
NOTES ON THE WEYL CHARACTER FORMULA

The aim of these notes is to give a self-contained algebraic proof of the

Weyl Character Formula. The necessary background results on modules

for sl2(C) and complex semisimple Lie algebras are outlined in the first two

sections. Some technical details are left to the exercises at the end; solutions

are provided when the exercise is needed for the proof.

1. Representations of sl2(C)

Define

h =

(
1 0

0 −1

)
, e =

(
0 1

0 0

)
, f =

(
0 0

1 0

)
and note that 〈h, e, f〉 = sl2(C). Let u, v be the canonical basis of E = C2.

Then each SymdE is irreducible with ud spanning the highest-weight space

of weight d and, up to isomorphism, SymdE is the unique irreducible sl2(C)-

module with highest weight d. (See Exercises 1.1 and 1.2.) The diagram

below shows the actions of h, e and f on the canonical basis of SymdE:

loops show the action of h, arrows to the right show the action of e, arrows

to the left show the action of f .

•
d−c+1

**

c−1

ii

d−2c−2

•
d−c

**

c

jj

d−2c

•
d−c−1

))

c+1

jj

d−2c+2

ud−c−1vc+1 ud−cvc ud−c+1vc−1

In particular

(a) the eigenvalues of h on SymdE are −d,−d+ 2, . . . , d− 2, d and each

h-eigenspace is 1-dimensional,

(b) if w ∈ SymdE and h · w = (d− 2c)w then f · e · w = c(d− c+ 1)w.

If V is an arbitrary sl2(C)-module then, by Weyl’s Theorem (see [2, Ap-

pendix B] or [4, §6.3]), V decomposes as a direct sum of irreducible sl2(C)-

submodules. Let Vr = {v ∈ V : h · w = rv} for r ∈ Z. Then (a) implies

(c) if r ≥ 0 then the number of irreducible summands of V with highest

weight r is dimVr − dimVr+2.

2. Prerequisites on complex semisimple Lie algebras

In this section we recall the basic setup of a Cartan subalgebra H inside

a complex semisimple Lie algebra L, a lattice of weights Λ ⊆ H?R and a

root system Φ ⊆ Λ. The mathematically most interesting parts are that

H is self-centralizing (see Exercise 2.2) and the trick used to construct an
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sl2(C)-subalgebra corresponding to each root. For an example of all the

theory below, see Exercise 2.8 and the applications to sln and sp2n in §6.

Cartan subalgebras. We define a Cartan subalgebra of L to be a Lie sub-

algebra H of L maximal subject to the condition that adh : L → L is

diagonalizable for all h ∈ H. It is an interesting fact (see Exercise 2.1) that

any Cartan subalgebra is abelian. We may therefore decompose L as a direct

sum of simultaneous eigenspaces for the elements of H. To each simultane-

ous eigenspace V we associate the unique α ∈ H? such that (adh)x = α(h)x

for all h ∈ H and x ∈ V . For α ∈ H? let

Lα = {x ∈ L : (adh)x = α(h)x for all h ∈ H, x ∈ V }

and let Φ be the set of all non-zero α ∈ H? such that Lα 6= 0. The elements

of Φ are called roots and Lα is the root space corresponding to α ∈ Φ and

we have

L = L0 ⊕
(⊕
α∈Φ

Lα
)
.

Note that L0 is the centralizer of H in L. It is an important and non-

obvious fact (see Exercise 2.2) that L0 = H, so H is self-centralizing: An

easy calculation shows that

(2.1) [Lα, Lβ] ⊆ Lα+β for all α, β ∈ Φ0.

Killing form. The Killing form on L is the bilinear form κ(x, y) = Tr(adx◦
ad y). By Cartan’s Criterion κ is non-degenerate. It follows from (2.1) that

if x ∈ Lα and y ∈ Lβ where α, β ∈ Φ0, then adx ◦ ad y is nilpotent, unless

α+ β = 0. Therefore if α, β ∈ Φ0 then Lα ⊥ Lβ unless β = −α. Hence α is

a root if and only if −α is a root and the restriction of κ to Lα×L−α is non-

degenerate. In particular, the restriction of κ to H ×H is non-degenerate.

For each α ∈ Φ, let tα ∈ H be the unique element of H such that

κ(tα, h) = α(h) for all h ∈ H.

sl2 subalgebras. Choose e ∈ Lα and f ∈ L−α such that κ(e, f) 6= 0. By the

associativity of the Killing form

κ(h, [e, f ]) = κ([h, e], f) = α(h)κ(e, f) for all h ∈ H.

Since κ is non-degenerate on H, there exists h ∈ H such that α(h) =

κ(tα, h) 6= 0. Since κ(e, f) 6= 0, the previous equation then implies that

[e, f ] 6= 0. Consider the Lie subalgebra

〈e, f, [e, f ]〉

of L. Since [e, f ] ∈ [Lα, L−α] ⊆ H we have
[
[e, f ], e

]
= α([e, f ])e and[

[e, f ], f
]

= −α([e, f ])f .

If α([e, f ]) = 0 then [e, f ] is central in 〈e, f, [e, f ]〉. By Exercise 2.3 below

[e, f ] is nilpotent. But [e, f ] ∈ H and all the elements of H are semisim-

ple. So [e, f ] = 0, which contradicts the previous paragraph. Therefore
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α([e, f ]) 6= 0 and we can scale e so that α([e, f ]) = 2 and so 〈e, f, [e, f ]〉 ∼=
sl2(C).

For each α ∈ Φ let 〈eα, fα, hα〉 be a subalgebra of L constructed as above

so that

(2.2) [eα, fα] = hα, [hα, eα] = 2eα, [hα, fα] = 2fα.

We may suppose that these elements are chosen so that e−α = fα and

f−α = eα for each α ∈ Φ.

Relationship between tα and hα. By choice of tα we have κ(tα, h) = α(h) for

all h ∈ H. By associativity of the Killing form we also have

κ([eα, fα], h) = κ(eα, [fα, h]) = κ(eα, α(h)fα) = α(h)κ(eα, fα).

Hence

κ
(
tα −

[eα, fα]

κ(eα, fα)
, h
)

= 0 for all h ∈ H.

Since the restriction of κ to H ×H is non-degenerate it follows that

(2.3) tα =
hα

κ(eα, fα)
.

Since κ(tα, tα) = α(tα), this implies the useful relations

(2.4) 2 = α(hα) = κ(tα, hα) =
κ(hα, hα)

κ(eα, fα)
= κ(eα, fα)κ(tα, tα).

Transport of the Killing form to H?R. Observe that if Φ does not span H?

then there exists h ∈ H such that α(h) = 0 for all α ∈ Φ, and so [h, Lα] = 0

for all α ∈ Φ. By Exercise 2.2 we deduce that h ∈ Z(L), which contradicts

the assumption that L is semisimple. (See Exercise 2.4 for an alternative

argument when L is simple.) Hence there is a unique bilinear form ( , ) on

H? such that

(α, β) = κ(tα, tβ) for α, β ∈ Φ.

By (2.3) and (2.4) we have the fundamental formula

(2.5)
2(α, β)

(β, β)
= κ

(
tα,

2tβ
κ(tβ, tβ)

)
= κ(tα, hβ) = α(hβ).

