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Abstract. This paper studies the vertices, in the sense defined by

J. A. Green, of Specht modules for symmetric groups. The main the-

orem gives, for each indecomposable non-projective Specht module, a

large subgroup contained in one of its vertices. A corollary of this theo-

rem is a new way to determine the defect groups of symmetric groups.

The main theorem is also used to find the Green correspondents of a

particular family of simple Specht modules; as a corollary, this gives

a new proof of the Brauer correspondence for blocks of the symmetric

group. The proof of the main theorem uses the Brauer homomorphism

on modules, as developed by M. Broué, together with combinatorial

arguments using Young tableaux.

1. Introduction

In this paper we apply the methods of local representation theory to the

symmetric group. Our object is twofold: firstly to prove Theorem 1.1 below

on the vertices of Specht modules, and secondly to use this theorem to

give short proofs of two earlier results on the blocks of symmetric groups.

Specifically, we determine their defect groups, and how blocks of symmetric

groups relate under the Brauer correspondence to blocks of local subgroups

of symmetric groups. Our main theorem applies to all Specht modules, but

is strongest for partitions of the form (n−m,m): we discuss the special case

(n− 2, 2) at the end of the paper.

Vertices were first defined in an influential paper of J. A. Green [9]. We

recall his definition here. Let G be a finite group and let F be a field of prime

characteristic p. Let M be an indecomposable FG-module. A subgroup Q

of G is said to be a vertex of M if there is an indecomposable FQ-module N

such that V is a summand of the induced module N↑GQ, and Q is minimal

with this property. By [9, page 435], the vertices of M are p-groups, and

any two vertices of M are conjugate in G. The module N is well-defined up

to conjugacy in NG(Q); it is referred to as the source of V .

Despite the central role played by vertices in open problems in modu-

lar representation theory, such as Alperin’s Weight Conjecture [2], little is
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known about the vertices of ‘naturally occurring’ modules, such as Specht

modules for symmetric groups. See §3 below for the definition of Specht

modules, and other prerequisite results concerning tableaux and blocks of

symmetric groups. We recall here that if λ is a partition of n, then the

Specht module Sλ, defined over a field of zero characteristic, affords the or-

dinary irreducible character of the symmetric group Sn canonically labelled

by λ. When defined over fields of prime characteristic, Specht modules

usually fail to be irreducible. However, by Theorem 3.2, they are usually

indecomposable. Our main result is a step towards finding their vertices.

Theorem 1.1. Let λ be a partition and let t be a λ-tableau. Let H(t) be the

subgroup of the row-stabilising group of t which permutes, as blocks for its

action, the entries of columns of equal length in t. If the Specht module Sλ,

defined over a field of prime characteristic p, is indecomposable, then it has

a vertex containing a Sylow p-subgroup of H(t).

For example, if λ = (8, 4, 1) and

t =
1 2 3 4 5 6 7 8
9 10 11 12
13

then the row-stabilising group of t is S{1,2,3,4,5,6,7,8} × S{9,10,11,12} and H(t)

is generated by the permutations

(2, 3, 4)(10, 11, 12), (2, 3)(10, 11), (5, 6, 7, 8), (5, 6).

Consider as an abstract group, H(t) ∼= S3 × S4.
Our proof of Theorem 1.1, which is given in §5 below, uses the Brauer

homomorphism on modules, as developed by M. Broué in [3]. We briefly

state the main results we need from his work in §2. We also use a combina-

torial result which refines the Standard Basis Theorem on Specht modules:

see Proposition 4.1 below.

We single out the following corollary of Theorem 1.1

Corollary 1.2. If the Specht module Sλ, defined over a field of characteris-

tic p, is indecomposable, then it has a vertex containing a Sylow p-subgroup

of Sλ1−λ2. �

In §6 and §7 we use Corollary 1.2 to give new proofs of two results on the

block theory of the symmetric group. We shall suppose in these sections that

the reader has some familiarity with block theory: see [1, Chapter 4] for an

introduction. We recall here that if B is a p-block of the finite group G then,
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when thought of as an F (G ×G)-module with the action x(g, g′) = g−1xg′

for x ∈ B and g, g′ ∈ G, B has a vertex of the form

∆D = {(g, g) : g ∈ D}

for some subgroup D of G. We say that D is a defect group of the block B.

By [1, §13, Theorem 5], if M is an indecomposable module lying in a block B

then M has a vertex contained in a defect group of B.

Our results are obtained by considering a particular family of Specht

modules. Given w ∈ N and a partition γ = (γ1, . . . , γk) which is a p-core

(see §3.3 below), let

(1) γ + wp = (γ1 + wp, γ2, . . . , γk).

We shall say that the partitions γ+wp are initial. In §6 we use Corollary 1.2

to determine the vertices of Specht modules labelled by initial partitions.

