant random walk driven by w lumps exactly to G/H;
(ii) ηHw ∈ 〈bηH : b ∈ G/H〉;
(iii) Lw = C[G]ηH and L◦w = 0;
(iv) C[G]ηH is a weak lumping Gurvits–Ledoux ideal for w;
(v) C[G]ηHw ⊆ C[G]ηH ;
(vi) ηHw(1− ηH) = 0;
(vii) For each g ∈ G, w(Hgh) is constant for h ∈ H.

Moreover if α is an initial distribution then MC(α,w) lumps exactly to G/H
if and only if one of these conditions holds and, in addition, the restriction
of α to each left coset bH is proportional to bηH .

Proof. By the equivalence of (a) and (c) in Lemma 2.20, (i) holds if and only
if
⊕

b∈G/H〈bηH〉 is preserved by right multiplication by w. Thus (i) and (ii)

are equivalent. Moreover, by Corollary 2.21, MC(α,w) lumps exactly if and
only if (i) holds and the restriction of α to each left coset bH is proportional
to bηH . To complete the proof it suffices to prove that conditions (ii)–(vii)
are equivalent.

If (ii) holds then, considering the definition of VηG,w in §5.1, we have
⊕

b∈G/H

〈bηH〉 = VηG,w.

This space is by definition (see the change of notation after Lemma 5.7), the
minimal Gurvits–Ledoux ideal Lw. Therefore (ii) implies that Lw = C[G]ηH .
In this case, by Lemma 5.14, L◦w = C[G]ηH(1− ηH) = 0. Hence (ii) implies
(iii). Suppose that (iii) holds. Then Lw = C[G]ηH satisfies Lww ⊆ Lw by
(V1) and clearly ηG ∈ Lw and since ηH ∈ E(H), Proposition 3.17(v) implies
that Lw is a Gurvits–Ledoux ideal in the sense of Definition 5.11. By (iii) we
have L◦w = 0, hence L◦ww ⊆ L◦w and we have (iv). Part (v) simply restates
that C[G]ηHw ⊆ C[G]ηH , so (iv) implies (v), and since ηHw ∈ C[G]ηH if
and only if ηHw(1 − ηH) = 0, (v) implies (vi). Since (vi) is equivalent to
ηHw = ηHwηH , Lemma 4.1(i) and (iii) applied with T = H imply that ηHw
is constant on each right coset Hg in a given double coset, hence (vi) and
(vii) are equivalent. Finally (vi) implies (ii) since 〈bηH : b ∈ G/H〉 is the
kernel of right multiplication by 1− ηH . �

We remark that the equivalence of (i) and (vii) in Proposition 5.15 and
Proposition 5.16 proves Corollary 1.10. We later deduce this result in a
more conceptual way as a corollary of Theorem 1.9: see §10.

We end this section with a joint corollary of Theorem 1.2 and the two
propositions above that deals with cases when H is very small.

Corollary 5.17. Let H be a subgroup of G, and suppose that |H| ≤ 3.
Let w be an irreducible weight and α any probability distribution on G. If
MC(α,w) lumps weakly then it lumps either strongly or exactly.

Proof. If |H| = 1 then every weight lumps both strongly and exactly to
G/H = G. The only possibility in Theorem 1.2 is e = ηH = idH , and
conditions (vi) in Proposition 5.15 and Proposition 5.16 hold trivially.
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Now suppose |H| = 2. Let H = 〈h〉. Then E•(H) = {idH , ηH}. There are
two possible cases in Theorem 1.2. If e = ηH , then the condition ew(1−e) =
0 gives condition (vi) of Proposition 5.16 so we have exact lumping. If
instead e = idH the condition (e − ηH)wηH = 0 gives condition (vi) of
Proposition 5.15 so we have strong lumping.

Finally, suppose |H| = 3. Again let H = 〈h〉. There are three primitive
idempotents

ηH = 1
3( 1 + h + h2),

ξH = 1
3( 1 + ζ2h+ ζh2),

ξH = 1
3( 1 + ζh + ζ2h2)

where ζ is a complex primitive third root of unity. Thus ζ2 = ζ. Since
the initial distribution α and the weight w take real values, the minimal
Gurvits–Ledoux ideal Lα,w defined in Definition 5.11 is closed under complex
conjugation. If Lα,w = C[G]ηH then by Proposition 5.16(iv), MC(α,w)
lumps exactly to G/H. Otherwise Lα,w cannot be either of C[G](ηH + ξH)

or C[G](ηH + ξH) since these are exchanged by complex conjugation. The
only remaining possibility is that Lα,w = C[G], and then Proposition 5.15(iv)
implies that MC(α,w) lumps strongly to G/H. �

6. Tests for weak lumping

Corollary 1.6 and Theorem 1.7 are characterisations of weak lumpability
of a weight w and weak lumping of MC(α,w) for a distribution α. They
rely on the computation of the left ideals Lw and Jw given a weight w. In
this section, we provide two practical computational procedures to compute
these left ideals of C[G]. Each algorithm uses a nested sequence of left ideals
of C[H] that eventually stabilises, in one case to πH(Lw) and in the other
to πH(Jw), respectively.

By Lemmas 5.3 and 5.10, Lw (which was earlier denoted VαG,w) and
Jw are induced ideals of C[G], and so satisfy Lw = C[G]

(
πH(Lw)

)
and

Jw = C[G]
(
πH(Jw)

)
by Proposition 3.17(ii). When the order of H is small

compared to that of G, computing ideals of C[H] and hence induced ideals of
C[G] is significantly more efficient than computing vector subspaces of C[G];
it is in this sense that our algorithms become more powerful than those of [31]
and [20], for instance Corollary 2.9 which gave an algorithm for determining
whether a general DTHMC MC(α, P ) lumps weakly under f : A → B.
Magma [6] code that implements the two algorithms for calculating Lw
and Jw is available as part of the arXiv version of this paper.

6.1. Weak lumping test for a weight. The characterisation of weak
lumpability provided by Corollary 1.6 relies on Lw, the minimal Gurvits–
Ledoux ideal for w. We construct it algorithmically as follows.

Start with the left ideal M0 = C[H]ηH . Define inductively

Mn := πH


C[G]Mn−1 + C[G]

⊕

bH∈G/H

πbH(Mn−1w)


 .

Since Lw is a left ideal and satisfies (L1) and (L2), we have C[G]Mn ⊆ Lw.
By construction Mn ⊇ Mn−1 so the sequence (dim(Mn))≥0 is increasing



WEAK LUMPING ON LEFT COSETS 49

in n, takes integer values, and is bounded above by dimC[G]. So it must
stabilise: there exists N such that Mn = MN for all n ≥ N . In each step,
C[G]Mn is a left ideal of C[G] containing ηG, and thus C[G]MN is too.
This shows that C[G]MN satisfies (L0). Since MN is by definition an ideal
of C[H], the ideal C[G]MN is an induced ideal, as required by (L2). Since
C[G]MN = C[G]πH(MN ), we have

C[G]
⊕

bH∈G/H

πbH(MNw) ⊆ C[G]MN .

This gives (L1). Since C[G]Mn is contained in Lw, we obtain Lw = C[G]MN

by minimality.

Example 6.1. We take G = Sym4 and H = Sym{2,3,4}. In §1.2 we showed
that the weight w = (1− λ)id + λ

3

(
(1, 4)(2, 3) + (1, 4, 3) + (1, 4, 2, 3)

)
defined

in (1.3) lumps weakly to G/H with stable ideal C[G]ηT , where T = Sym{2,3}.
We now use Corollary 1.6 to find the left ideal Lw when 0 < λ < 1 and deduce
that w does not lump stably for any proper subideal of C[G]ηT . Following
the construction above, we set M0 = C[H]ηH = 〈ηH〉. Calculation shows
that the normalized projections to the left cosets H, (1, 2)H, (1, 3)H and
(1, 4)H of ηHw are

πH(ηHw) = ηH

π(1,2)H(ηHw) = 1
2(1, 4, 2) + 1

2(1, 4, 3, 2)

π(1,3)H(ηHw) = 1
2(1, 4, 3) + 1

2(1, 4, 2, 3)

π(1,4)H(ηHw) = 1
2(1, 4) + 1

2(1, 4)(2, 3)

and the ideal of C[G] generated by the projections is C[G]ηT . Therefore
M1 = C[H]ηT . Since we know that w lumps weakly to G/H with stable ideal
C[G]ηT , it follows by minimality of Lw that Lw = C[G]ηT . Alternatively this
can be checked by calculating directly that M3 = M2. Hence the minimal
Gurvits–Ledoux space Lw is C[Sym4]ηT . A very similar calculation shows
that if w′ = ηTw as earlier then Lw′ = C[Sym4]ηT , and so the stable lumping
ideals found in the earlier example were minimal in both cases.

6.2. Weak lumping test for a distribution. Let w ∈ C[G] be an irre-
ducible weight, and assume that it lumps weakly on left cosets of H. The set
of distributions α such that MC(α,w) lumps weakly on left cosets of H is Jw
by Theorem 1.7. In this section, we provide a practical computational pro-
cedure to compute Jw. It may be compared with the general algorithm that
we gave after Corollary 2.16 for computing the maximal Gurvits–Ledoux
space Vmax(f, P ) associated to an irreducible stochastic matrix that lumps
weakly under f : A→ B.

Let A0 = C[H]. We have Jw ⊆ C[G]A0. Of the conditions defined at the
start of §5.1, the left ideal C[G]A0 satisfies conditions (V1) and (V2), but
not necessarily condition (V3). Also, note Lw ⊆ C[G]A0. Define inductively
Bn so that B◦n is the largest subspace of A◦n such that

C[G]B◦nw ⊆ C[G]A◦n.
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The largest such subspace is well defined, since this property is closed under
sum. It is a left ideal of C[H] since this property is closed under left C[H]-
multiplication. Moreover, L◦ww ⊆ L◦w ⊆ C[G]A◦n and thus Lw is a subideal
of C[G]Bn. Define An+1 so that A◦n+1 is the largest subspace of B◦n such
that (

C[G]A◦n+1 ⊕ C[G]ηH
)
w ⊆ C[G]Bn.

Since C[G]ηHw ⊆ Lww ⊆ Lw ⊆ C[G]Bn, the largest such space is well
defined, and it is a left ideal of C[H]. We therefore have a sequence of
nested left ideals of C[G] given by

C[G]A0 ⊇ C[G]B0 ⊇ C[G]A1 ⊇ C[G]B1 ⊇ · · · , (6.1)

which is bounded below by Jw, since Jw is defined to be the largest space
satisfiying (V1)–(V3). Therefore, the sequence stabilises: there exists N
such that An = Bn = AN for all n ≥ N . Moreover, every term in (6.1) is an
induced ideal, and hence so is AN . This shows that C[G]AN satisfies (V2).
By construction,

C[G]B◦Nw ⊆ C[G]A◦N and C[G]ANw ⊆ C[G]BN ,

which implies that C[G]AN = C[G]BN satisfies (V1) and (V3). We conclude
that C[G]AN = Jw by maximality of Jw.

Example 6.2. Again we use the example from §1.2, taking G = Sym4 and
H = Sym{2,3,4} and the weight w, now in the uniform case with λ = 3

4 , so

w = 1
4

(
id + (1, 4)(2, 3) + (1, 4, 3) + (1, 4, 2, 3)

)
. Following the construction

above we take A0 = Q[H] and find using computer algebra that B◦0 is the
3-dimensional left ideal of C[H] generated by 1− (2, 4)− (3, 4) + ηT , where
T = 〈(2, 3)〉 ≤ H. Noting that ηH(1− (2, 4)− (3, 4)) = −ηH , it follows that
B0 is the 4-dimensional left ideal of C[H] generated by 1 − (2, 4) − (3, 4).
A similar computer algebra calculation now show that A◦1 is 2-dimensional,
spanned by

idSym4
−(2, 4, 3)+(2, 3)−(2, 4) = 2 idSym4

+(2, 3, 4)+(3, 4) +2(2, 3)−6ηH ,

(2, 3, 4)−(2, 4, 3)−(2, 4)+(3, 4) = idSym4
+2(2, 3, 4)+ 2(3, 4)+(2, 3)−6ηH .

It follows that 1 + (2, 3) ∈ A1, and so A1 is the 3-dimensional ideal C[H]ηT .
We know that w lumps weakly to G/H with this stable ideal, so the al-
gorithm stabilises at this point: B◦1 = A◦1, B1 = A1, A◦2 = A◦1 and A2 =
A1. (Again this may be verified by computer algebra.) We conclude that
Jw = C[G]ηT and, given the previous example, that in this case the min-
imal and maximal Gurvits–Ledoux ideals Lw and Jw coincide. If we in-
stead take the strongly lumping weight w′ = ηTw then calculation shows
that B◦0 = C[H](1 − ηH) and B0 = C[H], and now it is immediate that
A◦1 = C[H](1− ηH) and A1 = C[H]. Hence the algorithm stabilises one step
sooner and we obtain Jw = C[G], as expected from Proposition 5.15(iii).

7. The structure of the set of all weakly lumping weights

By Definition 1.1, a weight w lumps weakly to G/H if MC(α,w) lumps
weakly to G/H for some initial distribution α. In (1.1) we defined the sets

Θ(e) =
{
w ∈ C[G] : ew(1− e) = 0, (e− ηH)wηH = 0

}
.
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As we mentioned after Theorem 1.2, it follows easily from this theorem that
the set of weakly lumping weights is ∆ ∩Θ where

Θ =
⋃

e∈E•(H)

Θ(e). (7.1)

and ∆ ⊆ R[G] is the simplex of probability distributions. In this section we
begin by studying the sets Θ(e), which turn out to have remarkable algebraic
properties. In particular, they are subalgebras of C[G]. We compute the
dimension of each Θ(e) in Corollary 7.3. We continue by considering when
the union in (7.1) is redundant, in the sense that one of these sets is contained
in another. We then prove Proposition 1.8.