Note also that α(hβ) is an eigenvalue of hβ in the finite-dimensional sl(β)-

module L. It follows that ( , ) takes real values on the roots and from the

equation κ(h, k) =
∑

α∈Φ α(h)α(k) for h, k ∈ H, we see that it is a real-

valued inner-product on H?R = 〈α : α ∈ Φ〉R. Exercise 2.5 shows that the

angles between the roots are determined by (2.5). (In fact if L is a simple Lie

algebra then Φ is a connected root system and ( , ) is completely determined

by (2.5) and (α, α) for any single root α ∈ Φ.)
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Angled brackets notation. It will be convenient to define

〈λ, µ〉 =
2(λ, µ)

(µ, µ)

for λ, µ ∈ H?
R. Note that the form 〈 , 〉 is linear only in its first component.

This notation will often be used when µ ∈ Φ, in which case (2.5) implies

that 〈λ, β〉 = λ(hβ).

Fundamental dominant weights. Recall that {α1, . . . , α`} is a base for Φ if

element of Φ can be written uniquely as either a non-negative or non-positive

integral linear combination of the αi. (For a proof that every root system

has a basis, see [2, Theorem 11.10] or [4, Theorem 10.1].) Fix, once and for

all, a base {α1, . . . , α`} for Φ and let Φ+ be the set of positive roots with

respect to this basis. There exist unique ω1, . . . , ω` ∈ H? such that, for all

i, j ∈ {1, . . . , `},

(2.6) ωi(hαj ) = [i = j]

where [i = j] is the Iverson bracket, equal to 1 if i = j and 0 otherwise.

(2.7) Λ = 〈ω1, . . . , ω`〉Z ⊆ H?.

Weight space decomposition. The elements of H act semisimply in any finite-

dimensional L-module (see [4, Corollary 6.3]). By Section 1, the eigenvalues

of each hαj are integral. Hence if V is a finite-dimensional L-module then

V ↓H=
⊕
λ∈Λ

Vλ

where

Vλ = {v ∈ V : h · v = λ(h)v for all h ∈ H}.
(The root spaces defined earlier are weight spaces for the action of L on itself

by the adjoint representation.) We shall say that an element of V lying in

some non-zero Vλ is a weight vector. Starting with any weight vector, and

then repeatedly applying the elements eα for α ∈ Φ+, it follows that V

contains a weight vector v such that eα · v = 0 for all α ∈ Φ+. Such a vector

is said to be a highest-weight vector with respect to the base {α1, . . . , α`}.
By Exercise 2.7, the submodule of V generated by a highest weight vector

is irreducible.

3. Freudenthal’s Formula

Recall that the lattice of weights Λ was defined in (2.7). Let V (µ) be an

irreducible L-module of highest weight µ ∈ Λ. Set n(µ)ν = dimV (µ)ν for

each ν ∈ Λ. The aim of this section is to prove Freudenthal’s Formula, that

if λ ∈ Λ then

(3.1)
(
||µ+ δ||2 − ||λ+ δ||2

)
dimn(µ)λ = 2

∑
α∈Φ+

∞∑
m=1

n(µ)λ+mα(λ+mα,α)
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where

(3.2) δ = 1
2

∑
α∈Φ+

α ∈ 1
2Λ

is half the sum of the positive roots. By Exercise 3.1 we have δ ∈ Λ. See

Exercises 6.1 and 6.3 for δ in the type A and C cases.

The key idea in this proof (which is based on [6, VIII.2]) is to calculate the

scalar by which a central element in the universal enveloping algebra U(L)

acts on V , using the theory of sl2(C)-modules in Section 1. The following

lemma gives a construction of such central elements.

Lemma 3.1. Suppose that x1, . . . , xn and y1, . . . , yn are bases of L such that

κ(xi, yj) = [i = j]

Then
∑n

i=1 xiyi is in the centre of U(L).

Proof. See Exercise 3.3. �

Let α, β ∈ Φ. By (2.1) we have κ(eα, fβ) = 0 whenever α 6= β and by (2.4)

we have κ(eα, fα) = 2/κ(tα, tα) = 2/(α, α) and κ(tα, hα) = 2 for all α ∈ Φ.

Lemma 3.1 therefore implies that

Γ =
∑
α∈Φ

(α, α)

2
fαeα +

1

2

∑̀
j=1

tαjhαj

is in the centre of U(L). As noted after (2.2) we have chosen root-space

elements so that e−α = fα and f−α = eα for each α ∈ Φ+. Hence f−αe−α =

eαfα = hα + fαeα and

Γ =
∑
α∈Φ+

(α, α)

2
hα +

∑
α∈Φ+

(α, α)fαeα +
1

2

∑̀
j=1

tαjhαj .

The action of each of the three summands of Γ preserves the weight

spaces V (µ)λ. The next three lemmas determine the traces of these sum-

mands on each V (µ)λ. The first explains the appearance of δ in Freuden-

thal’s Formula.

Lemma 3.2. If λ ∈ Λ and v ∈ V (µ)λ then∑
α∈Φ+

(α, α)

2
hα · v = (λ, 2δ)v.

Proof. Using (2.5) we get∑
α∈Φ+

(α, α)

2
λ(hα) =

∑
α∈Φ+

(α, α)

2

2(λ, α)

(α, α)
=
∑
α∈Φ+

(λ, α) = (λ, 2δ)

as required. �

Lemma 3.3. If α ∈ Φ and λ ∈ Λ then

(α, α) TrV (µ)λ(fαeα) = 2
∞∑
m=1

n(µ)λ+mα(λ+mα,α).
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Proof. Since
2(λ+mα,α)

(α, α)
= 〈λ+mα,α〉, it is equivalent to prove that

TrV (µ)λ(fαeα) =

∞∑
m=1

n(µ)λ+mα〈λ+mα,α〉.

Let W =
⊕

c∈Z V (µ)λ+cα. Note that W is a direct sum of weight spaces for

the action of H, and that W is an sl(α)-submodule of V . We may write

W = U (1) ⊕ · · · ⊕ U (d)

where each U (i) is an irreducible sl(α)-module.

Assume first of all that λ(hα) ≥ 0. Suppose that U
(i)
λ 6= 0. Choose m

maximal such that U
(i)
λ+mα 6= 0. Then U (i) has highest weight (λ+mα)(hα)

as an sl(α)-module and by (b) in Section 1, the scalar by which fαeα acts

on a vector in U
(i)
λ is

m
(
(λ+mα)(hα)−m+ 1

)
= m

(
λ(hα) +m+ 1

)
.

It follows from (c) in Section 1 that the number of summands U (i) with

highest weight (λ+mα)(hα) as an sl(α)-module is n(µ)λ+mα−n(µ)λ+(m+1)α.

Hence

TrV (µ)λ(fαeα) =
∞∑
m=0

(
n(µ)λ+mα − n(µ)λ+(m+1)α

)
m(λ(hα) +m+ 1)

=
∞∑
m=1

n(µ)λ+mα

(
m(λ(hα) +m+ 1)− (m− 1)(λ(hα) +m)

)
=

∞∑
m=1

n(µ)λ+mα(λ(hα) + 2m).

as required. Note that this equation holds even when V (µ)λ = 0, since the

argument just given shows that both sides are zero.