This gives a new way to determine the defect groups of blocks of the sym-

metric group. The ideas in this proof can also be used to give a short proof

of Brauer’s Height Zero Conjecture for the symmetric group. We explain

this in §6.1.

In §7 we find the Green correspondents of Specht modules labelled by

initial partitions. This leads to a new way to determine the behaviour of

blocks of the symmetric group under the Brauer correspondence. (This was

first decided by M. Broué in [4].) By Lemma 7.1, each Specht module Sγ+wp

is simple, so our result is also a first step in finding the Green correspondents

of the simple modules of the symmetric groups. For other results on the

vertices of particular simple modules, see [7] and [15].

Most of the existing work on the vertices of Specht modules has been

on Specht modules labelled by partitions of the form (n − m, 1m). Their

vertices were found by the author in [23, Theorem 2] in the case where the

field characteristic does not divide n. The remaining case was solved in [18]

for fields of characteristic 2; it is an open problem when m ≥ 2 for fields of

odd characteristic.

Theorem 1.1 is at its strongest for Specht modules labelled by two-part

partitions. In §8 we use Theorem 1.1 to find the vertices of the Specht

modules S(n−2,2) defined over fields of odd characteristic. The harder case

of characteristic 2 was recently solved by Danz and Erdmann in [6]. The

case of a general two-part partition will be the subject of a later paper.

We end by noting that if λ′ denotes the conjugate partition to λ, then by

[12, Theorem 8.15], Sλ
′

is isomorphic to the dual of Sλ⊗ sgn. Hence Sλ and
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Sλ
′

have a vertex in common. In some cases, Theorem 1.1 gives a stronger,

or different, result when applied to Sλ
′

rather than Sλ.

2. The Brauer homomorphism

Let G be a finite group and let F be a field of prime characteristic p.

Let M be an FG-module. For Q ≤ G, let MQ denote the subspace of M

consisting of those vectors fixed by every element of Q. Given subgroups

R ≤ Q ≤ G, we define the relative trace map TrQR : MR →MQ by

TrQR(x) =
m∑
i=1

xgi

where g1, . . . , gm is a transversal for the right cosets of R in Q. The Brauer

quotient of M with respect to Q is the quotient space

M(Q) = MQ
/∑
R<Q

TrQR V
R.

The Brauer homomorphism with respect to Q is the quotient map MQ �

M(Q). An easy calculation shows that both MQ and
∑

R<Q TrQR V
R are

NG(Q)-invariant, and so M(Q) is a module for FNG(Q)/Q.

The next theorem shows how the Brauer homomorphism may be used to

garner information about vertices. It is proved in [3, (3.1)].

Theorem 2.1. Let G be a finite group, let F be a field of prime character-

istic p, and let M be an indecomposable FG-module. Let Q be a p-subgroup

of G. If M(Q) 6= 0 then M has a vertex containing Q. 2

We shall also use the following theorem, which combines results from

Theorem 3.2 of [4] and Exercise 27.4 of [22].

Theorem 2.2. Let G be a finite group, let F be a field of prime character-

istic p, and let M be an indecomposable FG-module with trivial source.

(i) If Q is a p-subgroup of G then M(Q) 6= 0 if and only if Q is contained

in a vertex of M .

(ii) If Q is a vertex of M then M(Q) is a projective FNG(Q)/Q-module.

Moreover, when regarded as an FNG(Q)-module, M(Q) is the Green corre-

spondent of M . 2

Theorem 2.2 cannot be extended to modules which do not have trivial

source. For example, if G is cyclic of order 4 and M is the unique indecom-

posable F2G-module of dimension 3, then M(G) = 0, even though M has G

as its vertex. It is an interesting feature of our proof of Theorem 1.1 that

we successfully apply the Brauer homomorphism to modules which are—in

most cases—not trivial source.



VERTICES OF SPECHT MODULES 5

3. Background results on the symmetric group

In this section we collect the prerequisite definitions and results we need

from the representation theory of the symmetric group.

3.1. Tableaux. Let λ be a partition of n. A λ-tableau is an assignment of

the numbers {1, 2, . . . , n} to the boxes of the Young diagram of λ, so that

each box has a different entry. We say that a λ-tableau is row-standard if

its rows are increasing when read from left to right, and column-standard if

its columns are increasing when read from top to bottom. A tableau that is

both row-standard and column-standard is said to be standard.

If u is a tableau, then we denote by u the row-standard tableau obtained

from u by sorting its rows in increasing order. We say that u is the row-

straightening of u. For example, if

u =
4 7 6 1
2 5 3
8

then u =
1 4 6 7
2 3 5
8

.