7.1. Weak lumping algebras. Let e ∈ E•(H) be an idempotent, and let
L = C[G]e. Recall that Θ(e) is the set of weights w for which L = C[G]e is
a weakly lumping Gurvits–Ledoux ideal in the sense of Definition 5.11. By
Lemma 5.14(i) and (ii),

Θ(e) = {w ∈ C[G] : Lw ⊆ L, L◦w ⊆ L◦}
= {w ∈ C[G] : ew(1− e) = 0, (e− ηH)w(1− e+ ηH) = 0}.

The set {w ∈ C[G] : Lw ⊆ L} is the right idealizer RIdC[G](L) of L. By
Lemma 3.24,

Θ(e) = RIdC[G](L) ∩ RIdC[G](L
◦), (7.2)

is a subalgebra of C[G]. We call it the weak lumping algebra of e.

Lemma 7.1. Let e ∈ E•(H) be an idempotent. The weak lumping algebra
of e is a parabolic subalgebra of C[G]. It satisfies

Θ(e) = (C[G](e− ηH) + (1− e)C[G])⊕ ηHC[G]ηH .

Proof. Let L = C[G]e and consider Θ(e) = RIdC[G](L) ∩RIdC[G](L
◦). Since

e ∈ E•(H) there is an idempotent decomposition of the identity element of
C[G]:

1 = (e− ηH) + ηH + (1− e).
Using Proposition 3.6 we may choose a Wedderburn isomorphism such that,
on the block Mat(V ) corresponding to the irreducible character χV ∈ IrrG,
the elements e and ηH are sent to the diagonal matrices

e = diag(1, ..., 1, 1, ..., 1︸ ︷︷ ︸
〈χL,χV 〉

, 0, ..., 0) and ηH = diag( 0, ..., 0︸ ︷︷ ︸
〈χL◦ ,χV 〉

, 1, ..., 1︸ ︷︷ ︸
〈1↑GH ,χV 〉

, 0, ..., 0).

We represent this diagrammatically by

e =

1
1

1
1

1
1 , ηH =

1
1

1
1 , e− ηH =

1
1

.

By Lemma 3.24, both RIdC[G](L) and RIdC[G](L
◦) are standard parabolics,

and their intersection is again a standard parabolic: using (7.2) the part of
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this intersection in the block Mat(V ) is

Θ(e) ∩Mat(V ) = ∩ = .

The part of the right-hand side in the lemma in the block Mat(V ) is
(
(C[G](e− ηH) + (1− e)C[G])⊕ ηHC[G]ηH

)
∩Mat(V ),

which diagrammatically becomes


 +


⊕ = .

Since the diagrams agree, the lemma holds for the part of the weak lumping
algebra Θ(e) in the block Mat(V ). The lemma follows by summing over all
blocks in the Wedderburn decomposition. �

Remark 7.2. A consequence of the formula of Lemma 7.1 is that the sub-
algebra ηHC[G]ηH , shown diagrammatically by the second summand above,
is a direct summand common to all weak lumping algebras. This subalgebra
can be identified with the set of H-bi-invariant functions on C[G]; this is
the Hecke algebra seen in Theorem 1.11 and its proof in §9.2.

Corollary 7.3. Let e ∈ E•(H) be an idempotent and let L = C[G]e. For
each irreducible character ψ ∈ IrrG, define aψ = 〈χL◦ , ψ〉, cψ = 〈1H

xG
H , ψ〉,

and dψ = dimψ = ψ(1). Then,

dim Θ(e) =
∑

ψ∈IrrG

(a2
ψ + aψcψ + c2

ψ − aψdψ − cψdψ + d2
ψ).

Proof. Choose a Wedderburn isomorphism as in the proof of Theorem 7.1.
On each block Mat(V ) corresponding to the character ψ ∈ IrrG, the in-
tersection Θ(e) ∩Mat(V ) is mapped to the set of dψ × dψ matrices of the
form

aψ cψ
aψ

cψ
.

The dimension as a vector space is therefore

a2
ψ + (aψ + cψ)cψ + dψ(dψ − aψ − cψ). �

Example 7.4 (Exact lumping). By Proposition 5.16, the Markov chain
driven by w lumps exactly if and only if C[G]ηH is a weakly lumping Gurvits–

Ledoux ideal for w. Equivalently, if and only if w ∈ Θ(ηH). Then, χL = 1↑GH
is the induced trivial character of H. We have aψ = 0 for all ψ ∈ IrrG.
Therefore,

dim Θ(ηH) =
∑

ψ∈IrrG

(
c2
ψ + dψ(dψ − cψ)).
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In terms of characters, letting φG denote the regular character of G, we can
rewrite the above as

dim Θ(ηH) = 〈1
xG
H ,1

xG
H〉+ 〈φG, φG − 1

xG
H〉 = |H\G/H|+ |G| − |G||H| ,

where we used Lemma 4.2 (Mackey’s rule for the trivial character) to com-
pute that 〈1

xG
H ,1

xG
H〉 = |H\G/H|. Corollary 1.10 (proved in §10 below)

gives another method for computing this dimension.

Example 7.5. Let H = Sym3 and G = Sym4. Refer to Examples 3.7
and 3.8 for description of their respective irreducible representations and
Wedderburn decompositions. We choose the Wedderburn isomorphism of
C[G] as in Example 3.19 so, in particular, the partitions labelling the blocks
from top-left to bottom-right are 4, 31, 22, 211, 1111. We saw that in this

chosen isomorphism, L = S3↑GH corresponds to the submodule shown left
below, and so RId(L) is as drawn right below:

, .

Since in this case L◦ = ∅, we have RId(L) = Θ(ηH). The weak lumping
algebra Θ(ηH) is therefore of dimension 22 = 2 + 24 − 4, as given by the
formula of Example 7.4. Note that this weak lumping algebra is a product
of parabolic subalgebras, but, under this Wedderburn isomorphism, the par-
abolic subalgebra for the block corresponding to the irreducible S31 is not
a standard parabolic.

7.2. Containment of weak lumping algebras. Whenever H is non-
abelian, the union (7.1) defining Θ is over an uncountable set. We want
to understand to what degree this expression is redundant. That is, for
which idempotents e, ẽ ∈ E•(H) do we have Θ(e) ⊆ Θ(ẽ)?

The following definition defines Borel and parabolic subalgebras of the
group algebra C[G].

Definition 7.6. Let C[G] ∼=
⊕

V ∈Irr(G) Mat(V ) be a fixed Wedderburn iso-

morphism of C[G]. Fix an isomorphism of each Mat(V ) with the matrix
algebra MatdimV (C). Under these isomorphisms:

(a) The standard Borel subalgebra of C[G] is the product of the standard
Borel subalgebras of lower triangular matrices in each factor Mat(V );

(b) A subalgebra of C[G] is Borel if it is conjugate by an element of
C[G]× to the standard Borel;

(c) A subalgebra of C[G] is parabolic if it is conjugate by an element of
C[G]× to a subalgebra containing the standard Borel.

Recall that χV denotes the character of a representation V .

Theorem 7.7. Let e, ẽ ∈ E•(H) be idempotents. Set L = C[G]e and

L̃ = C[G]ẽ. We have Θ(e) ⊆ Θ(ẽ) if and only if for each irreducible repre-
sentation V ∈ Irr(G) the following two conditions hold:

(i) if 〈1
xG
H , χV 〉 6= 0 then L̃◦ ∩Mat(V ) = L◦ ∩Mat(V );
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(ii) L̃◦ ∩Mat(V ) is either 0, or L◦ ∩Mat(V ), or Mat(V ).

The proof of this theorem will follow from four lemmas. The first two are
elementary results from geometric representation theory; we include proofs
for completeness’ sake.

We say a left ideal L of Matd(C) is an initial column span if it is of the
form Matd(C)e for e = diag(1, ..., 1, 0, ..., 0). That is, if we can write

L = .

Let Bd be the standard Borel subalgebra of lower triangular matrices in
Matd(C).

Lemma 7.8. If the right idealizer RIdMatd(C)(L) of a left ideal L of Matd(C)
contains Bd then L is an initial column span.

Proof. Let L = Matd(C)e for an idempotent e. By hypothesis, we have
Bd ⊆ RIdMatd(C)(L). Since e is an idempotent, we can write

e = y−1

(
1 ...

1
0...

0

)
y

for some invertible y ∈ Matd(C). We deduce yLy−1 is an initial column span
and that RIdMatd(C)(yLy

−1) = yRIdMatd(C)(L)y−1 is a standard parabolic
as in the proof of Lemma 3.24. But by Proposition 3.23, two standard
parabolics are conjugate if and only if they are equal. Thus y normalises
RIdMatd(C)(L). Reasoning as in Remark 3.25 and using Lemma 3.21 we have

y ∈ NMatd(C)×
(

RIdMatd(C)(L)
)

= RIdMatd(C)(L) ∩Matd(C)×

= NMatd(C)×(L).

Hence yLy−1 = L is an initial column span. �

The second lemma is a combinatorial exercise. It is most natural after the
following description of standard parabolics. The symmetric group Symd is
generated by the simple transpositions si = (i, i+1) for i ∈ {1, . . . , d−1}. We
define the parabolic subgroup of Symd indexed by a tuple a = (a1, . . . , ak),
where 0 ≤ a1 < . . . ≤ ak ≤ d, to be the subgroup of Symn generated by
the si for i 6∈ {a1, . . . , ak}, and denote it by Symd(a). Identifying Symd with
the group of permutation matrices, we can write the standard parabolic
subalgebras of Matd(C) as Pd(a) = Bd Symd(a)Bd.

Lemma 7.9. Fix 0 ≤ c ≤ d and two parameters 0 ≤ a, ã ≤ d − c. Let
b = a+ c and b̃ = ã+ c. Then, Pd(a, b) ⊆ Pd(ã, b̃) if and only if

(i) ã = 0 and c ∈ {0, a, d},
(ii) ã = a,
(iii) ã = a+ c and 2c = d− a, or
(iv) ã = d and c = 0.
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Proof. We have the containment Pd(a, b) ⊆ Pd(ã, b̃) if and only if {0, a, b, d} ⊇
{0, ã, b̃, d}, and so if and only if {0, a, a+ c, d} ⊇ {0, ã, ã+ c, d}.

• If ã = 0, then {0, a, a+ c, d} ⊇ {0, c, d} gives c ∈ {0, a, d}.
• If ã = a, then the containment evidently holds.
• If ã = a + c, then {0, a, a + c, d} ⊇ {0, a + c, a + 2c, d} gives either
c = 0 (which gives ã = a, as above) or a+ 2c = d.
• If ã = d, then c = 0. �

Lemma 7.10. Let e, ẽ ∈ E•(H) be idempotents. Set L = C[G]e and

L̃ = C[G]ẽ. The parabolic subalgebras Θ(e) and Θ(ẽ) of C[G] share a com-
mon Borel if and only if for each irreducible representation V ∈ Irr(G) the
following two conditions hold:

• if 〈1H
xG
H , χV 〉 6= 0 then L◦ ∩Mat(V ) = L̃◦ ∩Mat(V );

• either L◦ ∩Mat(V ) ⊆ L̃◦ ∩Mat(V ) or L̃◦ ∩Mat(V ) ⊆ L◦ ∩Mat(V ).

Proof. Given an irreducible module V ∈ Irr(G) and its character ψ ∈ IrrG,
define aψ := 〈χL◦ , ψ〉 as in Corollary 7.3, and similarly let ãψ = 〈χL̃◦ , ψ〉.

Suppose Θ(e) and Θ(ẽ) share a common Borel subalgebra. Fix a Wedder-
burn isomorphism sending this Borel to the standard Borel of

⊕
V Mat(V ),

in the sense of Definition 7.6. Then, by Lemma 7.8, each of L, L◦, L̃, and
L̃◦ are sent to initial column spans on each Wedderburn block. In each
Wedderburn block Mat(V ), we have

{
L◦ ∩Mat(V ) ⊆ L̃◦ ∩Mat(V ) if aψ ≤ ãψ,
L̃◦ ∩Mat(V ) ⊆ L◦ ∩Mat(V ) if aψ ≥ ãψ

satisfying the second condition.
Fix V ∈ Irr(G) with irreducible character ψ. Suppose that 〈1H

xG
H , ψV 〉 6=

0. Since L = L◦⊕C[G]ηH , we can recover C[G]ηH∩Mat(V ) as the span of the
columns of L∩Mat(V ) which are not in L◦∩Mat(V ). (The relevant columns
are the first aψ columns in the diagram below, repeated from Corollary 7.3.)

aψ cψ
aψ

cψ

Similarly, we can recover C[G]ηH ∩Mat(V ) as the span of those columns of

L̃∩Mat(V ) which are not in L̃◦∩Mat(V ). We deduce aψ = ãψ and therefore

L◦ ∩Mat(V ) = L̃◦ ∩Mat(V ) as required by the first condition.
Conversely, suppose both conditions are satisfied. Then there is a Wed-

derburn decomposition sending L, L◦, L̃, and L̃◦ to initial column spans on
each Wedderburn component. Under this Wedderburn isomorphism Θ(e)
and Θ(ẽ) are standard, and they share the standard Borel subalgebraBd. �

Lemma 7.11. Let e, ẽ ∈ E•(H) be idempotents. Set L = C[G]e and L̃ =
C[G]ẽ. We have Θ(e) ⊆ Θ(ẽ) if and only if

• Θ(e) and Θ(ẽ) share a common Borel, and

• L̃◦ ∩Mat(V ) is either 0, or L◦ ∩Mat(V ), or Mat(V ).
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Proof. We use the notation aψ, cψ, dψ as in Corollary 7.3, and ãψ as above.
Suppose that Θ(e) ⊆ Θ(ẽ). In particular, both parabolic algebras share
a common Borel subalgebra. Fix a Wedderburn isomorphism sending this
Borel to the standard Borel of

⊕
V Mat(V ). Then L, L◦, L̃, and L̃◦ are

sent to initial column spans on each Wedderburn component by Lemma 7.8.
By Lemma 7.9, we have Θ(e) ⊆ Θ(ẽ) only if ãψ ∈ {0, aψ, aψ + cψ, dψ} for
each V ∈ Irr(G) with character ψ. Note that if cψ 6= 0 then the equality
ãψ = aψ + cψ would imply

0 6= C[G]ηH ∩Mat(V ) ⊆ L ∩Mat(V ) = L̃◦ ∩Mat(V ),

which is a contradiction. Thus L̃◦∩Mat(V ) ∈ {0, L◦∩Mat(V ),Mat(V )} for
all V ∈ Irr(G).