If λ(hα) ≤ 0 then a similar calculation (see Exercise 3.4) shows that fαeα
acts as the scalar −

∑∞
b=0 n(µ)λ−bα〈λ− bα, α〉 on V (µ)λ. Now

∞∑
c=−∞

n(µ)λ+cα〈λ+ cα, α〉 = 0

since each irreducible summand U (i) contributes the sum of the hα eigen-

values on U (i), which is 0 by (a) in Section 1. Adding these two equations

we get the required formula. �

Lemma 3.4. Let λ ∈ Λ. If v ∈ V (µ)λ then

1

2

∑̀
j=1

tαjhαj · v = (λ, λ)v
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Proof. We saw earlier that 1
2 tα1 , . . . ,

1
2 tα` and hα1 , . . . , hα` are dual bases of

H? with respect to the Killing form κ on H ×H. By Exercise 3.2(ii)

1

2

∑̀
i=1

λ(tαj )λ(hαj ) = (λ, λ)

as required. �

Since Γ is central in U(L) it acts as a scalar on V , say γ. Let λ ∈ Λ. By

Lemmas 3.2, 3.3 and 3.4, we have

n(µ)λγ = TrV (µ)λ(fαeα)

= (λ, 2δ)n(µ)λ + 2
∑
α∈Φ+

∞∑
m=1

n(µ)λ+mα(λ+mα,α) + (λ, λ)n(µ)λ.

Since eα · V (µ)µ = 0 for all α ∈ Φ+, n(µ)µ = 1, and (λ, 2δ) + (λ, λ) =

||λ+ δ||2 − ||δ||2, the previous equation implies

γ = ||µ+ δ||2 − ||δ2||.

Comparing these two equations we obtain

(
||µ+ δ||2 − ||λ+ δ||2

)
n(µ)λ = 2

∑
α∈Φ+

∞∑
m=1

n(µ)λ+mα(λ+mα,α)

as stated in Freudenthal’s Formula. For an immediate application of Freuden-

thal’s Formula see Exercise 3.5 in the final exercise section.

4. Statement of Weyl Character Formula

Formal exponentials and characters. For each λ ∈ Λ we introduce a formal

symbol e(λ) which we call the formal exponential of λ. Let Q[Λ] denote the

abelian group with Z-basis {e(λ) : λ ∈ Λ}. We make Q[Λ] into an algebra

by defining the multiplication on basis elements by

e(λ)e(λ′) = e(λ+ λ′) for λ, λ′ ∈ Λ.

Note that e(0) = 1 ∈ Q and that each e(λ) is invertible, with inverse e(−λ).

This definition is motivated by one-parameter subgroups: see Exercise 4.1.

(We mention that Q[Λ] is the group algebra of the abelian group Λ, using

multiplicative notation for group multiplication to distinguish it from the

algebra addition.) Given an L-module V , we define the formal character

of L by

χV =
∑
λ∈Λ

(dimVλ)e(λ) ∈ Q[Λ].
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Weyl group. Let Sβ : H?
R → H?

R denote the reflection corresponding to

β ∈ Φ as defined by

Sβ(θ) = θ − 2(θ, β)

(β, β)
β for θ ∈ H?

R.

The alterative forms Sβ(θ) = θ − 〈θ, β〉β = w − θ(hβ)α are often useful.

By definition the Weyl group of L is the group generated by the Sβ for

β ∈ Φ. We define sgn(w) = 1 if w is a product of an even number of

reflections, and sgn(w) = −1 otherwise. The Weyl group W acts on Q[Λ]

by w · e(λ) = e(w(λ)) for w ∈ W and λ ∈ Λ. We shall see in §6 that in the

type A case for sln(C) we may identify W with the symmetric group Sn; this

justifies the notation sgn(w) used above. In this case the symmetric elements

in the following definition can be identified with symmetric polynomials.

Symmetric and antisymmetric elements.

Definition 4.1. We say that an element f ∈ Q[Λ] is symmetric if w · f = f

for all w ∈W and antisymmetric if w · f = sgn(w)f for all w ∈W .

By Exercise 4.3(iv), f ∈ Q[Λ] is antisymmetric if and only if

f = g
∑
w∈W

sgn(w)w · e(δ)

for some symmetric g.

Weyl Character Formula. We may now state the main result. By the result

on antisymmetric elements of Q[Λ] just mentioned, the right-hand side in

the formula below is a well-defined symmetric element of Q[Λ].

Theorem 4.2 (Weyl Character Formula). Let V (µ) be the irreducible L-

module of highest weight µ ∈ Λ. Then

χV (µ) =

∑
w∈W sgn(w)w · e(µ+ δ)∑
w∈W sgn(w)w · e(δ)

.

We prove Weyl’s Character Formula using Frendenthal’s Formula (3.1) in

§5 below, after proving a notable corollary for the dimension of V (µ) and

explaining how to get explicit character values out of the formula. Appli-

cations of the Weyl Character Formula to sl2(C) and sl3(C) are given in

Exercises 4.4 and 4.5 We mention that Kostant’s Multiplicity Formula (see

for instance [3, §8.2]) is also a quick corollary.

Character values and Weyl’s Dimension Formula. Let G be the connected

and simply connected Lie group with Lie algebra L. The Lie algebra homo-

morphism L → End(V (µ)) induces a representation of G acting on V (µ).

Fix h ∈ H? and consider the one-parameter semigroup c 7→ exp(ch) ∈ G.

By Exercise 4.1, the character value χV (µ)(exp ch) of χV (µ) on exp ch ∈ G
is obtained by replacing each formal exponential e(α) with ecα(h) in Weyl’s

Character Formula. (There is no abuse of notation here: χV (µ) is the formal

character; χV (µ)(exp ch) is this evaluation.) Hence, using the definition of
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the action of Weyl group on formal exponentials by w · e(α) = e(w · α), we

have

(4.1) χV (µ)(exp ch) =

∑
w∈W sgn(w) ec(w·(µ+δ))(h)∑
w∈W sgn(w) ec(w·δ)(h)

.

To obtain dimV (µ) we would like to set c = 0, but this is not easy to do,

even formally, because both numerator and denominator vanish at c = 0. In

fact, we will see below that the order of vanishing is |Φ+|, which perhaps ex-

plains why all proofs of the dimension formula are a little indirect. Here we

exploit that, by Exercise 4.3(iii), the denominator in Weyl’s Character For-

mula is
∏
α∈Φ+

(
e(1

2α)− e(−1
2α)
)

which becomes
∏
α∈Φ+

(
e

1
2
cα(h)− e−

1
2
cα(h)

)
when evaluated at h ∈ H. Hence

(4.2)
∑
w∈W

sgn(w) ec(w·δ)(h) =
∏
α∈Φ+

(
e

1
2
cα(h) − e−

1
2
cα(h)

)
.