The converse is Lemma 7.9. �

The proof of Theorem 7.7 is now almost immediate.

Proof of Theorem 7.7. Suppose the two hypotheses of this theorem hold. By
the ‘if’ direction of Lemma 7.10, the hypotheses imply that Θ(e) and Θ(ẽ)
share a common Borel subalgebra. This gives the first hypothesis needed
for the ‘if’ direction of Lemma 7.11, and the second is hypothesis (ii) in the
theorem. Therefore Θ(e) ⊆ Θ(ẽ). Conversely, if Θ(e) ⊆ Θ(ẽ) then the ‘only
if’ direction of Lemma 7.11 implies that Θ(e) ⊆ Θ(ẽ) share a common Borel
subalgebra and so the ‘only if’ direction of Lemma 7.10 may be applied. �

Example 7.12. Continuing Examples 3.7, 3.8, 3.19, and 7.5 we set H =
Sym3 and G = Sym4. Recall that e111 = 1

6

(
1− (12)− (13)− (23) + (123) +

(132)
)

is the centrally primitive idempotent of C[H] such that C[H]e is the

sign representation S111 of H. Set e = ηH + e111 and ẽ = ηH . Then L =
C[G](ηH + e111) and L̃ = C[G]ηH . Noting that 1H = χ3, Example 3.19(1)
gives that

1H

xG
H = 1G + χ31.

Thus the two representations relevant to hypothesis (i) of Theorem 7.7 are
the trivial representation and S31, and since

L◦ = C[G]e111
∼= S111

xG
H
∼= S211 ⊕ S1111

and L̃◦ = 0, this hypothesis holds. Since L̃◦ = 0, hypothesis (ii) of The-
orem 7.7 is immediate. Therefore Θ(e) ⊆ Θ(ẽ). Using the Wedderburn
isomorphism introduced in Example 3.19, the algebra Θ(ẽ) was found in
Example 7.5; the relevant diagram is repeated below.

By (7.2), we have

Θ(e) = Θ(ηH) ∩ RId(S111
xG
H).

Since, as remarked in Example 3.19, our Wedderburn isomorphism is cho-
sen so that multiplication by the sign representation of H = Sym3 rotates
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diagrams by a half-turn, the containment Θ(e) ⊂ Θ(ẽ) is represented dia-
grammatically as shown below:

⊆ .

Corollary 7.13. Let e, ẽ ∈ E•(H) be idempotents. Set L = C[G]e and

L̃ = C[G]ẽ. Suppose that L and L̃ are isomorphic as C[G]-modules. Then,

Θ(e) ⊆ Θ(ẽ) if and only if L = L̃.

Proof. If L and L̃ are isomorphic C[G]-modules, then so are L◦ and L̃◦. In
particular, they have the same character χL◦ = χL̃◦ . We deduce

dim
(
L◦ ∩Mat(V )

)
= 〈χL◦ , χV 〉 = 〈χL̃◦ , χV 〉 = dim

(
L̃◦ ∩Mat(V )

)

for every irreducible representation V ∈ Irr(G). Now Theorem 7.7 gives the
result. �

We remark that when H is non-abelian, by the remark at the end of
the first paragraph of §3.4, there are infinitely many distinct idempotents
affording each representation of C[H], and so Corollary 7.13 is a non-trivial
result.

7.3. Subgroups with full induction restriction. We say the union defin-
ing Θ is completely redundant if Θ = Θ(ηH), or equivalently, by Theorem 1.2,
if for all e ∈ E•(H), we have Θ(e) ⊆ Θ(ηH). We say that the union is ir-
redundant if a containment Θ(e) ⊆ Θ(ẽ) between weak lumping algebras
implies C[G]e = C[G]ẽ. (Compare Corollary 7.13, that if C[G]e ∼= C[G]ẽ
then Θ(e) = Θ(ẽ).) These two probability-theoretic properties are at oppo-
site ends of a spectrum. In this subsection, we show they are determined by
group-theoretic properties of H and G.

We begin with complete redundancy, for which we need a representation-
theoretic characterisation of normality.

Lemma 7.14. The subgroup H of G is normal if and only if 〈χ,1
xG
H

y
H〉 =

0 for all irreducible characters χ ∈ Irr(H) such that χ 6= 1H .

Proof. The orbits of H acting on the left on the set of left cosets G/H cor-
respond to double cosets HxH. The stabiliser in H of xH is H ∩ xHx−1.

Thinking of 1↑GH as the character of the permutation module (see Exam-
ple 3.3) of G acting on the left cosets G/H, the character-theoretic statement
of Lemma 4.2 (Mackey’s Rule for the trivial character) is

1

xG
H↓H =

∑

x

1H∩xHx−1

xH

where the sum is over a set of representatives for the double cosets H\G/H.
IfH is normal inG then the right hand side is [G : H]1H , as required. Other-
wise there exists x such that H∩xHx−1 6= H, and since 〈1

xH
H∩xHx−1 ,1H〉 =

1, there exists a non-trivial irreducible character χ of H in the right-hand
side. �
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Proposition 7.15. The subgroup H of G is normal if and only if the union
defining Θ is completely redundant.

Proof. By (7.2) we have

Θ(ηH) = RIdC[G](C[G]ηH) ∩ RIdC[G](0) = RIdC[G](C[G]ηH).

Suppose that H is normal in G. Then ηH is central in C[G] (i.e. ηHx = xηH
for all x ∈ C[G]) and so RIdC[G](C[G]ηH) = C[G]. Clearly C[G] contains
every weak lumping algebra Θ(e).

Conversely, suppose that H is not normal in G. There exists χ ∈ Irr(H)
with χ 6= 1H such that 〈χ,1H

xG
H

y
H〉 6= 0. Let U be a left ideal of C[H]

whose character (as a C[H]-module) is χ + 1H , and let L = C[G]U . By
Theorem 7.7, we deduce that Θ(e) 6⊆ Θ(ηH). �

We now consider the other end of the spectrum where the union defining Θ
is irredundant, proving Proposition 1.8. The following definition is required.

Definition 7.16. We say that the subgroup H of G has full induction
restriction in G if the restriction to H of the permutation character of G
acting on the cosets of H contains every irreducible character of H. That
is, if 〈χ,1H

xG
H

y
H〉 6= 0 for all χ ∈ Irr(H).

When the group G is clear from context we abbreviate this to ‘H has full
induction restriction’. We use the following lemma, which may be regarded
as a form of Frobenius reciprocity (see Proposition 3.20) for left ideals of
group algebras.

Lemma 7.17. Let U and Ũ be left ideals of C[H]. Let V be an irreducible
representation of G and let Mat(V ) denote its Wedderburn block. Then,

C[G]U ∩Mat(V ) = C[G]Ũ ∩Mat(V )

if and only if
U ∩ πH

(
Mat(V )

)
= Ũ ∩ πH

(
Mat(V )

)
.

Proof. The intersection U ∩ Ũ is a left ideal of C[H]. Since C[H] is com-
pletely reducible, it has a complement in U , call it X, and also a complement
in Ũ , call it X̃. Thus

U = (U ∩ Ũ)⊕X and Ũ = (U ∩ Ũ)⊕ X̃,
where all the summands are left ideals of C[H]. It follows that U + Ũ =

(U ∩ Ũ)⊕X ⊕ X̃. We have

C[G]U ∩Mat(V ) =
(
C[G](U ∩ Ũ) ∩Mat(V )

)
⊕
(
C[G]X ∩Mat(V )

)

= C[G]Ũ ∩Mat(V ) =
(
C[G](U ∩ Ũ) ∩Mat(V )

)
⊕
(
C[G]X̃ ∩Mat(V )

)

and

C[G](U + Ũ) ∩Mat(V ) =
(
C[G](U ∩ Ũ) ∩Mat(V )

)

⊕
(
C[G]X ∩Mat(V )

)
⊕
(
C[G]X̃ ∩Mat(V )

)
.

But for any vector subspaces A,B,C of a common ambient vector space, if
A ⊕ B = A ⊕ C and A ⊕ B ⊕ C is a direct sum then B = C = {0}. We
deduce that

C[G]X ∩Mat(V ) = 0 = C[G]X̃ ∩Mat(V ).
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Therefore, X ∩ πH
(
Mat(V )

)
= X ′ ∩ πH

(
Mat(V )

)
= 0 by Frobenius reci-

procity. Since πH
(
Mat(V )

)
is a direct sum of full Wedderburn components

of C[H], and since projection to full Wedderburn components respects direct
sums of left-modules, we conclude that

U ∩ πH
(
Mat(V )

)
= Ũ ∩ πH

(
Mat(V )

)
= (U ∩ Ũ) ∩ πH

(
Mat(V )

)
.

The converse is shown similarly. Indeed, from U ∩ πH(Mat(V )) = Ũ ∩
πH(Mat(V )) we deduce X ∩ πH(Mat(V )) = 0 = X̃ ∩ πH(Mat(V )) and the
conclusion now follows from Frobenius reciprocity. �

We are now ready to prove Proposition 1.8, whose statement we recall
below.

Proposition 1.8. The subgroup H of G has full induction restriction if and
only if the union defining Θ is irredundant, in the sense that no set Θ(e) is
contained in another.

Proof of Proposition 1.8. Suppose that H has full induction restriction in G.
Suppose that there is a containment Θ(e) ⊆ Θ(ẽ) between weak lump-

ing algebras. Let U = C[H]e and Ũ = C[H]ẽ. Let V be an irreducible

C[H]-submodule of U◦ + Ũ◦. Recall that χV denotes the character of V .
Since H has full induction restriction, Frobenius reciprocity implies that
〈χV

xG
H ,1H

xG
H〉 6= 0. Thus Theorem 7.7 gives

C[G]U◦ ∩Mat(V ) = C[G]Ũ◦ ∩Mat(V ).

We can now apply Lemma 7.17 to get

U◦ ∩ πH(Mat(V )) = Ũ◦ ∩ πH
(
Mat(V )

)
.

In particular, since V ⊆ πH(Mat(V )), we have U◦ ∩ V = Ũ◦ ∩ V . This holds

for all irreducible C[H]-submodules V of U◦ + Ũ◦, and therefore U◦ = Ũ◦.
Hence, Θ(e) = Θ(ẽ).

For the converse, we show the contrapositive statement. Suppose that H
does not have full induction restriction in G. Then there exists χ ∈ Irr(H)
such that 〈χ,1H

xG
H

y
H〉 = 0. Let U be a left ideal of C[H] whose character

(as a C[H]-module) is χ + 1H , let L = C[G]U . Note that the character
of L◦ is χ

xG
H and that 〈χ

xG
H ,1H

xG
H〉 = 0 by Frobenius reciprocity. Then,

Theorem 7.7 gives Θ(e) ⊆ Θ(ηH) and the union defining Θ is not irredun-
dant. �

Some of the natural applications of our work are to subgroups with full
induction restriction.
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Example 7.18.

(1) Let H = Sym{1,...,k} and let G = Symn. As in Examples 3.5 and 3.19,

we denote by χλ the irreducible character of the symmetric group
canonically Sλ. Then, 〈χλ

xG
H ,1H

xG
H〉 is the number of partitions

of n that contain both λ and (k) as subpartitions. This constraint
is strongest for λ = (1k); we need partitions containing (k, 1k−1),
and such partitions exist if and only if n ≥ 2k − 1. Thus H has full
induction restriction if and only if 2k ≤ n+ 1.

(2) Let D2n be the dihedral group of order 2n, generated by σ and τ as
in Example 2.1. Then 〈τ〉 has full induction restriction and 〈σ〉 does
not.

Both examples of full induction restriction from Example 7.18 are ex-
plained by the following lemma. For instance, in (1), if 2k ≤ n − 1 then
the permutation (1, k + 1)(2, k + 2) . . . (k − 1, 2k − 1) ∈ Symn satisfies
g−1Hg ∩H = {1}, and so by (4.2), |HgH| = |H|2.

Lemma 7.19. If there is a double coset HxH ∈ H\G/H of the maximum
possible size |H|2, then the subgroup H of G has full induction restriction.

Proof. By (4.2) we have |HxH| · |xHx−1 ∩H| = |H|2 for every double coset
HxH ∈ H\G/H. If |HxH| = |H|2, we deduce |xHx−1 ∩ H| = 1. Now,
Mackey’s rule (Lemma 4.2) gives

1H

xG
H

y
H = 1H

xH
xHx−1∩H + · · · ,

which by the previous computation shows that the regular representation
of H appears as a summand in 1H

xG
H

y
H . �

We remark that there is a double coset HgH of the maximum possi-
ble size |H|2 if and only if H has a regular orbit on the set G/H of left
cosets, and so if and only if G has a base (see [11, §4.13]) of size 2 when
regarded as a permutation group on G/H. The example G = Sym6 and
H = 〈(12)(34), (12)(3456)〉 shows that full induction restriction may hold
even when there is no double coset of maximum size. One can check this
computationally.

8. Real idempotents and a refinement of Theorem 1.2

8.1. Weak lumping algebras of real idempotents suffice. Since a ran-
dom walk on a group is driven by a weight whose coefficients are non-negative
real numbers, to understand the set of weakly lumping weights we must con-
sider the real parts of the algebras Θ(e) for e ∈ E•(H). Notice that distinct
weak lumping algebras may have equal real parts. For instance, take a sub-
group H of order 3, with notation as in the proof of Corollary 5.17. Since
complex conjugate is a multiplicative map, an elementary computation gives

Θ(ξH + ηH) ∩ R[G] = Θ(ξH + ηH) ∩ R[G].

Since we are really interested in ∆∩Θ, where ∆ is the simplex of probability
vectors in C[G], the displayed equation above shows a way in which our
expression ∆∩⋃e∈E•(H) Θ(e) for the set of weakly lumping weights may be

redundant. (This is different to the redundancy due to containment studied
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in the previous section.) In this section we remedy this form of redundancy.
We say that a left ideal of a complex group algebra is self-conjugate if it is
equal to its own complex conjugate.

Lemma 8.1. Every self-conjugate left ideal of C[H] is generated as a left
ideal by a real idempotent of H.

Proof. Let L be a self-conjugate left ideal of C[H]. Consider the orthogonal
projection π : C[H] → L with respect to the Hermitian inner product on
C[H]. Because L is invariant under complex conjugation, π is equivariant
with respect to complex conjugation. In particular, π(h) ∈ R[H] for every
h ∈ H. Hence the idempotent f = 1

|H|
∑

h∈H h
−1π(h) is real, and L =

C[H]f , as explained in §3.4. �

Lemma 8.2. Let e ∈ E•(H) and let e be the complex conjugate of e. Let w
be a weight on G. Then w lumps weakly with stable ideal C[G]e if and only
if w lumps stably for the ideal C[G]e, and in this case w also lumps stably
for the ideals C[G]e ∩ C[G]e and C[G]e + C[G]e. Moreover, there exist real
idempotents e∧, e∨ ∈ E•(H) ∩ R[H] such that C[G]e ∩ C[G]e = C[G]e∧ and
C[G]e+ C[G]e = C[G]e∨.

Proof. Since complex conjugation is multiplicative, it is clear from (7.2) that

Θ(e) = Θ(e). We have seen that w lumps stably for C[G]e if and only if
w ∈ Θ(e), and since w takes real values this holds if and only if w ∈ Θ(e),
so if and only if w lumps stably for C[G]e.

We have seen in §5.1 and §5.3 that the set of weakly lumping Gurvits–
Ledoux ideals for a given weight w that contain ηG forms a lattice under
intersection and addition. So if w lumps stably for C[G]e then w also lumps
stably for C[G]e∩C[G]e and for C[G]e+C[G]e. It remains to show that these
two ideals (which are invariant under complex conjugation) are generated
by idempotents in E•(H) ∩ R[H].

Apply Lemma 8.1 to express C[H]e ∩ C[H]e = C[H]e∧ and C[H]e +
C[H]e = C[H]e∨ for real idempotents e∧ and e∨ in C[H]. We have ηH ∈
C[H]e∨ and ηH ∈ C[H]e∧ since ηH ∈ C[H]e and ηH ∈ C[H]e. Hence
e∧, e∨ ∈ E•(H) ∩ R[H]. Now

C[G]e ∩ C[G]e = C[G](C[H]e ∩ C[H]e) = C[G]C[H]e∧ = C[G]e∧.

To see the first equality, suppose that x ∈ C[G]e ∩ C[G]e, and pick a set
g1, . . . , gm of coset representatives for G/H; then x may be written uniquely
as
∑
giyie with each yi ∈ C[H], and also uniquely as

∑
gizie with each

zi ∈ C[H], and for each i we obtain zie = yie ∈ C[H]e ∩ C[H]e. A similar
argument shows that C[G]e+ C[G]e = C[G]e∨. �

Corollary 8.3. We have

Θ ∩ R[G] =
⋃

e∈E•(H)∩R[H]

Θ(e) ∩ R[G].

Proof. Combine Theorem 1.2 with Lemma 8.2. �

It follows that the set of weakly lumping irreducible weights may be ex-
pressed as

Γ ∩∆ ∩Θ = Γ ∩∆ ∩
⋃

e∈E•(H)∩R[H]

Θ(e) (8.1)
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where, as in the introduction, Γ = C[G] \⋃K�GC[K] and ∆ is the simplex
of probability vectors in C[G].

8.2. A probabilistic characterisation of stable lumping for self-
conjugate left ideals. Definition 1.3 defines in algebraic terms what it
means for an irreducible weight w to lump weakly with stable ideal L =
C[G]e for e ∈ E•(H). As remarked after that definition, in this case it
follows from Theorem 1.2 that for every weight α ∈ L we have

(a) X = MC(α,w) lumps weakly to G/H for all α ∈ L, and
(b) for any initial distribution α ∈ L and all t, L always contains the

conditional distribution of Xt given X0H, . . . ,XtH.
In this section we show a converse: for a self-conjugate left ideal L ⊆ C[G]
containing ηG, if conditions (a) and (b) hold for all α ∈ ∆ ∩ L then L is
induced from C[H] and w lumps weakly to G/H with stable ideal L.

Lemma 8.4. Let L be a self-conjugate left ideal of C[G] containing ηG. Then
as a C-vector space, L has a basis whose elements are probability vectors.

Proof. By Lemma 8.1 (applied to G in place of H) we have L = C[G]e for
some real idempotent e ∈ E(G), and since ηG ∈ L, we have e ∈ E•(G).
Therefore L is spanned by the elements ge for g ∈ G, which are weights;
some subset of these forms a basis of L. �

Proposition 8.5. Let L be a self-conjugate left ideal of C[G] containing at
least one non-zero probability vector and let w be an irreducible weight on G.
If for every probability vector α ∈ L we have

(i) X = MC(α,w) lumps weakly to G/H for all α ∈ L, and
(ii) for any initial distribution α ∈ L and all t, L always contains the

conditional distribution of Xt given X0H, . . . ,XtH,
then L = C[G]e for some e ∈ E•(H), and w lumps weakly to G/H with
stable ideal L.

Proof. Since w is irreducible and L contains at least one non-zero weight,
by the usual ergodic averaging argument we have ηG ∈ L. By Lemma 8.4
we may choose a basis v1, . . . , vk of L consisting of probability vectors. Let
V denote the real vector space spanned by v1, . . . , vk. Identifying C[G] with
CG, we have V = L ∩ RG. Let Pw denote the transition matrix of the left-
invariant random walk on G driven by w. By conditions (a) and (b), for all
probability vectors α ∈ L, applying Lemma 2.17, Pw lumps weakly under
the map λ : G → G/H with stable space V . Thus we have viP ∈ V for
i = 1, . . . , k, so Lw ⊆ L. Similarly, viΠbH ∈ V for all b ∈ G and i = 1, . . . , k.
Extending scalars (and writing the projections to cosets on the left), this
means πbH(L) ⊆ L for all b ∈ G, hence L =

⊕
b∈G/H πbH(L). Since L is also

a left ideal, it is an induced ideal from the self-conjugate left ideal πH(L)
of C[H], which contains ηH . Hence L = C[G]e for some real idempotent
e ∈ E•(H). We have V ◦PwΛ = 0, where Λ is the matrix for the canonical
map G → G/H defined at the start of §5.2. Because Λ is real, we have
L◦ = V ◦ ⊗R C, and so L◦PwΛ = 0, i.e. L◦w ⊆ L◦. �
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It follows from Proposition 5.12 that for a real idempotent e ∈ E•(H)∩R[H],
and any weight w on G, w lumps stably for C[G]e in the sense of Defini-
tion 1.3 if and only if Pw lumps stably for R[G]e in the sense of Defini-
tion 2.10. In general, not every stable space V ⊆ R[G] for the transition
matrix Pw and the lumping map f : G → G/H need be a left ideal. How-
ever, if w is irreducible and V ⊆ R[G] is any subspace such that Pw lumps
weakly under f with stable space V , then the space

∑
g∈G gV is a left ideal

of R[G] and by Lemma 2.15 it is also a stable space for Pw and f . Then
L = (

∑
g∈G gV )⊗R C satisfies the hypotheses of Proposition 8.5. In sum-

mary, we have proved that every stable subspace of RG for weak lumping of
Pw under f is a subspace of a stable ideal generated by a real idempotent
in E•(H).

9. Hecke algebras and the proof of Theorem 1.11

To make the proof of Theorem 1.11 self-contained, we begin by briefly
reviewing the essential theory of orbital matrices and Hecke algebras. We
give an example in §13.2.6 in the context of the extended dice rolling example
in §13.2. For further background on Hecke algebras see [11, §1.11, §2.2, §3.1]
or [12, Chapter 4]. The permutation representation of G acting on the left
cosets G/H was characterised as an induced representation in Example 3.14.

9.1. Orbital matrices. The left action of G on the set of left cosets G/H
induces an action of G on G/H × G/H by x(gH, g′H) = (xgH, xg′H).
Throughout this section, we set m = |G/H|.
Definition 9.1. Let x ∈ G. The orbital matrix corresponding to the double
coset HxH is the m × m matrix M(HxH) with zero/one entries defined
by M(HxH)(gH,g′H) = 1 if and only if (gH, g′H) is in the orbit of G on
G/H ×G/H containing (H,xH).

Thus there is one orbital matrix for each double coset HxH and the linear
span of the orbital matrices has dimension equal to the number of double
cosets, namely |H\G/H|. By the G-invariance property in the definition,
each orbital matrix defines a C[G]-endomorphism of the m-dimensional per-
mutation representation C↑GH . Observe that the row of the orbital matrix
M(HxH) labelled by H has its non-zero entries precisely in the columns
hxH for h ∈ H, corresponding to the orbit of H on G/H containing xH.

9.2. Hecke algebras. The Hecke algebra of functions on C[G] invariant
under left- and right-multiplication by H is isomorphic to the subalgebra
ηHC[G]ηH by the map sending the function f : G → C to

∑
g∈G f(g)g.

(Note this is the same way that we identify weights and distributions with
elements of C[G].) It is clear that ηHC[G]ηH has as a basis all ηHxηH for
x in a set of representatives for the double cosets H\G/H. In particular
dim ηHC[G]ηH = |H\G/H|. We may therefore refer to ηHC[G]ηH as the
Hecke algebra of double cosets.

In the following proposition, recall that the opposite algebra of an al-
gebra A is the algebra with the same underlying vector space, but with
multiplication defined by a · b = ba for a, b ∈ A.
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Proposition 9.2. For x ∈ G, let mx = |H/H ∩ xHx−1|. The subspace of
the algebra Matm(C) spanned by the orbital matrices is closed under multi-
plication and is isomorphic to the opposite algebra of ηHC[G]ηH by the map
ηHxηH 7→M(HxH)/mx.

Proof. See Proposition 4.2.1 and its proof in [12]. �

Since the proof in [12] comes only after a long development of theory not
required in this paper, we outline a shorter proof: the action of ηHC[G]ηH
by right multiplication C[G]ηH defines an injective algebra homomorphism
ηHC[G]ηH → EndC[G](C[G]ηH). By Lemma 4.2, dim EndC[G](C[G]ηH) =
|H\G/H|. Hence this map is an isomorphism. In the canonical basis of
left cosets of C[G]ηH , the matrix of the endomorphism Fx determined by
Fx(ηH) = ηHxηH is stochastic, having mx entries of 1/mx in each row,
where mx = |H/H ∩ xHx−1| is the size of the orbit of H on G/H contain-
ing xH. By the final paragraph of §9.1, EndC[G](C[G]ηH) has as a basis the
orbital matrices, acting by left multiplication; the matrix M(HxH) hav-
ing mx ones in each row corresponds to the endomorphism mxFx. Hence
ηHxηH 7→M(HxH)/mx is an explicit isomorphism between ηHC[G]ηH and
the opposite algebra of the algebra of orbital matrices.

9.3. Proof of Theorem 1.11. We need one final preliminary: suppose that
Q is an m×m matrix satisfying the condition that Q(gH,g′H) = Q(kgH,kg′H)

for all g, g′, k ∈ G. By the final sentence of §9.2,

Q =
∑

x

Q(H,xH)M(HxH) (9.1)

where the sum is over a set of representatives for the double cosets HxH.

Proof of Theorem 1.11. Suppose that (i) holds so, by hypothesis MC(ηG, w)
lumps weakly to G/H and the transition matrix of the lumped chain is Q.
We may assume that w is normalized, i.e. w(G) = 1. By hypothesis the
initial distribution of X0 is uniform. Therefore, conditioned on the event
X0 ∈ gH, the distribution of X0 is uniform on gH. Hence for any g′ ∈ G
we have

P[X1 ∈ g′H | X0 ∈ gH] =
1

|H|
∑

h∈H
P[X1 ∈ g′H | X0 = gh]

=
1

|H|
∑

h∈H

∑

h′∈H
w(h−1g−1g′h′).

The right hand side is the sum of the coefficients of |H|ηHwηH on the double
coset Hg−1g′H. Therefore the probability just calculated is the same replac-
ing w with ηHwηH , and we have (ii), that Q is the transition matrix of the
induced random walk driven by a weight in the Hecke algebra ηHC[G]ηH .