Using this, we show that in the very special case when h = tδ (recall that tδ is

the element of H dual to δ ∈ H?), the numerator of (4.1) factors in a similar

way to the factorization
∏
α∈Φ+

(
e

1
2
cα(h)− e−

1
2
cα(h)

)
of the denominator just

seen. Indeed,(
w · (µ+ δ)

)
(tδ) =

(
w · (µ+ δ), δ

)
=
(
µ+ δ, w · δ

)
= (w · δ)(tµ+δ)

and so ∑
w∈W

sgn(w)ec(w·(µ+δ))(tδ) =
∑
w∈W

sgn(w)ec(α)(tµ+δ)

=
∏
α∈Φ+

(
e

1
2
c(α)(tµ+δ) − e−

1
2
c(α)(tµ+δ)

)
=
∏
α∈Φ+

(
e

1
2
c(α,µ+δ)− e−

1
2
c(α,µ+δ)

)
where we used (4.2) for the second equality. Therefore taking µ = ∅ in (4.2),

or equivalently using the equation for the denominator just before (4.1), we

obtain

χV (µ)(exp ctδ) =
∏
α∈Φ+

e
1
2
c(α,µ+δ)− e−

1
2
c(α,µ+δ)

e
1
2
c(α,δ) − e−

1
2
c(α,δ)

Now using that the factors in numerator and denominator are c(α, µ+ δ) +

O(c2) and c(α, δ)+O(c2), their quotient has limit (α, µ+ δ)/(α, δ) as c→ 0.

It is clear that exp ctδ → 1 ∈ G as c→ 0. Therefore taking the limit c→ 0

in the displayed equation above we get

(4.3) dimV (µ) =
∏
α∈Φ+

(α, µ+ δ)

(α, δ)

which is Weyl’s Dimension Formula.
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5. Proof of the Weyl Character Formula

The following proof is adapted from Igusa’s notes [5]. For calculations

it will be convenient to extend Q[Λ] to a larger ring Q[1
2Λ] by adjoining a

square root e(1
2α) for each α ∈ Φ. We then complete Q[1

2Λ] to the alge-

bra Q[[1
2Λ]] of formal power series generated by the e(1

2λ) for λ ∈ Λ. For

example, in Q[[1
2Λ]] we have

∑∞
s=0 e(λ)s = 1

1−e(λ) .

We shall also need the Laplacian operator ∆ : Q[[1
2Λ]]→ Q[[1

2Λ]], defined

by ∆
(
e(λ)

)
= ||λ||2e(λ) for λ ∈ 1

2Λ, and the bilinear form { , } on Q[[1
2λ]]

defined by

{e(λ), e(µ)} = (λ, µ)e(λ+ µ) for λ, µ ∈ 1
2Λ.

See Exercise 4.3(i) and (iv) for some motivation for ∆. These gadgets are

related by the following lemma.

Lemma 5.1. Let f, g ∈ Q[[1
2Λ]]. Then

∆(fg) = f∆(g) + ∆(f)g + 2{f, g}.

Proof. By linearity it is sufficient to prove the lemma when f = e(λ) and

g = e(µ) for some λ, µ ∈ 1
2Λ. In this case it states that

||λ+ µ||2e(λ+ µ) = e(λ)||µ||2e(µ) + ||λ2||e(λ)e(µ) + 2(λ, µ)e(λ+ µ)

which is obvious. �

Proof of Weyl Character Formula. Let Q denote the denominator in the

Weyl Character Formula. We begin the proof with Freudenthal’s formula in

the form(
||µ+ δ||2−||δ||2

)
n(µ)λ

=
(
||λ||2 + (λ, 2δ)

)
n(µ)λ + 2

∑
α∈Φ+

∞∑
m=1

(λ+mα,α)n(µ)λ+mα.

Multiply both sides by e(λ) and sum over all λ ∈ Λ to get

(5.1)
(
||µ+ δ||2 − ||δ||2

)
χV = ∆(χV ) +

∑
λ∈Λ

(λ, 2δ)n(µ)λe(λ) +X

where

X = 2
∑
λ∈Λ

∑
α∈Φ+

∞∑
m=1

(λ+mα,α)n(µ)λ+mαe(λ)

= 2
∑
λ∈Λ

∑
α∈Φ+

∞∑
m=1

(λ, α)n(µ)λe(λ−mα)

= 2
∑
λ∈Λ

∑
α∈Φ+

(λ, α)
n(µ)λe(λ)

e(α)− 1
.
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Now multiply through by Q and replace 2δ with
∑

α∈Φ+ α to combine the

second two summands on the right-hand side of (5.1). This gives(
||µ+ δ||2 − ||δ||2

)
QχV = Q∆(χV ) +Q

∑
λ∈Λ

∑
α∈Φ+

(λ, α)n(µ)λe(λ)
e(α) + 1

e(α)− 1
.

Since QχV is antisymmetric, it follows from Exercise 4.3(i) that QχV =∑
w∈W sgn(w)w · e(µ+ δ) if and only if ∆(QχV ) = ||µ+ δ||2QχV . Again by

this exercise, ∆(Q) = ||δ||2Q. Hence it is sufficient to prove

(5.2) ∆(QχV )−∆(Q)χV −Q∆(χV ) = Q
∑
λ∈Λ

∑
α∈Φ+

(λ, α)n(µ)λe(λ)
e(α) + 1

e(α)− 1
.

By Lemma 5.1, the left-hand side in (5.2) is 2{Q,χV }. So finally, it is

sufficient to prove that

2
{
Q,
∑
λ∈Λ

n(µ)λe(λ)
}

= Q
∑
α∈Φ+

e(α) + 1

e(α)− 1

∑
λ∈Λ

(λ, α)n(µ)λe(λ)

which, by linearity, follows from the relation

2
{
Q, e(ν)

}
= Q

∑
α∈Φ+

e(α) + 1

e(α)− 1
(ν, α)e(ν) for ν ∈ Λ,

proved in Exercise 5.2 below. �

6. Applications to Type A and Type C

Fix n ∈ N and for 1 ≤ i, j ≤ n let e(i,j) be the n× n matrix whose single

non-zero entry is a 1 in position (i, j). Let D be the abelian Lie algebra of

diagonal n × n matrices and let εi ∈ D? be defined by εi(d) = d(i,i). The

basic commutator relation

(6.1) [e(i,j), e(k,m)] = [j = k]e(i,m) − [i = m]e(k,j)

will often be useful in this section; recall that [j = k] is the Iverson bracket,

equal to 1 if j = k and 0 otherwise, and similarly for [i = m].

Type A. Let H be the Cartan subalgebra of the special linear Lie algebra

sln consisting of all trace 0 diagonal matrices. By restricting the elements

εi ∈ D? just defined we see that H? = 〈ε1, . . . , εn〉C. (Note this is a spanning

set, not a basis, because ε1 + · · ·+ εn = 0, and correspondingly the Lie rank

` is n− 1, not n.)

Root space decomposition. From (6.1) we get

(6.2) [e(k,k), e(i,j)] =
(
[i = k]− [j = k]

)
e(i,j) = (εi − εj)e(i,j).

Thus the e(i,j) for i 6= j span the root spaces and we may choose the positive

roots to be

Φ+ = {εi − εj : 1 ≤ i < j ≤ n}
The root system Φ has εi − εi+1 for 1 ≤ i ≤ n as a base so that, in the

notation of §2, αi = εi − εi+1.
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Weight lattice. The dual elements in the Cartan subalgebra to αi, satisfy-

ing the fundamental relation (2.5) that αi(hj) = 〈αi, αj〉 are hi = e(i,i) −
e(i+1,i+1) and the fundamental dominant weights in (2.6) are ωi = ε1+· · ·+εi
for 1 ≤ i < n. It is easily checked that ωi(hj) = [i = j]; the case n = 3

was seen in Exercise 2.8. Thus the weight lattice is Λ = 〈ε1, . . . , εn〉Z and

the dominant integral weights in 〈ω1, . . . , ωn−1〉N0 are partitions, written

allowing zero parts and having at most n− 1 non-zero parts.