Suppose that (ii) holds. Then by Proposition 9.2, Q is a linear com-
bination of the orbital matrices M(HxH). It is immediate from Defini-
tion 9.1 that these matrices satisfy M(HxH)(gH,g′H) = 1 if and only if
M(HxH)(kgH,kg′H) = 1 for all g, g′, k ∈ G. Therefore (iii) holds. Con-
versely, if (iii) holds then by (9.1) and Proposition 9.2, a suitable weight
satisfying (ii) is

∑
xQ(H,xH)ηHwηH .
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To complete the proof it suffices to show that (ii) implies (iv) and (iv)
implies (i). Suppose that (ii) holds, so that w ∈ ηHC[G]ηH . Then w(hgh′) =
w(g) for all h, h′ ∈ H and so w is constant on left cosets gH in the same
double coset HxH, and dually, w(Hg) is constant on right cosets Hg in the
same double coset HxH. Hence w satisfies the conditions of Corollary 1.10
to lump strongly and exactly to G/H, as required for (iv). Finally (iv)
implies (i) because strong lumping implies weak lumping. �

10. Duality and time-reversal

In this section we state and prove a new theorem that relates time reversal
and duality for weak lumping of general finite Markov chains. We then derive
Theorem 1.9 as an application, and finally deduce Corollary 1.10.

10.1. Duality and time-reversal for weak lumpings of general finite
Markov chains. Let X = MC(α, P ) be a DTHMC, and suppose that it
is stationary, i.e. Xt is distributed according to α for all times t. We may
extend it to have time indexed by Z. The time reversal of the extended
chain is another stationary DTHMC which we shall denote X?. It also has
time indexed by Z and stationary distribution α. Let A ⊆ G be the support
of α. Then, in the notation from the start of §2, the time reversed chain
defined on A is MC(α, P ?), where

P ?(x, y) =
α(y)

α(x)
P (y, x).

In other words, if D is the diagonal matrix indexed by A whose ith diag-
onal entry is α(i), then DP = (DP ?)T . In particular, if α is the uniform
distribution on A then P ? = P T .

Now suppose f : A → B is a surjective function. Then X? lumps
weakly under f if and only if X does, since if the process f(X) is a time-
homogeneous Markov chain (necessarily stationary), then its time reversal is
also a time-homogeneous Markov chain. We shall see in Corollary 10.2 that
exact lumping and strong lumping are exchanged by time reversal, under
the mild condition that the stationary distribution α has full support. This
is a special case of the following duality statement. See Definition 2.10 for
the definition of stable space.

Theorem 10.1 (Duality). Let α be any stationary probability distribution
for P such that α(x) > 0 for every x ∈ A. Let the time reversal of MC(α, P )
be MC(α, P ?). Suppose that P lumps weakly under f with stable space V ,
and α ∈ V . If V is a real vector space, then define

W =

{
w ∈ RA : for all v ∈ V ◦ we have

∑

x∈A

v(x)w(x)

α(x)
= 0

}
,

and if V is a complex vector space, then define

W =

{
w ∈ CA : for all v ∈ V ◦ we have

∑

x∈A

v(x)w(x)

α(x)
= 0

}
.

Then α ∈ W and the time reversal P ? lumps weakly under f with stable
space W .
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Proof. First let us check that α ∈W . For every v ∈ V ◦ we have
∑

x∈A
v(x) =

∑

b∈B

∑

x∈f−1(b)

v(x) =
∑

b∈B
0 = 0,

as required. We now check that P ? lumps weakly under f with stable
space W , by checking the four conditions in Definition 2.10.

(a) W contains the probability vector α.
(b) To show that WP ? ⊆W , let w ∈W . We shall check that wP ? ∈W .

For any v ∈ V ◦ we have vP ∈ V ◦ because V ◦P ⊆ V ◦, so

∑

x∈A

v(x)(wP ?)(x)

α(x)
=
∑

x,y∈A

v(x)P ?(y, x)w(y)

α(x)

=
∑

x,y∈A

v(x)P (x, y)w(y)

α(y)
=
∑

y∈A

(vP )(y)w(y)

α(y)
= 0.

(c) To check that WΠb ⊆W for all b ∈ B, note that w ∈W if and only

if
∑

x∈A
v(x)w(x)
α(x) = 0 for all v in a basis of V ◦. We may choose a basis of V ◦

each of whose elements is supported on a single fiber of the map f . Hence
this orthogonality condition holds for w if and only if it holds for wΠb for
each b ∈ B.

(d) To show that W ◦P ? ⊆ W ◦, where W ◦ = W ∩ kerF , suppose that
w ∈ W ◦. We have already checked in (b) that wP ? ∈ W , so we must show
that wP ? ∈ kerF . First, let us show that for every v ∈ V we have

∑

x∈A

v(x)w(x)

α(x)
= 0. (10.1)

Let v′ be the projection of v into V ◦ defined by

v′ = v −
∑

b∈B

v(f−1(b))

α(f−1(b)
(αΠb),

where v(f−1(b)) denotes
∑

y∈f−1(b) v(y) and likewise for α(f−1(b)). Then

since w ∈W we have
∑

x∈A

v′(x)w(x)

α(y)
= 0,

and so it suffices to check that for every b ∈ B we have

v(f−1(b))

α(f−1(b))

∑

x∈A

(αΠb)(x)w(x)

α(x)
=

v(f−1(b)

α(f−1(b))

∑

x∈f−1(b)

w(x) = 0.

This holds because w ∈ kerF . We have proved (10.1).
We wish to show that wP ?F = 0, in other words that for each b ∈ B we

have ∑

x∈f−1(b)

(wP ?)(x) = 0.
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Let b ∈ B. We have∑

x∈f−1(b)

(wP ?)(x) =
∑

y∈A

∑

x∈f−1(b)

w(y)P ?(y, x)

=
∑

y∈A

∑

x∈f−1(b)

w(y)P (x, y)
α(x)

α(y)

=
∑

y∈A

((αΠb)P )(y)w(y)

α(y)

=
∑

y∈A

(αΠbP )(y)w(y)

α(y)
.

This is 0 because α = α ∈ V and hence αΠb ∈ V and αΠbP ∈ V , and
so we may take v = αΠbP = αΠbP in (10.1). This concludes the check of
condition (d), and the proof of Theorem 10.1.

�

The correspondence between V and W is an involution. To see this, let
the inner product 〈−,−〉α on RA or CA be defined by

〈v, w〉α =
∑

x∈A

v(x)w(x)

α(x)
.

Since V and W both have 〈αΠB : b ∈ B〉 as a subspace, it follows that
V = (W ◦)⊥ and V ◦ = W⊥, where the orthogonal complements are with
respect to the inner product 〈−,−〉α. The following special case is worth
noting.

Corollary 10.2. Let α be a stationary distribution for P with full support.
Then MC(α, P ) lumps strongly under f if and only if MC(α, P ?) lumps
exactly under f .

Proof. Taking V = RA in Theorem 10.1, we obtain W = 〈αΠb : b ∈ B〉.
Dually, if we take V = 〈αΠb : b ∈ B〉 then V ◦ = 0 and we obtain W = RA.
Now apply Theorem 10.1. �

10.2. Proof of Theorem 1.9. Recall that the anti-involution ? on C[G]

is defined by x? =
∑

g∈G x(g)g−1 for any element x ∈ C[G]. Let ⊥ denote
the orthogonal complement with respect to the Hermitian inner product on
C[G] defined in (1.2).

Lemma 10.3. For any idempotent e ∈ E[G], (C[G]e)⊥ = C[G](1− e?).
Proof. Observe that 〈v, w〉 = 0 if and only if the coefficient of the identity
in wv? is 0. Hence ev? = 0 if and only if 〈v, ge〉 = 0 for all g ∈ G, if and
only if v ∈ (C[G]e)⊥. Hence

C[G]e⊥ = {v ∈ C[G] : ev? = 0} = {v ∈ C[G] : ve? = 0} = C[G](1− e?),
where we used that e? is also an idempotent. �

When w is a weight, the stationary random walk MC(ηG, w) may be
extended to a stationary random walk with time indexed by Z. The time
reversal of this extension is MC(ηG, w

?), similarly extended. Thus, recalling
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that Pw denotes the transition matrix associated to w, we have (Pw)? = Pw? .
We are now ready to prove Theorem 1.9, which we restate below.

Theorem 1.9 (Time reversal). Let e ∈ E•(H) and let w ∈ C[G] be a weight.
The left-invariant random walk on G driven by w weakly lumps to G/H with
stable ideal C[G]e if and only if the left-invariant random walk on G driven
by w? lumps stably for C[G](1− e? + ηH).

Proof. We apply the complex case of Theorem 10.1 to MC(ηG, w). The
uniform distribution α = ηG is stationary and gives positive mass to every
element of A = G. Take V = C[G]e. Then

W = (V ◦)⊥ = (C[G](e− ηH))⊥ = C[G](1− e? + ηH)

by Lemma 10.3, using that e − ηH is an idempotent and η?H = ηH . As
mentioned in Remark 2.11, Proposition 5.12 shows that the left-invariant
random walk driven by w lumps weakly to G/H with stable ideal C[G]e if
and only if the corresponding transition matrix Pw lumps weakly with stable
space C[G]e. �

Remark 10.4. By the formula for centrally primitive idempotents (3.2),
if e is a centrally primitive idempotent then e = e?. It follows that if H
is abelian then, since every idempotent is then a sum of centrally primitive
idempotents, we have e = e? for all e ∈ E•(H) and so the stable ideal for
the time reversed walk is C[G](1− e− ηH).

We are now ready to prove Corollary 1.10.

Proof of Corollary 1.10. Part (i) of Corollary 1.10 is the criterion for strong
lumping that was proved in [8]. By the equivalence of (i) and (iv) in Propo-
sition 5.15, this is equivalent to weak lumping with stable ideal C[G]; that
is, the case e = idH of Theorem 1.9. Thus strong lumping occurs if and
only if the left-invariant random walk on G driven by w? lumps weakly
to G/H with stable ideal C[G]ηH . That is precisely the condition for the
time-reversal of the stationary walk to lump exactly to G/H. Since ? is an
anti-involution, i.e. (xy)? = y?x? for all x, y ∈ C[G], we see that w(gH) is
constant for left cosets gH in the same double coset if and only if w?(Hg)
is constant for right cosets Hg in the same double coset. Part (ii) of the
corollary follows, by replacing w with w?. �

We have already seen an example of ?-duality and time reversal in the
shuffles described in §1.2. For a deck of n cards, the random-to-top shuffle
and the top-to-random shuffle are related by time reversal. Both shuffles
are irreducible with the uniform distribution on Symn as stationary distri-
bution. The random-to-top shuffle lumps strongly to the top card and the
top-to-random shuffle lumps exactly to the top card, exemplifying Corol-
lary 10.2. For the weight w on G = Sym4 defined in equation (1.3), and
H = Sym{2,3,4}, T = Sym{2,3}, we obtain that

w? = (1− λ)id + λ
3

(
(1, 4)(2, 3) + (1, 3, 4) + (1, 3, 2, 4)

)

lumps stably for the ideal C[G](1− ηT + ηH). We shall see further examples
of Theorem 1.9 when we study random rotations of a six-sided die in §13.2:
see in particular Example 13.7.
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11. Interpolating between strong and exact lumping

Our characterisation of weak lumping from §5 is in terms of Gurvits–
Ledoux ideals (see Definition 5.11), which are induced ideals in the sense of
Definition 3.15. A natural way of constructing ideals of C[H] is by taking
ideals of C[T ] where T is a fixed subgroup of H. Let W = C[T ]ηT be the
trivial representation of T , and let

U = C[H]ηT ∼= W
xH
T ,

L = C[G]ηT ∼= U
xG
H
∼= W

xG
T .

Proposition 11.1. The left ideal L = C[G]ηT is a weak lumping Gurvits–
Ledoux ideal for w with respect to left cosets of H if and only if

(a) the random walk driven by w lumps exactly to left cosets of T , and

(b) w(TgH) =
|TgH|
|HgH|w(HgH) for all TgH ∈ T\G/H.

Proof. The weak lumping algebra of L = C[G]ηT with respect to left cosets
of H is

Θ(ηT ) = RIdC[G](L) ∩ RIdC[G](L
◦)

= {w ∈ C[G] : ηTw(1− ηT ) = 0, (ηT − ηH)w(1− ηT + ηH) = 0}
= {w ∈ C[G] : ηTw(1− ηT ) = 0, (ηT − ηH)wηH = 0}.

The first equation defines the set of exactly lumping weights on left cosets
of T given in Example 7.4, that is

{w ∈ C[G] : ηTw(1− ηT ) = 0} = Θ(ηT ).

The second equation can be rewritten as ηTwηH = ηHwηH and broken up
coefficient by coefficient into a system of |G| equations. By Lemma 4.1, we
have

ηTwηH =
∑

x∈G

(
w(TxH)

|TxH|

)
x and ηHwηH =

∑

x∈G

(
w(HxH)

|HxH|

)
x.

Therefore, ηTwηH = ηHwηH if and only if

w(TgH) =
|TgH|
|HgH|w(HgH)

for all g ∈ G. �

We remark that the conditions in Proposition 11.1 may be rewritten as:

(a′) w(Tg) is constant on Tg ⊆ TxT for all TxT ∈ T\G/T , and
(b′) w(TgH) is constant on TgH ⊆ HxH for all HxH ∈ H\G/H.

We used this form of the conditions in the example in §1.2.3.

Corollary 11.2. Let L = C[G]ηT be a Gurvits–Ledoux ideal for w with
respect to left cosets of G/H.

(i) If T = H, then L is weakly lumping for w if and only if the left-
invariant random walk driven by w lumps exactly to G/H.

(ii) If T = 1, then L is weakly lumping for w if and only if the left-
invariant random walk driven by w lumps strongly to G/H.
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Proof. When T = H, condition (a) in Proposition 11.1 recovers the charac-
terisation of exact lumping to G/H from Corollary 1.10(ii) and condition (b)
becomes void. When T = 1, condition (b′) in the equivalent restatement
above becomes the characterisation of strong lumping from Corollary 1.10(i)
and (a′) becomes trivial. �

The conclusion of this corollary may hold even if T is neither 1 nor H.
This is demonstrated by the following proposition.