Weyl group. It is easily shown that the reflection Sεi−εj defined in §4 acts

on Rn by swapping positions i and j in vectors. Therefore the Weyl group

of type An−1 is the symmetric group Sn and the sign function as defined

before Definition 4.1 in terms of simple reflections, is the usual sign function

the symmetric group, which to avoid ambiguity we denote by sgnSn.

Weyl’s Character Formula and antisymmetric polynomials. By Exercise 6.1

we have δ =
∑n−1

i=1 (n− i)εi which we write as the partition (n− 1, . . . , 1, 0).

We may identify the subring of Q[Λ] generated by the e(εi) with the poly-

nomial ring Z[x1, . . . , xn] via the isomorphism e(εi) 7→ xi for 1 ≤ i ≤ n.

(Strictly speaking we are working in the quotient of this ring by x1 . . . xn
since ε1 + · · ·+ εn = 0, but since εn does not appear in a fundamental dom-

inant weight, and correspondingly our partitions have at most n− 1 parts,

we can ignore this point.) After this identification, the Weyl group Sn acts

on Z[x1, . . . , xn] by polynomial extension of w ·xi = xw(i). Weyl’s Character

Formula (see Theorem 4.2) becomes

χV (µ) =

∑
w∈Sn sgnSn(w)w · xµ1+(n−1)

1 x
µ2+(n−2)
2 · · ·xµn−1+1

n−1 xµnn∑
w∈Sn sgnSn(w)w · xn−1

1 xn−2
2 · · ·xn−1

The denominator is the Vandermonde determinant: see the margin for the

case n = 3. More generally, observe that the numerator is the determinant

∣∣∣∣∣∣
x2

1 x1 1

x2
2 x2 1

x2
3 x3 1

∣∣∣∣∣∣ ∣∣∣∣∣∣∣∣∣∣
x
µ1+(n−1)
1 x

µ2+(n−2)
1 . . . xµn1

x
µ1+(n−1)
2 x

µ2+(n−2)
2 . . . xµn2

...
...

. . .
...

x
µ1+(n−1)
n x

µ2+(n−2)
n . . . xµnn

∣∣∣∣∣∣∣∣∣∣
Therefore we have an explicit formula for the formal character χV (µ) as a

quotient of two antisymmetric polynomials:

χV (µ) =

∣∣xµj+(n−j)
i

∣∣
1≤i≤j≤n∣∣xn−ji

∣∣
1≤i≤j≤n

where the denominator is the Vandermonde determinant
∏

1≤i<j≤n(xi−xj).

Schur polynomials. Since χV (µ) is a quotient of two antisymmetric polynomi-

als it is symmetric, as expected because it is invariant under the Weyl group

Sn. In fact it is the Schur polynomial sµ(x1, . . . , xn) enumerating semis-

tandard tableaux of shape µ with entries from {1, . . . , n} by their weight
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(i.e. their multiset of entries): see [9, Ch. 7] for much more on symmetric

functions. As a challenge, the reader is invited to deduce Stanley’s Hook

Content Formula (see [9, Theorem 7.21.2]) by specializing the formula above

by xi 7→ qi−1. This result may be regarded a greatly refined version of Weyl’s

Dimension Formula, for the Type A case.

Type C. Write elements of C2n as pairs (v, w) with v, w ∈ Cn. We define

the symplectic Lie algebra sp2n(C) of rank n using the symplectic form(
(v, w), (v′, w′)

)
= v · w′ − w · v′

where · is the usual dot product. The matrix of this form in the canonical

basis of C2n is J , as shown in the margin. Hence, J =

(
0 In
−In 0

)
sp2n(C) =

{
z ∈ gl2n(C) : ztJ + Jz = 0

}
or equivalently, by Exercise 6.2,

sp2n(C) =

{(
a b

c atr

)
: b = btr, c = ctr

}
.

(Part of this can be seen without calculation: since the subspace 〈v1, . . . , vn〉
is totally isotropic, and is perfectly paired with 〈vn+1, . . . , v2n〉 by the form,

the top-left block can be freely chosen and determines the bottom right

block. But it’s probably simpler just to do the calculation then pursue this

argument to work out all the signs.) In particular, sp2n(C) has the diagonal

matrices with entries d1, . . . , dn, −d1, . . . ,−dn as a Cartan subalgebra.

Root space decomposition. Writing i for i+ n, it follows from (6.2) that

[e(k,k)−e(k,k), e(i,j) +e(j̄ ,̄i)] = ([i = k]− [j = k])e(i,j)− ([j = k]− [i = k])e(j̄ ,̄i)

= ([i = k]− [j = k])(e(i,j) + e(j̄ ,̄i))

and hence e(i,j) + e(j̄ ,̄i) is in the εi − εj root space. Similarly we have

[e(k,k) − e(k,k), e(i,j)] = ([i = k] + [j = k])e(i,j)

and so e(i,j) is in the εi + εj root space; note that taking j = i (as we may

since b and c are symmetric), this gives the 2εi root spaces. We choose the

positive roots Φ+ so that

(6.3) Φ+ = {εi ± εj : 1 ≤ i < j ≤ n} ∪ {2εi : 1 ≤ i ≤ n}

and get the Type C root system having

ε1 − ε2, . . . , εn−1 − εn, 2εn
as a base so that, in the notation of §2, αi = εi − εi+1 for 1 ≤ i < n and

αn = 2εn. Thus

(6.4) hi = e(i,i) − e(i+1,i+1) − e(̄i,̄i) + e(i+1,i+1)

for 1 ≤ i < n and hn = e(n,n) − e(n̄,n̄) The values of −〈αi, αj〉 are shown by

the number of edges in the Dynkin diagram below; the arrow indicates that

β` = 2ε` is the longer root.
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d d . . . d d dα1 α2 α`−2 α`−1 β`
��
@@

See Exercise 6.4 for the special case of sp4(C).

Weight lattice. Exactly as in the Type A case, the fundamental dominant

weights in (2.6) for 1 ≤ i < n are ωi = ε1 + · · · + εi and clearly (ε1 + · · · +
εn−1 + εn)(hi) = [i = n] so we now have ωn = ε1 + · · · + εn. Therefore we

may identify dominant integral weights with partitions.

Weyl group. Again the reflection Sεi−εj acts on Rn by swapping positions i

and j in roots, and it is clear that S2εn acts by negating position n. Therefore

the Weyl group of type Cn is the hyperoctahedral group C2 oSn acting as

the group of all signed permutation matrices on Rn. This is the semidirect

product (C2× · · · ×C2)oSn with Sn acting on the base group by position

permutation. We write its elements as (a1, . . . , an;w) where ai ∈ {1,−1}
for each i and w ∈ Sn.

Weyl’s Character Formula and antisymmetric polynomials. By Exercise 6.3

we have δ =
∑n

i=1(n+ 1− i)εi. We identify Q[Λ] with the polynomial ring

Z[x1, x
−1
1 , . . . , xn, x

−1
n ] via the isomorphism e(εi) 7→ xi and e(−εi) 7→ x−1

i

for 1 ≤ i ≤ n. After this identification, the Weyl group C2 o Sn acts on

Z[x1, . . . , xn] by algebra extension of

(a1, . . . , an;w) · xi =

{
xw(i) if aw(i) = 1

x−1
w(i) if aw(i) = −1.

Since the sign function is a character of C2 oSn and, as in the Type A case,

sgn(1, . . . , 1;w) = sgnSn(w) we have

sgn(a1, . . . , an;w) = (−1)a1 · · · (−1)ansgnSn(w).

Weyl’s Character Formula (see Theorem 4.2) becomes

χV (µ) =

∑
v∈C2oSn sgn(v)v · xµ1+n

1 · · ·xµn+1
n∑

v∈C2oSn sgn(v)v · xn1 · · ·xn

=

∑
w∈Sn sgnSn(w)w · (xµ1+n

1 −x−µ1−n1 ) · · · (xµn+1
n −xµn−1

n )∑
w∈C2oSn sgnSn(w)w · (xn1 − x

−n
1 ) · · · (xn − x−1

n )

Note the minus sign appears in each factor because of the sign from the

base group. As in the Type A case, both numerator and denominator are

determinants: the numerator is∣∣∣∣∣∣∣∣∣∣
xµ1+n

1 − x−µ1+n
1 x

µ2+(n−1)
1 − x−µ2−n+1

1 . . . xµn+1
1 − x−µn−1

1

xµ1+n
2 − x−µ1−n2 x

µ2+(n−1)
2 − x−µ2−n+1

2 . . . xµn+1
2 − x−µn−1

2
...

...
. . .

...

xµ1+n
n − x−µ1−nn x

µ2+(n−1)
n − x−µ2−n+1

n . . . xµn+1
n − x−µn−1

n

∣∣∣∣∣∣∣∣∣∣
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and there is a similar expression for the denominator, giving

χV (µ) =

∣∣xµj+(n+1−j)
i − x−µj−(n+1−j)

i

∣∣
1≤i≤j≤n∣∣xn+1−j

i − x−(n+1−j)
i

∣∣
1≤i≤j≤n

.

Further directions. A recommended exercise is to repeat the analysis

of this section for orthogonal groups (Types B and D). For analogues of

Stanley’s Hook Content Formula in Type B, C and D see [1]. It would be

very interesting to have an analogue of James’ abacus [7, Ch. 4] or Loehr’s

labelled abacus [8] for the symplectic case.

Exercises

Exercise 1.1. Let E = 〈u, v〉 be the natural 2-dimensional sl2(C)-module.

Show that SymdE is irreducible for each d ∈ N.

Exercise 1.2. Let V be a finite-dimensional sl2(C)-module.

(i) Show that V contains an h-eigenvector v such that e · v = 0.

(ii) Show that the submodule of V generated by V is d-dimensional if

and only if h · v = (d− 1)v.

(iii) Deduce that any irreducible sl2(C)-module is isomorphic to SymdE

for some d ∈ N0.

Exercise 2.1. Show that a Cartan subalgebra (as defined in Section 2) is

abelian.

Solution. Given h, k ∈ H, we can write k as a sum of adh eigenvectors,

say k = k0 +
∑n

i=1 ki where (adh)k0 = 0 and (adh)ki = λiki. Hence

(adh)rk =
∑n

i=1 λ
r
iki. A useful linear algebra lemma shows that all the ki

are in the Lie subalgebra of H generated by h and k. Now [h, ki] = λiki
and so (ad ki)

2x = [ki, [ki, x]] = [ki,−λiki] = 0; since ki ∈ H, ad ki is

diagonalizable, and so we must have (ad ki)x = 0. Hence [h, k] = 0.

Exercise 2.2. The aim of this exercise is to show that if H is a Cartan

subalgebra of L then H is self-centralizing.

(i) Show that L0 is nilpotent. [Hint: use Engel’s theorem and the

abstract Jordan decomposition.]

(ii) Show that there is a basis of L0 in which all adx : L→ L for x ∈ L0

are represented by upper-triangular matrices.

(iii) Show that if x ∈ L0 and adx : L → L is nilpotent then Tr(adx ◦
ad y) = 0 for all y ∈ L0. Deduce that x = 0.

(iv) Deduce that every element of L0 is semisimple and hence show that

L0 = H.

Exercise 2.3. Let V be a complex vector space. Show that if x and y ∈
gl(V ) are such that [x, y] commutes with x then [x, y] is nilpotent. [Hint:

there is a quick solution using Lie’s Theorem. For an ad-hoc proof (which

then allows this exercise to be used as part of a proof of Lie’s Theorem) first

show that Tr[x, y]n = 0 for all n ∈ N.]
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Exercise 2.4. Suppose that L is simple. Show that Φ spans H? by using

[Lα, L−α] = 〈tα〉 = 〈hα〉 and [Lα, Lβ] ⊆ Lα+β to deduce that the subspace

〈tα : α ∈ Φ〉 ⊕
⊕

α∈Φ Lα is an ideal of L.

Exercise 2.5. Let α and β be non-perpendicular roots in a root system.

Use the fundamental relation (2.5) to find the possible angles between α and

β and the possible values of ||α||/||β||.

Exercise 2.6. Find the Killing form of sl2(C) with respect to the basis e, f, h

and hence calculate ||α||2 where α is the unique root of sl2(C). (In practice

the previous exercise always gives enough information, so this calculation

is unnecessary. For example, this remark applies to Freudenthal’s formula,

since nλ is expressed as a quotient of norms, and to Exercise ??, for the

same reason.)

Exercise 2.7. Let V be a finite-dimensional L-module and let v ∈ V be

a highest-weight vector. Show that the submodule of L generated by v is

irreducible.

Exercise 2.8. Let H be the Cartan subalgebra of diagonal matrices in

sl3(C). For i ∈ {1, 2, 3}, let εi : H → C be the function sending diag(a1, a2, a3)

to ai. Let α = ε1 − ε2 and let β = ε2 − ε3.

(i) Show that {α, β} is a base for the root system Φ.

(ii) Show that ||α|| = ||β|| and that the angle between α and β is 2π/3.

(iii) Find the fundamental dominant integral weights ω1, ω2 correspond-

ing to this base in terms of α and β.

(iv) Show that ω1 = ε1 and ω2 = ε1 + ε2. (Since ε1 + ε2 + ε3 = 0 other,

equivalent, expressions for ω1 and ω2 are also possible.)

(iv) Express the highest weight of the natural, dual natural and adjoint

representations of sl3(C) as Z-linear combinations of ω1 and ω2.

(v) Confirm that the weight lattice Λ = 〈ε1, ε1 + ε2〉Z and cone of dom-

inant integral weights are as shown in Figure 1 below.

Exercise 3.1. Recall from (3.2) that δ = 1
2

∑
α∈Φ+ α. We have chosen a

base B = {α1, . . . , α`} for Φ.

(i) Show that if β ∈ Φ+ and β 6= αi then Sαi(β) ∈ Φ+

(ii) Show that Sαi(δ) = δ − αi for all i.

(iii) Show that δ = ω1 + · · ·+ ω` and deduce that δ ∈ Λ.

In (iii) recall that, by (2.6), the ωi are the elements of the weight lattice Λ

dual to the chosen basis h1, . . . , h` of the Cartan subalgebra.