Proposition 11.3. Let G = Symn acting naturally on {1, . . . , n}. De-
fine subgroups H = Stab(1) = Sym{2,...,n} and T = Stab(1) ∩ Stab(n)
= Sym{2,...,n−1}. Consider the two-step shuffle of a deck of n cards:

Remove the bottom card, insert it under a random card cho-
sen uniformly from the remaining deck, then move the top
card to the bottom.

This shuffle lumps weakly to G/H with stable ideal C[G]ηT .

Proof. Let w be the normalized weight describing the shuffle. We shall use
Proposition 11.1 to show that w lumps weakly to G/H. To check that w
satisfies condition (a), that MC(w, ηG) lumps exactly to G/T , we may check
that the time-reversal w? lumps strongly to G/T and apply Corollary 10.2.
The shuffle described by w? is performed as follows:

Set aside the bottom card. Pick a card uniformly at random
in the remaining deck and move it to the bottom. Put the
set-aside card on top of the deck.

Each element of G/T corresponds to a particular ordered pair

(value of the top card, value of the bottom card).

The value of the top card after the next w? shuffle is always the current
value of the bottom card. Even conditional on the complete current order
of the deck, the next value of the bottom card is uniform among the n − 1
values not equal to the current value of the bottom card. Hence w? lumps
strongly to G/T , as required.

To check that w satisfies condition (b), note that there are just three
double cosets in T\G/H:

• H itself, which is also a double coset in H\G/H; this is the set of
permutations stabilising position 1;
• (1, n)H = T (1, n)H; this is the set of (n − 1)! permutations that

send position n to position 1,
• T (1, 2, n)H; this is the set of (n− 2)(n− 1)! permutations that send

some position in {2, . . . , n− 1} to position 1.

Under the shuffle w, position 1 is certainly sent to position n, so w(H) = 0.
With probability 1/(n − 1), we insert the bottom card immediately under
the top card in the deck; then after the top card is moved to the bottom,
the effect is that position n is sent to 1. With the remaining probability
(n − 2)/(n − 1), the card in position 2 is sent to position 1. The final two
probabilities are in proportion to the sizes of the two double cosets T (1, n)H
and T (1, 2, n)H forming the double coset H(1, 2)H. This establishes condi-
tion (b). �
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This is an instance of Proposition 11.1 that is not covered by Corol-
lary 11.2. Indeed it is easy to see that w? does not lump strongly to G/H
provided n ≥ 3, and that w does not lump strongly to G/H provided n ≥ 4.
By Theorem 1.9, the shuffle w? lumps weakly to G/H with stable ideal
C[G](1−ηT +ηH). Note that w? does not lump exactly to G/T when n ≥ 4,
so it does not provide another direct application of Proposition 11.1.

12. Double coset decomposition of the weak lumping algebra

Theorem 1.2 and our further results suggest that it is natural to study
the problem of weak lumping to G/H ‘double coset by double coset’. Corol-
lary 1.10 and Proposition 11.1 are examples of this phenomenon. In this
section, we make this explicit by proving (12.2) and then Proposition 12.10,
which gives a necessary and sufficient condition for a weight w to be in
C[HxH] ∩ Θ(e), as well as a test for this condition. In §13, we further
develop these results for H abelian.

12.1. Preliminaries. Given K ⊆ G, let C[K] denote the subspace of C[G]
spanned linearly by the elements x ∈ K. Given w ∈ C[G] we write wHxH for
the component of w in C[HxH]; thus w =

∑
x∈H\G/H wHxH is the unique

expression of w as an element of C[G] =
⊕

x∈H\G/H C[HxH].

Lemma 12.1. If e, f ∈ C[H] and w ∈ C[G] then we have ewf = 0 if and
only if ewHxHf = 0 for each double coset HxH ∈ H\G/H.

Proof. Write w =
∑

x∈H\G/H wHxH . Since C[HxH] is a left C[H]-module

(by left multiplication) and a right C[H]-module (by right multiplication),
we have ewf = 0 if and only if ewHxHf = 0 for each double coset HxH. �

12.2. The module structure of C[HxH]. In order to use representation
theoretic tools to study C[HxH], we require a version of Mackey’s rule
(given earlier in Lemma 4.2 in a special case) with an explicit isomorphism
for each double coset. For this, we need to understand twisted actions.
Induced modules give the most important examples.

Example 12.2. Observe that in U↑GH =
⊕

x∈G/H〈x〉 ⊗ U , the subspace

〈x〉 ⊗ U is a xHx−1-module on which k = xhx−1 ∈ xHx−1 acts by

k(x⊗ v) = x(x−1xg)⊗ u = x⊗ x−1kxu.

Definition 12.3. Let H be a subgroup of G, and y ∈ G. Given a left
C[H]-module M we denote by xM the left C[xHx−1]-module with the same
underlying vector space as M but with the action xhx−1 · v = hv for all
h ∈ H and v ∈M .

Note that in this definition hv is defined using the original C[H]-module
structure on M . Equivalently, as expected from Example 12.2,

k · v = x−1kxv (12.1)

for k ∈ xHx−1 and v ∈ M . Thus we have χxM (xhx−1) = χM (h), or
equivalently, χxM (k) = χM (x−1kx). This is, by definition, the conjugated

character χx
−1

M . (The inverse is necessary to be consistent with the usual
notation, see for instance [21, Ch. 6].)
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In the following lemma we need the natural right action of C[H] on
C[HxH] defined by hxh′ · k = hxh′k, and on xC[H] defined by h′ · k = h′k.
It is routine to check from (4.1) that these right actions on C[HxH] are well
defined.

Lemma 12.4. There is an isomorphism of left C[H]-modules

C[HxH] ∼= C[H]⊗C[H∩xHx−1]
xC[H]

defined by hxh′ 7→ h ⊗ h′. Moreover this map commutes with the natural
right actions of C[H] on C[HxH] and on xC[H].

Proof. Clearly C[HxH] contains the subspace W spanned by the set (H ∩
xHx−1)xH. Since xhx−1x = xh, the subspace W has {xh : h ∈ H} as a
canonical basis. Observe that W is a left C[H ∩ xHx−1]-module on which
k ∈ H ∩ xHx−1 acts by permuting the canonical basis:

kxh′ = x(x−1kx)h′.

Thus, by (12.1), W is isomorphic to (xC[H])↓H∩xHx−1 as a module for H ∩
xHx−1. Let m = [H : H ∩xHx−1] and let h1, . . . , hm be representatives for
the left cosets H/H ∩ xHx−1. Each g ∈ HxH may be expressed uniquely
as g = hixh for some h ∈ H. Hence C[HxH] =

⊕m
i=1 hiW . It now follows

from the characterisation of induced modules of Proposition 3.13 and the
definition of induction that C[HxH] ∼= C[H] ⊗C[H∩xHx−1] W . An explicit
isomorphism of left C[H]-modules is defined by hiv 7→ hi ⊗ v for 1 ≤ i ≤ m
and v ∈W . Equivalently, hxh′ 7→ h⊗h′ for h, h′ ∈ H. It is routine to check
that this isomorphism commutes with the right action of C[H]. �

Proposition 12.5. Let f ∈ C[H]. There is an isomorphism of left C[H]-
modules

C[HxH]f ∼=
(
x(C[H]f)

y
H∩xHx−1

)xH

defined by hxh′f 7→ h⊗ h′f .

Proof. Take the isomorphism in Lemma 12.4 and multiply each side on the
right by f , using that the isomorphism commutes with the right action of
C[H], to get

C[HxH]f ∼= C[H]⊗C[H∩xHx−1]
x(C[H]f),

where the isomorphism is defined by hxh′f 7→ h ⊗ h′f . By definition, the
right-hand side is the induced module in the proposition. �

12.3. Double coset decomposition of right idealizers. Let e be an
idempotent and L = C[G]e be a left ideal of C[G]. From Lemma 12.1, the
conditions ew(1−e) = 0 defining the right idealizer of L reduce to conditions
on each double coset. Denoting RIdC[G](L) ∩C[HxH] by RIdC[HxH](L), we
have

RIdC[G](L) =
⊕

x∈H\G/H

RIdC[HxH](L).

(To be very careful, we warn the reader that the space RIdC[HxH](L) is not
a right idealizer in the usual sense of §3.7, because L 6⊆ C[HxH].)
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Proposition 12.6. Fix x ∈ G and let e ∈ C[H] be an idempotent e ∈ C[H].
Then

dim
(
RIdC[HxH](L)

)
= |HxH| −

〈
χC[H]e

y
H∩xHx−1 , (χx

−1

C[H](1−e))
y
H∩xHx−1

〉

Proof. We apply Proposition 12.5 and Lemma 3.10 to the left C[H]-module
C[HxH](1− e) to obtain

dim eC[HxH](1− e) =
〈
χC[H]e, (χ

x−1

C[H](1−e))
y
H∩xHx−1

xH〉

=
〈
χC[H]e

y
H∩xHx−1 , (χx

−1

C[H](1−e))
y
H∩xHx−1

〉

where the second line follows from Frobenius reciprocity. Now apply Lemma 3.24.
�

We remark that it is useful to interpret the equation in the proposition as
giving, in the quantity subtracted, the number of linear equations that define
the algebra {w : ew(1− e) = 0} on the double coset HxH; equivalently this
is the codimension of the direct summand of the algebra in C[HxH]. We
now explore consequences of this proposition. A notable case is when no
equations are required.

Corollary 12.7. There is no constraint on an element w ∈ C[G] satisfying
ew(1− e) = 0 from the double coset HxH if and only if either

〈
χC[H]e

y
H∩xHx−1 , (χx

−1

C[H](1−e))
y
H∩xHx−1

〉
= 0

or the same condition holds swapping e and 1− e.
Proof. This follows from Proposition 12.6 and the interpretation made im-
mediately above. �

In practice it is more convenient to have a condition using just one char-
acter.

Corollary 12.8. Let x ∈ G and let w ∈ C[HxH]. Let e ∈ C[H] be an
idempotent and define L = C[G]e, U = C[H]e and U c = C[H](1− e). Then

codim
(
RIdC[HxH](L)

)
=
|HxH|
|H| φ(1)−

〈
φ
y
H∩xHx−1 , φx

−1y
H∩xHx−1

〉

where φ is either χU or χUc.

Proof. Recall from Example 3.2 that the character of the regular represen-
tation of a group K is ρK , defined by ρK(1) = |K| and ρK(k) = 0 if k 6= 1.
Since C[H] = U ⊕U c, we have χU +χUc = ρH . Setting φ = χU , Proposition
12.6 implies that

codim
(
RIdC[HxH](L)

)

=
〈
φ
y
H∩xHx−1 , (ρH − φ)x

−1y
H∩xHx−1

〉

=
〈
φ
y
H∩xHx−1 , ρH

y
H∩xHx−1

〉
−
〈
φ
y
H∩xHx−1 , φx

−1y
H∩xHx−1

〉

=
φ(1)|H|

|H ∩ xHx−1| −
〈
φ
y
H∩xHx−1 , φx

−1y
H∩xHx−1

〉
.

Since |H|/|H ∩xHx−1| = |HxH|/|H| by (4.2) this gives the first case when
φ = χU , and the second case when φ = χUc is proved by replacing U with U c

throughout. �
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In particular, the condition in Corollary 12.7 holds whenever both xHx−1 =
H, and χU is invariant under conjugation by x. On the other hand, it never
holds when HxH is a double coset of maximum possible size. Indeed in this
case, since |HxH| = |H|2, we have

dim
(
RIdC[HxH](L)

)
= dim {w ∈ C[HxH] : ew(1− e) = 0}
= |H|2 − dimU c · dimU.

Example 12.9 (Exact lumping). By Proposition 5.16(iv), the left-invariant
random walk driven by w lumps exactly if and only if w ∈ Θ(ηH). By
counting the number of linear constraints imposed by Corollary 1.10 we find
that the codimension of Θ(ηH) ∩ C[HxH] in C[G] is |HxH|/|H| − 1. Note
this is one less than the number of left cosets forming HxH. It is instructive
to reprove this result using Corollary 12.8: setting φ = 1H , the codimension
of Θ(ηH) ∩ C[HxH] is

|HxH|
|H| 1H(idH)− 〈1H∩xHx−1 ,1H∩xHx−1〉 =

|HxH|
|H| − 1

as just seen.

We leave it to the interested reader to formulate the analogous example for
strong lumping; the codimension in each double coset is the same, as should
be expected from the ?-duality in Theorem 1.9. Indeed, Θ(1H) = Θ(ηH)?

and the ? operation respects the direct sum decomposition of these algebras
over double cosets in (12.2), exchanging the summands for C[HxH] and
C[Hx−1H].

12.4. Double coset decomposition of weak lumping algebras. Let
e ∈ E•(H) be an idempotent, let L = C[G]e. The double coset decompo-
sitions of RIdC[G](L) and RIdC[G](L

◦) give in turn a decomposition of the
weak lumping algebra of e,

Θ(e) =
⊕

x∈H\G/H

Θ(e) ∩ C[HxH] (12.2)

and so weak lumping of irreducible weights is decided double coset by double
coset.

Proposition 12.10. Let w ∈ C[HxH]. Let e ∈ E•(H) be an idempo-
tent, and set L = C[G]e. A necessary and sufficient condition for w ∈
Θ(e)∩C[HxH] is that w ∈ RIdC[HxH](L

◦) and there exists v ∈ L◦ such that
w(Hxh) + v(Hxh) is constant for h ∈ H. Moreover if such a v exists, then
ηHv has the same property.

More informally we may say ‘w is constant on right cosets modulo L◦’.

Proof. Since Θ(e) ∩ C[HxH] = RIdC[HxH](L
◦) ∩ RIdC[HxH](L) we may as-

sume throughout that w ∈ RIdC[HxH](L
◦). Since L = L◦⊕C[G]ηH we have,
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under this assumption,

w ∈ Θ(e) ∩ C[HxH]

⇐⇒ C[G]ηHw ⊆ (L◦ ⊕ C[G]ηH) ∩ C[HxH]

⇐⇒ ηHw ∈ (L◦ ∩ C[HxH])⊕ 〈hxηH : h ∈ H〉
⇐⇒ ηHw ∈ ηH(L◦ ∩ C[HxH])⊕ ηH〈hxηH : h ∈ H〉
⇐⇒ ηHw = ηHv + cηHxηH for some v ∈ L◦ ∩ C[HxH] and c ∈ C,

where the third double implication follows by multiplying on the left by the
idempotent ηH . Now observe that by Lemma 4.1(i) and (iii), the condition
in the final line holds if and only if there exist v ∈ L◦ ∩ C[HxH] and c ∈ C
such that

w(Hxh)

|H| =
v(Hxh)

|H| +
c

|HxH|
for all h ∈ H. Since L◦ =

⊕
x∈H\G/H(L◦ ∩ C[HxH]), it is equivalent to

require v ∈ L◦; this proves the condition is necessary and sufficient. Finally,
by Lemma 4.1(i), we have (ηHv)(Hg) = v(Hg) for each g, so we may replace
v with ηHv. �

Example 12.11 (Strong lumping). Let e = 1 and L = C[G]. Thus L◦ =
C[G](1− ηH) = AnnC[G](ηH) is the space of all w ∈ C[G] whose sum is zero
on each left coset gH. By Lemma 4.1(ii), ηHC[G](1− ηH) is the space of all
elements of C[G] constant on each right coset Hg having zero sum on each
left coset gH.

For instance, the left diagram overleaf shows the elements in a double coset
HxH for H = 〈h〉 ∼= C6 with xHx−1 ∩ H = 〈h3〉; thus each hxH ∩ Hxh′
has the form {g, h3g} where h3g = gh3. On the right we show a general
w ∈ ηHC[G](1− ηH), where the condition “w(g) = a for all g ∈ xH ∩Hx”
is represented by placing an a in the cell in column xH and row xH of the
table, and similarly for all other cells. Note that since w is constant on right
cosets, it is in particular constant on each hxH ∩Hxh′.

Hx

xH

Hxh

hxH

Hxh2

h2xH

x, h3x xh, h3xh xh2, h3xh2

hx, h4x hxh, h4xh hxh2, h4xh2

h2x, h5x h2xh, h5xh h2xh2, h5xh2

Hx Hxh Hxh2

a b c

a b c

a b c

a+ b+ c = 0

Therefore given any ηHw, necessarily constant on right cosets, we may add
an element of ηHL

◦, of the form shown above, to obtain an element of C[G]
constant on HgH. This verifies the necessary and sufficient condition in
Proposition 12.10, and shows that the condition is equivalent to w ∈ Θ(1).
This is of course expected as L = C[G] and so the requirement Lw ⊆ L
imposes no constraints.

For a further example of Proposition 12.10 see Remark 13.6.
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13. Abelian subgroups

In this section we consider the case where H is abelian. In this case
Theorem 1.2 can be made very explicit. The irreducible representations of
an abelian group H are all 1-dimensional and may be identified with its

irreducible characters, forming the group Ĥ. The irreducible representation
corresponding to the character β is afforded by the idempotent element

eβ =
1

|H|
∑

h∈H
β(h−1)h. (13.1)

Note that the inverse is necessary so that we have

heβ = β(h)eβ (13.2)

for each h ∈ H. The following lemma records some basic properties we
need. Note that in (ii), the perpendicular space is taken with respect to
the canonical H-invariant inner product on C[H], defined by taking H = G
in (1.2).

Lemma 13.1. Let H be an abelian group, and let β, γ ∈ Ĥ.

(i) If β, γ ∈ Ĥ then eβeγ = eγeβ = 0.

(ii) For each β ∈ Ĥ we have 〈eβ〉⊥ = 〈eγ : γ 6= β〉.
(iii) We have 1 =

∑
β∈Ĥ eβ.

(iv) Every primitive idempotent of H is of the form eβ for some β ∈ Ĥ.
(v) We have x−1eβx = eβx.

Proof. Parts (i) and (ii) follow from orthogonality of characters; parts (iii)
and (iv) can be seen from the Wedderburn decomposition noting that every
block is one-dimensional. Part (v) is most simply proved by calculation:

eβx =
1

|H|
∑

h∈H
β(h−1)hx =

1

|H|
∑

h∈H
β(h−1)x(x−1hx)

=
1

|H|
∑

k∈H
β(xk−1x−1)xk =

1

|H|
∑

k∈H
βk(x)xk = xeβx

where the penultimate equality holds since β(xk−1x−1) = βx(k−1). �

Given a subset P ⊆ Ĥ of irreducible characters of H, let

eP =
∑

β∈I
eβ.

By Lemma 13.1(iv), every idempotent in C[H] is of the form eP , and so
the left C[G]-modules K we must consider are precisely those C[G]eP as I

ranges over Ĥ\{1H}. Note that there are only finitely many such modules;
in fact this feature characterises the case of abelian H.

13.1. Double coset decomposition of weak lumping algebras: the
case of abelian H. Given a subset W of C[HxH], let W⊥ denote the
perpendicular space to W inside C[HxH], with respect to the canonical
G-invariant inner product on C[G] defined in (1.2).

Proposition 13.2. Let H be an abelian subgroup of G. For P ⊆ Ĥ we have

RIdC[HxH](C[G]eP )⊥ =
〈
eβxeγ : β ∈ P, γ ∈ Ĥ\P

〉
.
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Proof. By Lemmas 3.24 and 12.1 we can write

RIdC[HxH](C[G]eP ) = C[HxH]eP + (1− eP )C[HxH].

The rest of this proof follows from parts (i)–(v) of Lemma 13.1. By part (i),
the image of right multiplication by eP is

〈hxkeβ : β ∈ P, h, k ∈ H〉.
By (13.2) we may simplify this to 〈hxeβ : β ∈ P, h ∈ H〉. Now by part (ii)
the perpendicular space of the image is 〈hxeγ : γ 6∈ P, h ∈ H〉. Similarly,

the image of left multiplication by 1 − eP is 〈eγxk : γ ∈ Ĥ\P, k ∈ H〉 and
its perpendicular space is 〈eβxk : β ∈ P, k ∈ H〉. Taking the intersection of
the perpendicular spaces gives the result. �

We now obtain the analogue of Proposition 12.10 for the case of abelianH.
Recall that Θ(e), as defined in (1.1), is the algebra of weakly lumping
weights for the idempotent e ∈ E•(H) and by (12.2) we have Θ(e) =⊕

x∈H\G/H Θ(e) ∩ C[HxH], and so, as we noted after this equation, weak

lumping of weights is decided double coset by double coset. As further
motivation for the hypothesis below, note that eP ∈ E•(H) if and only if
1H ∈ P .

Corollary 13.3. Let H be an abelian subgroup of G. Let P ⊆ Ĥ contain 1H

and let w ∈ C[HxH]. A necessary and sufficient condition for w ∈ Θ(eP )
is that

w ∈
(〈
eβxeγ : β ∈ P, γ ∈ Ĥ\P

〉
+
〈
eβxηH : β ∈ P\{1H}

〉)⊥
.

Proof. By (7.2) we have Θ(e) = RIdC[G](C[G]eP ) ∩ RIdC[G](eP − ηH). By
Proposition 13.2 we have

RIdC[HxH](C[G]eP )⊥ = 〈eβxeγ : β ∈ P, γ ∈ Ĥ\P 〉
RIdC[HxH](C[G](eP − ηH))⊥ = 〈eβxeγ : β ∈ I\{1H}, γ ∈ (Ĥ\I) ∪ {1H}.

Therefore w ∈ Θ(e) ∩ C[HxH] if and only if it is in the first perpendicular
space, and also perpendicular to all eβxηH for β ∈ I\{1H}, as required. �

Applying the corollary to each double coset in turn we obtain finitely
many linear equations that specify a necessary and sufficient condition for a
weight w to lie in the algebra Θ(e). In the extreme case when there is a coset
|HxH| = |H|2 of maximum size, the elements eβxeγ are linearly independent
and there are |P |(|H| − |P |) linearly independent equations from the coset
HxH. In general, since each element of HxH has |H ∩ xHx−1| different
expressions in the form hxh′ for h, h′ ∈ H, some work is needed to get an
irredundant set of equations.

We are now ready to prove our final main result, Corollary 1.12, which
we restate below for convenience.

Corollary 1.12. Let D be a set of double coset representatives for H\G/H.
The left-invariant random walk on G driven by an irreducible weight w lumps

weakly on the left cosets of H if and only if there exists a subset P ⊆ Ĥ
containing 1H such that for all x ∈ D we have w ∈ ⋂x∈XW

⊥
x , where

Wx =
〈
eβxeγ : β ∈ P, γ ∈ (Ĥ\P ) ∪ {1H}, (β, γ) 6= (1H ,1H)

〉
.
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Proof. This follows by applying Corollary 13.3 to each double coset in turn
using (12.2). Note that W⊥x is the perpendicular space in this corollary. �

13.1.1. Cosets of the normalizer. In one important case this difficulty does

not arise. Recall from Definition 12.3 that if x ∈ G and β ∈ Ĥ then βx

denotes the character of x−1Hx defined by βx(k) = β(xkx−1). Given P ⊆ Ĥ
we write P x for {βx : β ∈ P}. As motivation, we remark that the condition
xH = Hx holds if and only xH = Hx = HxH and if xHx−1 = H, and so
if and only if x is in the normalizer NG(H); in this case HxH = xH = Hx.

Corollary 13.4. Let H be an abelian subgroup of G. Let P ⊆ Ĥ contain
1H and let w ∈ C[HxH] be a weight. Suppose that xH = Hx. Then a
necessary and sufficient condition for w ∈ Θ(eP ) is that

w ∈
〈
xeδ : δ ∈ P x ∩ (Ĥ \ P )

〉⊥
.

Proof. By Lemma 13.1(v) we have eβx = xx−1eβx = xeβx . By this obser-
vation and Lemma 13.1(i) we have

eβxeγ =

{
eβx if βx = γ

0 otherwise.

Now apply this to the sum of the two perpendicular spaces given in Corol-
lary 13.3, noting that eβxηH = 0 by Lemma 13.1(i), since βx 6= 1H . �

In particular, if x ∈ H, or more generally, if Hx = xH and the conjugacy
action x permutes the irreducible characters in P , then there is no constraint
from the double coset HxH on the weights in Θ(e) ∩ C[HxH].

13.2. An extended example: the six-sided die. Consider an ordinary
six-sided die, that is rolled and then translated to its original position. For
instance, imagine it is in an automatic dice roller which only allows for
one stable position of the die. The orientation-preserving symmetries of a
cube are realised by the symmetric group G = Sym4, acting by permuting
the four diagonals of the cube. An observation of the top value of a die
is invariant under the group of symmetries of the top face, which is the
cyclic group H = 〈(1, 2, 3, 4)〉 = 〈h〉 ∼= C4, where h = (1, 2, 3, 4). Therefore
repeated observations of the top face correspond to lumping of the left-
invariant random walk on G to the left cosets G/H.

13.2.1. Face action. It is useful to understand the action on the faces. Recall
that opposite faces sum to 7. If the top face is , we set the convention that
the permutation (1, 2, 3, 4) acts on the faces as the permutation ( , , , )
sending the face to , the face to , and so on. We let the permutation
(1, 2) act by ( , )( , )( , ). This permutation swaps two diagonals of
the cube, and corresponds to the 180◦ rotation about the axis through the
centre of the edge between faces and and the centre of the edge between
faces and .
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13.2.2. Idempotents. The subgroup H is abelian. Its four primitive idem-
potents are

e1 = ηH = η= 1
4( 1 + h + h2 + h3),

ξ= 1
4( 1 + ih− h2− ih3),

esgn = ς = 1
4( 1− h + h2− h3),

ξ̄= 1
4( 1− ih− h2 + h3).

Hence E•(H) has 8 elements, obtained by taking η plus one of the possible
combinations of the other idempotents. By (1.1), w is a weak lumping
weight if and only if w ∈ ⋃e∈E•(H) Θ(e); by Corollary 13.3 this is decided

double coset by double coset by finitely many linear equations. Among the 8
idempotents, only the 4 which have either both or neither of ξ and ξ̄ as a
summand are real idempotents, as studied in §8; we compute Θ(e) for each
of these.

13.2.3. Double coset decomposition. There are three double cosets inH\G/H,
namely H, H(1, 3)H and H(1, 2)H, where H(1, 3)H = H(1, 3) = (1, 3)H is
of the type in Corollary 13.4. The double coset H(1, 2)H of size 16 controls
which weights lump weakly to G/H. Its structure is shown in Figure 3.