Solution. (i) Since β 6= αi and kαi is a root if and only if k ∈ {+1,−1} (see,

for example, [2, Proposition 10.9]), there exists j such that αj appears with a

strictly positive coefficient in the expression for β as a Z-linear combination

of α1, . . . , αn. Now αj has the same coefficient in

Sαi(β) = β − 〈β, αi〉αi,
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•

•

•

•
ε2

ε3

ε1

ε1 + ε2 •ε1 − ε3 = α+ β
= (ε1 + ε2) + ε1

•−ε1 + ε3
•
ε1 − ε2 = α

•−ε1 + ε2

•ε2 − ε3 = β

•−ε2 + ε3

•
H

Figure 1. Weight spaces for sl3(C) representations, showing

the weights ε1, ε1+ε2 (dominant) and ε2, ε3 and the elements

eij spanning the root spaces for εi − εj . The positive half-

space for α and β are shaded: their intersection is the cone

of dominant integral weights {aε1 + b(ε1 + ε2) : a, b ∈ N0}.

and so it follows that Sαi(β) ∈ Φ+.

(ii) Since Sαi permutes Φ+\{αi} and Sαi(αi) = −αi, we have

Sαi(δ) = 1
2

∑
β∈Φ

Sαi(β) = 1
2

∑
β∈Φ

Sαi(β)− αi = δ − αi

as required.

(iii) By the definition in (2.6), 〈αi, ωj〉 = 0 if i 6= j and 〈αi, ωj〉 = 1. Hence

Sαj (
∑̀
i=1

ωi) =
∑̀
i=1

ωi − ωj + Sαj (ωj) =
∑̀
i=1

ωi − ωj + ωj − αj =
∑̀
i=1

ωi − αj .

Hence by (ii), −δ +
∑`

i=1 ωi is invariant under the generators Sα1 , . . . , Sα`
of W . Hence δ =

∑`
i=1 ωi ∈ Λ.

Exercise 3.2. Let B : V → V be a non-degenerate symmetric bilinear form

on an n-dimensional vector space V . Suppose that x1, . . . , xn and y1, . . . , yn
are dual bases for V , so

B(xi, yj) = [i = j]

Let θ ∈ V ? and let tθ be the unique element such that B(tθ, v) = θ(v) for

all v ∈ V . Let v ∈ V .

(i) Show that v =
∑n

i=1B(xi, v)yi =
∑n

j=1B(v, yj)xj .
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(ii) Hence show that B(tθ, tθ) =
∑n

k=1 θ(xk)θ(yk).

Solution. (i) For each j we have B
(∑n

i=1B(xi, v)yi, xj
)

= B(xj , v), hence

B
(
−v +

∑n
i=1B(xi, v)yi, xj

)
= 0 for all j. Since x1, . . . , xn is a basis of V

and B is non-degenerate, it follows that v =
∑n

i=1B(xi, v)yi, xj , as required.

Similarly one finds that v =
∑n

j=1B(v, yj)xj .

(ii) We have tθ =
∑n

i=1B(xi, tθ)yi and tθ =
∑n

j=1B(tθ, yj)xj . Hence

(tθ, tθ) =

n∑
k=1

B(xk, tθ)B(tθ, yk) =

n∑
k=1

tθ(xk)tθ(yk)

as required.

Exercise 3.3. Prove Lemma 3.1. [Hint: Show that
∑n

k=1[xkyk, w] =∑n
k=1 xk[ykw] +

∑n
k=1[xkw]yk for w ∈ L, and then use Exercise 3.2(i) to

express [yk, w] as a linear combination of y1, . . . , yn and [xk, w] as a linear

combination of x1, . . . , xn.]

Solution. Since U(L) is generated, as an algebra, by L, it is sufficient to

prove that [
∑n

k=1 xkyk, w] = 0 for each w ∈ L. A routine calculation gives

the result stated in the hint that
n∑
k=1

[xkyk, w] =
n∑
k=1

xk[yk, w] +
n∑
k=1

[xk, w]yk.

By Exercise 3.2(i) we have [yk, w] =
∑n

i=1 κ(xi, [yk, w])yi and [xk, w] =∑n
j=1 κ([xk, w], yj)xj . Substituting we get

n∑
k=1

[xkyk, w] =
n∑
k=1

n∑
i=1

κ(xi, [yk, w])xkyi +
n∑
k=1

n∑
j=1

κ([xk, w], yj)xjyk.

Now change the summation variables in the second sum and use the asso-

ciativity of the Killing form to get

n∑
k=1

[xkyk, w] =

n∑
k=1

n∑
i=1

κ(xi, [yk, w])xkyi +

n∑
i=1

n∑
k=1

κ([xi, w], yk)xkyi

=

n∑
k=1

n∑
i=1

(
−κ(xi, [w, yk]) + κ([xi, w], yk)

)
xkyi

= 0

as required.

Exercise 3.4. Take the notation from Lemma 3.3. Suppose that λ(hα) ≤ 0.

(i) Deduce from (b) in Section 1 that if U (i) is a summand with lowest

weight (λ − bα)(hα) where b ∈ N0, then fαeα acts on U
(i)
λ as the

scalar (b− λ(hα))(b+ 1).

(ii) Show that the number of summands U (i) with lowest weight (λ −
bα)(hα) is nλ−bα − nλ−(b+1)α.
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(iii) Hence show that fαeα acts on Vλ as the scalar −
∑∞

b=0 nλ−bα〈λ −
bα, α〉, as claimed in the proof of Lemma 3.3.

Solution. (i) If U (i) has lowest weight (λ − bα)(hα) then U (i) has highest

weight −(λ− bα)(hα). If v ∈ U (i)
λ then

h · v = λ(h) = (−λ− bα)(hα)− 2(b− λ(hα))

and so taking c = b− λ(hα) in (b) in Section 1 gives

f · e · v = (b− λ(hα))
(
(−λ− bα)(hα)− (b− λ(hα)) + 1

)
v

= (b− λ(hα))(b+ 1)v

as required. Now (ii) follows from (a) in Section 1, in the same way as (c)

did, and (iii) is an immediate corollary of (i) and (ii).

Exercise 3.5. Let ω1, ω2 be the fundamental dominant weights for sl3(C)

(see Exercise 2.8). Use Freudenthal’s Formula to determine the dimensions

of the weight spaces for the sl3(C)-module with highest weight 2ω1 + ω2.

Exercise 4.1. Let τ : L → gl(V ) be a representation of L. Let G be the

simply connected Lie group corresponding to L and let ρ : G → GL(V ) be

the corresponding representation of G, as defined by

ρ(expx) = exp
(
τ(x)

)
for x ∈ L.

(This defines ρ on a generating set for G.) Let λ ∈ Λ. Show that if h ∈ H
and v ∈ Vλ then ρ(exph)v = exp

(
λ(h)

)
v.

Exercise 4.2. Show that if V is an L-module then χV ∈ Q[Λ] is symmetric

in the sense of Definition 4.1.

Exercise 4.3. Let Λdom be the set of strictly dominant weights in Λ.

(i) Given λ ∈ Λ define a(λ) =
∑

w∈W sgn(w)w · e(λ). Show that

∆
(
a(λ)

)
= ||λ||2a(λ) and deduce that {a(λ) : λ ∈ Λdom} is a Z-

basis of ∆-eigenvectors for the set of all antisymmetric elements of

Q[Λ], in the sense of Definition 4.1.