H(1, 2) H(1, 2)h2 H(1, 2)h H(1, 2)h3

(1, 2)H

h2(1, 2)H

h(1, 2)H

h3(1, 2)H

(1, 2)

( , )( , )( , )

(1, 4, 2, 3)

( , , , )

(1, 3, 4)

( , , )( , , )

(2, 4, 3)

( , , )( , , )

(1, 3, 2, 4)

( , , , )

(3, 4)

( , )( , )( , )

(1, 4, 2)

( , , )( , , )

(1, 2, 3)

( , , )( , , )

(2, 3, 4)

( , , )( , , )

(1, 3, 2)

( , , )( , , )

(1, 2, 4, 3)

( , , , )

(1, 4)

( , )( , )( , )

(1, 4, 3)

( , , )( , , )

(1, 2, 4)

( , , )( , , )

(2, 3)

( , )( , )( , )

(1, 3, 4, 2)

( , , , )

H(1, 2) H(1, 2)h2 H(1, 2)h H(1, 2)h3

T (1, 2)H

Th(1, 2)H

T (1,2) T (3,4) T (1,3,4) T (1,2,3)

T (1,4,3) T (1,2,4) T (2,3) T (1,4)

Figure 3. The top diagram shows the double coset H(1, 2)H when G =
Sym4 and H = 〈(1, 2, 3, 4)〉, and its action on the six faces of a die. Rows
are left cosets and columns are right cosets. For instance, the permutation
(1, 2) swaps two diagonals of the cube, and corresponds to the 180◦ rotation
about the axis through the centre of the edge between faces and and
the centre of the edge between faces and , resulting in a permutation
( , )( , )( , ) of the faces. Shaded regions indicate the double cosets
TxT where T = 〈(1, 2)(3, 4)〉. The division into right cosets of T relevant
to Example 13.7 is shown in the lower diagram. For instance T (1, 2)T =
T (1, 2) ∪ T (3, 4) contains the four permutations in the white region.
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We now use Corollary 13.3 to compute the space perpendicular to Θ(e)∩
C[HxH] for every e ∈ E•(H) and every double coset HxH.

13.2.4. Strong lumping. Fix the real idempotent 1 ∈ E•(H). The algebra
Θ(1) is the strong lumping algebra (see Proposition 5.15). That is, w ∈ Θ(1)
if and only if the left-invariant random walk driven by w lumps weakly for
all initial distributions. By Corollary 13.3, this holds for w ∈ C[HxH] if
and only if

x ∈ 〈ξxη, ςxη, ξ̄xη〉⊥.
(Note the first summand in this corollary vanishes.) If x = idH or x = (1, 3)
then since Hx = xH in these cases, by Corollary 13.4, there is no constraint
from this double coset. Hence

Θ(1)⊥ =
〈
ξ(1, 2)η, ς(1, 2)η, ξ̄(1, 2)η

〉

and there are just 3 linear constraints.

13.2.5. Exact lumping. Fix the real idempotent η ∈ E•(H). The algebra
Θ(η) is the exact lumping algebra Θ(η) seen in Proposition 5.16. (See Def-
inition 2.19 for the definition of exact lumping.) By Corollary 13.3, the
weight w ∈ C[HxH] lumps exactly if and only if

x ∈ 〈ηxξ, ηxς, ηxξ̄〉⊥.

(Note the second summand in this corollary vanishes.) Again if x = idH or
x = (1, 3) then since Hx = xH in these cases, by Corollary 13.4, there is no
constraint from this double coset. Hence

Θ(ηH)⊥ =
〈
η(1, 2)ξ, η(1, 2)ς, η(1, 2)ξ̄〉⊥

and again there are 3 linear constraints. This should be expected from
Theorem 1.9, which, informally stated, says that the exact lumping algebra
Θ(ηH) is dual to the strong lumping algebra Θ(1).

13.2.6. The first weak lumping algebra. Fix P = {η, ξ, ξ̄} ⊆ Ĥ and the real
idempotent eP = η + ξ + ξ̄ ∈ E•(H). Similar arguments to the strong and
exact cases using Corollaries 13.3 and 13.4 show that

Θ(eP )⊥ =
〈
η(1, 2)ς, ξ(1, 2)ς, ξ̄(1, 2)ς, ξ(1, 2)η, ξ̄(1, 2)η

〉
. (13.3)

In particular, there is no constraint from the double cosets H and H(1, 3)H
and the dimension of Θ(eP ) is 24 − 5 = 19. It is instructive to verify this
using the dimension formula of Corollary 7.3. The four characters of C4 are
1, γ, sgn, γ̄, corresponding to the four idempotents η, ξ, ς, ξ̄, and

1

xG
H = χ(4) + χ(2,2) + χ(2,1,1)

γ̄
xG
H = γ

xG
H = χ(3,1) + χ(2,1,1)

sgn
xG
H = χ(3,1) + χ(2,2) + χ(1,1,1,1),
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and thus the relevant coefficients are as shown in the table below.

ψ χ(4) χ(3,1) χ(2,2) χ(2,1,1) χ(1,1,1,1)

aψ = 〈(γ + γ̄)↑GH , ψ〉 0 2 0 2 0

cψ = 〈1↑GH , ψ〉 1 0 1 1 0
dψ = ψ(1) 1 3 2 3 1

The dimension formula therefore gives

dim Θ(eP ) =
∑

ψ∈IrrG

(a2
ψ + aψcψ + c2

ψ − aψdψ − cψdψ + d2
ψ).

= 1 + 7 + 3 + 7 + 1 = 19

as expected. To make (13.3) explicit, we represent a weight

w =

4∑

i=0

4∑

j=0

w
(
hi(1, 2)hj

)
· hi(1, 2)hj

supported on H(1, 2)H as a 4 × 4 matrix, in which w
(
hi(1, 2)hj

)
is in the

row hi(1, 2)H and column H(1, 2)hj , when i and j are ordered 0, 2, 1, 3 as
in Figure 3. Using this notation, the algebra Θ(eP ) is then the space of all
weights whose coefficients on H(1, 2)H are orthogonal to the five matrices



1 1 −1 −1
1 1 −1 −1
1 1 −1 −1
1 1 −1 −1


 ,




1 1 −1 −1
−1 −1 1 1
i i −i −i
−i −i i i


 ,




1 1 −1 −1
−1 −1 1 1
−i −i i i
i i −i −i


 ,




1 1 1 1
−1 −1 −1 −1
i i i i
−i −i −i −i


 ,




1 1 1 1
−1 −1 −1 −1
−i −i −i −i
i i i i




or equivalently, by taking obvious linear combinations, to the five matrices



1 1 −1 −1
1 1 −1 −1
1 1 −1 −1
1 1 −1 −1


 ,




1 1 0 0
−1 −1 0 0

0 0 0 0
0 0 0 0


 ,




0 0 0 0
0 0 0 0
0 0 1 1
0 0 −1 −1


 ,




1 1 1 1
−1 −1 −1 −1

0 0 0 0
0 0 0 0


 ,




0 0 0 0
0 0 0 0
1 1 1 1
−1 −1 −1 −1


.

We use this description of Θ(eP ) to illustrate Theorem 1.11. The orbital
matrices (see §9.1) for the three double cosets H, H(1, 3) and H(1, 2)H are



1 · · · · ·
· 1 · · · ·
· · 1 · · ·
· · · 1 · ·
· · · · 1 ·
· · · · · 1



,




· 1 · · · ·
1 · · · · ·
· · · 1 · ·
· · 1 · · ·
· · · · · 1
· · · · 1 ·



,




· · 1 1 1 1
· · 1 1 1 1
1 1 · · 1 1
1 1 · · 1 1
1 1 1 1 · ·
1 1 1 1 · ·




where the left cosets of H appear in the order H, (1, 3)H, (1, 2)H, h2(1, 2)H,
h(1, 2)H, h3(1, 2)H, and for readability · denotes a 0 entry. For example,
the weight defined by the third matrix is simply η(1, 2)η, giving equal weight
to all elements in the double coset H(1, 2)H, and so corresponding to the
all-ones 4 × 4 matrix in the notation above. Clearly it is orthogonal to all
five matrices. A similar argument for the other two cosets shows that, as
expected, weights in the Hecke algebra ηC[Sym4]η satisfy (13.3) and so lump
stably, in the sense of Definition 1.3 for the ideal C[G]eP . Of course such
weights also lump strongly and exactly, by Theorem 1.11.
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13.2.7. A weak lumping weight that does not lump strongly or exactly, from
the first weak lumping algebra. From the final 5 matrices above, we see that
w ∈ Θ(eP ) if and only if w satisfies the five constraints

w
(
H(1, 2)

)
+ w

(
H(1, 2)h2

)
= w

(
H(1, 2)h

)
+ w

(
H(1, 2)h3

)

w
(
(1, 2)H

)
= w

(
h2(1, 2)H

)

w
(
h(1, 2)H

)
= w

(
h3(1, 2)H

)

w
(
(1, 2)

)
+ w

(
(1, 2)h2

)
= w

(
h2(1, 2)

)
+ w

(
h2(1, 2)h2

)

w
(
h(1, 2)h

)
+ w

(
h(1, 2)h3

)
= w

(
h3(1, 2)h

)
+ w

(
h3(1, 2)h3

)
. (13.4)

It is notable that it is not obvious that these conditions even define a sub-
algebra of C[G]. We now use this description to give, in the same spirit as
the example in §1.2.3, a weight which lumps weakly to the left cosets G/H
but not strongly or exactly.

Example 13.5. Let w be the weight supported on the double cosetH(1, 2)H
as written below in our usual convention so that the entry hi(1, 2)hj is in
the position indicated by Figure 3, using the order 0, 2, 1, 3.

1

12




2 1 1 2
0 3 3 0
0 0 0 0
0 0 0 0


.

Explicitly,

w =
1

12

(
2(1, 2) + (1, 2)h2 + (1, 2)h+ 2(1, 2)h3 + 3h2(1, 2)h2 + 3h2(1, 2)h

)

=
1

12

(
2(1, 2) + (1, 4, 2, 3) + (1, 3, 4) + 2(2, 4, 3) + 3(3, 4) + 3(1, 4, 2)

)
.

This matrix is orthogonal to either set of five matrices shown above, and so
the weight w lumps weakly. By Corollary 1.10, it does not lump strongly
or exactly because the matrix has neither constant row sums, nor constant
column sums.

Remark 13.6. If L = C[G]eP then L◦ = C[G](eP − ηH) and, by Propo-
sition 13.2, a necessary and sufficient condition for w ∈ RId(L◦) is that w
satisfies the final four equations in (13.4); now Proposition 12.10 implies
that a weight w satisfying these equations is weakly lumping if and only if
there exists v ∈ L◦ such that w

(
H(1, 2)hj

)
+ v
(
H(1, 2)hj

)
is constant as j

varies. Since v must be real and eP − ηH = ξ + ξ̄ = 1
2(1 − h + h2 − h3) an

equivalent condition is that

w
(
H(1, 2)hj

)
+ v
(
H(1, 2)hj

)
(13.5)

is constant as j varies, for some v ∈ 〈hi(1, 2)(1− h + h2 − h3) : 0 ≤ i ≤ 3〉.
Since any such v satisfies v

(
H(1, 2)

)
= v(H(1, 2)h2 and v

(
H(1, 2)h

)
=

v
(
H(1, 2)h3

)
, whenever the final four equations in (13.4) hold, the first holds

if and only if condition (13.5) holds. This verifies the conclusion of Propo-
sition 12.10 for the first weak lumping algebra.
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13.2.8. The second weak lumping algebra. The final real idempotent eP ∈
E•(H) is defined by taking P = {η, ς} ⊆ Ĥ. This corresponds to the time
reversal of the previous example, so we just give the result of Corollaries 13.3
and 13.4 that

Θ(eP )⊥ =
〈
ς(1, 2)ξ, ς(1, 2)ξ, ς(1, 2)ξ̄, η(1, 2)ξ, η(1, 2)ξ̄

〉
.

We finish by giving an alternative description of Θ(eP )⊥ using Proposi-
tion 11.1. Let T = 〈(1, 3)(2, 4)〉 ∼= C2. We have T ≤ H ≤ G, and
ηT = η + ς = eP . Hence C[G]eP is a weak lumping Gurvits–Ledoux ideal
(in the sense of Definition 5.11) for the weight w if and only if

(a′) w(Tg) is constant for Tg ⊆ TxT for all TxT ∈ T\G/T , and
(b′) w(TgH) is constant for TgH ⊆ HxH for all HxH ∈ H\G/H.

Many choices of g and x render Tg = TxT or TgH = HxH, and thus impose
no constraint on w. We give below the remaining five equations which define
Θ(eP ):

(a′) w
(
T (1, 2)

)
= w

(
T (3, 4)

)
,

w
(
T (1, 3, 4)

)
= w

(
T (1, 2, 3)

)
,

w
(
T (1, 2, 4)

)
= w

(
T (1, 4, 3)

)
,

w
(
T (1, 4)

)
= w

(
T (2, 3)

)
;

(b′) w
(
T (1, 2)H

)
= w

(
T (1, 4)H

)
.

These equations specify that the weights of each right coset in the shaded
regions of Figure 3 are equal. For instance T (1, 2) = {(1, 2), (1, 3, 2, 4)} and
T (3, 4) = {(3, 4), (1, 4, 3, 2)} together form the top-left region in this figure.

Example 13.7. In Example 13.5 we saw that the weight

w =
1

12

(
2(1, 2) + (1, 4, 2, 3) + (1, 3, 4) + 2(2, 4, 3) + 3(3, 4) + 3(1, 4, 2)

)

lumps weakly to G/H with stable ideal C[G](η + ξ + ξ̄). Noting that 1 −
(η + ξ + ξ̄) + η = η + ς, by Theorem 1.9, the weight

w? =
1

12

(
2(1, 2) + (1, 3, 2, 4) + (1, 4, 3) + 2(2, 3, 4) + 3(3, 4) + 3(1, 2, 4)

)

lumps weakly to G/H with the stable ideal C[G](η + ς) relevant to the
final idempotent eP in this subsection. This may be checked directly using
Figure 3, noting that w? is supported on the 8 permutations in the left half
of the diagram, and the weights of the two right cosets of T in the top-left
are equal, and similarly for the bottom-left. We saw in Example 13.5 that w
does not lump strongly or exactly and so, by the ?-duality in Theorem 1.9,
neither does w?.
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