(ii) Show that

e(−δ)
∏
α∈Φ+

(
e(α)− 1

)
=
∏
α∈Φ+

(
e(1

2α)− e(−1
2α)
)

and that either side is antisymmetric.

(iii) Show that∑
w∈W

sgn(w)w · e(δ) =
∏
α∈Φ+

(
e(1

2α)− e(−1
2α)
)

(iv) Prove that f ∈ Q[1
2Λ] is antisymmetric if and only if

f = g
∏
α∈Φ+

(
e(1

2α)− e(−1
2α)
)

for some symmetric g.
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Solution. (i) Fix a total order on Λ refining the dominance order. Define

the degree of an antisymmetric element f to be the greatest weight µ in

this order such that e(µ) has a non-zero coefficient in f . If µ is the greatest

weight of f then µ ∈ Λdom and µ is acted on regularly by the Weyl group.

Hence f −
∑

w∈W sgn(w)w ·e(µ) has strictly smaller weight. The result now

follows by induction.

(ii) The equality is routine. Recall that {α1, . . . , α`} is a base for Φ. It

follows from Exercise 3.1(i) and (ii) that

Sαi

( ∏
α∈Φ+

(
e(1

2α)− e(−1
2α)
))

=
−e(1

2αi) + e(−1
2αi)

e(1
2αi)− e(−1

2αi)

∏
α∈Φ+

(
e(1

2α)− e(−1
2α)
)

= −
∏
α∈Φ+

(
e(1

2α)− e(−1
2α)
)
.

Hence the right-hand side is antisymmetric.

(iii) Both sides are anti-symmetric and the coefficients of e(δ) agree. The

result now follows from (i) since, by Exercise 3.1(iii), δ is the smallest element

of Λdom.

(iv) Sketch: it is sufficient to prove that each a(λ) is divisible by the product∏
α∈Φ+

(
e(1

2α)− e(−1
2α)
)
. This follows using that Q[1

2Λ] is a UFD.

Exercise 4.4. Let ω be the unique fundamental dominant weight for sl2(C),

so ω ∈ 〈h〉? is defined by ω(h) = 1.

(i) Use the results of Section 1 to show that V is the irreducible sl2(C)-

module with highest weight dω then

χV = e(dω) + e((d− 2)ω) + · · ·+ e(−dω).

(ii) Check that this is consistent with the Weyl Character Formula.

Exercise 4.5. Let ω1, ω2 be the fundamental dominant weights for sl3(C)

found in Exercise 2.8.

(i) Use the Weyl Character Formula to determine the characters of the

finite-dimensional irreducible sl3(C)-module V with highest weight

aω1 + bω2 where a, b ∈ N0.

(ii) Give a necessary and sufficient condition on a and b for V to have a

weight space of dimension at least two.

Exercise 5.1. Show that if f, g, h ∈ Q[[Λ]] then {fg, h} = f{g, h}+{f, h}g.

Exercise 5.2. Recall that Q is the denominator in the Weyl Character

Formula. Use Exercise 4.3(iii) and Exercise 5.1 to show that

2
{
Q, e(ν)

}
= Q

∑
α∈Φ+

e(α) + 1

e(α)− 1
(ν, α)e(ν)
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Solution. By the generalization of Exercise 5.1 to arbitrary products we

have

2
{
Q, e(ν)

}
= 2
{ ∏
α∈Φ+

1

e(1
2α)− e(−1

2α)
, e(ν)

}
= 2

∑
α∈Φ+

Q

e(1
2α)− e(−1

2α)

{
e(1

2α)− e(−1
2α), e(ν)

}
= 2

∑
α∈Φ+

Q

e(1
2α)− e(−1

2α)

(
(1

2α, ν)e(ν + 1
2α) + (1

2α, ν)e(ν − 1
2α)
)

=
∑
α∈Φ+

Q

e(1
2α)− e(−1

2α)
(α, ν)

(
e(1

2α) + e(−1
2α)
)
e(ν)

= Q
∑
α∈Φ+

e(1
2α) + e(−1

2α)

e(1
2α)− e(−1

2α)
(ν, α)e(ν)

= Q
∑
α∈Φ+

e(α) + 1

e(α)− 1
(ν, α)e(ν)

as required.

Exercise 6.1. Show that the type A root system of sln of dimension n− 1

with Φ+ = {εi − εj : 1 ≤ i < j ≤ n} we have ωi = ε1 + · · · + εi for each i.

Using Exercise 3.1(iii) deduce that

δ = 1
2

n∑
i=1

(n+ 1− 2i)εi =
n−1∑
i=1

(n− i)εi.

(To obtain the second form, recall that in Λ we have the relation ε1 +

· · · + εn = 0.) Deduce from the second form that δ ∈ Λ, as expected from

Exercise 3.1(iii). Show also that δ = 1
2

∑n−1
i=1 i(n− i)(εi − εi+1) and deduce

that δ ∈ Φ+ if n is odd and that δ ∈ 1
2Φ+\Φ+ if n is even.

Exercise 6.2. Recall that sp2n(C) is defined with respect to the bilinear

form J shown in the margin. Show that J =

(
0 In
−In 0

)
sp2n(C) =

{(
a b

c −atr

)
: b = −btr, c = −ctr

}
.

Solution. Let z ∈ gl2n(C) have block decomposition

(
a b

c d

)
. We have

ztrJ + Jz =

(
atr ctr

btr dtr

)(
0 In
−In 0

)
+

(
0 In
−In 0

)(
a b

c d

)
=

(
−ctr atr

−dtr btr

)
+

(
c d

−a −b

)
hence ztrJ + Jz = 0 if and only if a = −dtr, btr = b and ctr = c.

Exercise 6.3. Show that in Type C we have δ =
∑n

i=1(n+ 1− i)εi.
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Exercise 6.4. Fix the diagonal matrix

D =


d1 · · ·
· d2 · ·
· · −d1 ·
· · · −d2


in the Cartan subalgebra of sp4(C).

(i) Show that the following commutator relations hold in sp4(C)D,


0 1 · ·
0 0 · ·
· · 0 0

· · 1 0


 = (d1 − d2)


0 1 · ·
0 0 · ·
· · 0 0

· · 1 0


D,


· · 1 0

· · 0 0

· · · ·
· · · ·


 = 2d1


· · 1 0

· · 0 0

· · · ·
· · · ·


D,


· · 0 1

· · 0 0

· · · ·
· · · ·


 = (d1 + d2)


· · 0 1

· · −1 0

· · · ·
· · · ·



and hence show that the root spaces for the positive roots ε1 − ε2,

ε1 + ε2, 2ε1, 2ε2 are as claimed just before (6.3). The other root

spaces follow by transposing to negate the root.

(ii) Set α = ε1 − ε2 and β = 2ε2. Verify that hα = diag(1,−1,−1, 1)

an hβ = (0, 1, 0,−1), as claimed in (6.4). Deduce that 〈α, β〉 =

β(hα) = −2 and 〈β, α〉 = α(hβ) = −1 and hence verify that the

Dynkin diagram for the rank 2 type C root system with base α, β is

as claimed.

(iii) Verify that δ = 2ε1 + ε2, reproving a special case of Exercise 6.3.
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