Of the many ways to order the set of standard tableaux, the most fun-

damental is the dominance order. It will be useful to define this order on

the larger set of row-standard tableaux. First though, we must define the

dominance order on compositions: if λ = (λ1, . . . , λ`) and µ = (µ1, . . . , µm)

are compositions of n, then we say that λ dominates µ, and write λ� µ, if

λ1 + · · ·+ λr ≥ µ1 + · · ·+ µr

for all r ∈ N. (If r exceeds the number of parts of λ or µ, then take the

corresponding part to be 0.) If t is a row-standard tableau, then we denote

by sh(t≤j) the composition recording the number of entries ≤ j in each row

of t. For example if t = u where u is as above, then sh(t≤8) = (4, 3, 1)

and sh(t≤5) = (2, 3, 0). Finally, if λ is a partition of n and s and t are

row-standard λ-tableaux, then we say that s dominates t if

sh
(
s≤j
)
� sh

(
t≤j
)

for all j with 1 ≤ j ≤ n. Following the usual convention, we shall reuse

the � symbol for the dominance order on row-standard tableaux.

3.2. Specht modules. We briefly recall the definition of the Specht mod-

ule Sλ as a submodule of the Young permutation module Mλ. The reader

is referred to [12] for examples and further details.

Let λ be a partition of n. Given a λ-tableau t, we obtain the associated

tabloid t by disregarding the order of the elements within the rows of t. For
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example, if

t =
4 7 6 1
2 5 3
8

then t =
4 7 6 1
2 5 3
8

=
1 4 6 7
2 3 5
8

= . . . etc.

The natural action of Sn on the set of λ-tableaux gives rise to a well-defined

action of Sn on the set of λ-tabloids. We denote the associated permutation

representation of Sn by Mλ; it is the Young permutation module correspond-

ing to λ. If we need to emphasise that the ground ring is R, then we shall

write Mλ
R. For example, M

(n−1,1)
Z affords the natural integral representation

of Sn as n× n permutation matrices.

Given a λ-tableau t, we let C(t) be the subgroup of Sn consisting of those

elements which fix setwise the columns of t. The polytabloid corresponding

to t is the element et of Mλ defined by

et =
∑
g∈C(t)

tg sgn(g).

The Specht module Sλ is defined to be the submodule of Mλ spanned by

the λ-polytabloids. Again, we write SλR if we need to emphasise the ground

ring. An easy calculation shows that if h ∈ Sn then (et)h = eth, and so Sλ

is cyclic, generated by any single polytabloid. Moreover, if h ∈ C(t) then

(2) (et)h = sgn(h)et.

It follows easily from (2) that Sλ is linearly spanned by the polytabloids et

for which t is column-standard. More is true: in the statement of the fol-

lowing theorem, if t is a standard tableau, then we say that et is a standard

polytabloid.

Theorem 3.1 (Standard Basis Theorem). The standard λ-polytabloids form

a Z-basis for the integral Specht module SλZ. 2

A short proof of the Standard Basis Theorem, attributed to J. A. Green,

was given in [20, §3]. It is presented with some simplifications in [12, Chap-

ter 8]. The corresponding result for Specht modules defined over fields is an

immediate corollary.

The next theorem gives two sufficient conditions for a Specht module to

be indecomposable.

Theorem 3.2. Let F be a field of prime characteristic p and let λ be a

partition of n. If p > 2, or if p = 2 and the parts of λ are distinct, then SλF
is indecomposable.
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Proof. When p > 2 it is well known that EndFSn(Sλ) ∼= F . (This result has

a particularly short proof using the alternative definition of polytabloids

as polynomials: see [20, Theorem 4.1] or [21]. For stronger results in this

direction, see [12, Chapter 13].) When the second condition holds, it follows

from Theorems 4.9 and 11.1 in [12] that the top of Sλ is simple. Hence in

both cases SλF is indecomposable. �

When p = 2, it is possible for Specht modules to be decomposable.

G. D. James gave the first example in [11] where he showed that S
(5,1,1)
F2

is decomposable. In [17], G. M. Murphy showed that this was the first of

infinitely many examples by giving a necessary and sufficient condition for

the Specht module S
(2m+1−r,1r)
F2

to be decomposable. In Proposition 3.3.2

of [24], the author used Theorem 2 in [23] on the vertices of Specht modules

labelled by hook partitions to give a shorter proof of Murphy’s result. It

is an open question whether there are any decomposable Specht modules

other than those found by Murphy.

3.3. Blocks of symmetric groups. The blocks of symmetric groups are

described by a theorem which seems destined to remain forever known as

Nakayama’s Conjecture. In order to state it we must first recall some defi-

nitions.

Let λ be a partition. A p-hook in λ is a connected part of the rim of

the Young diagram of λ consisting of exactly p boxes, whose removal leaves

the diagram of a partition. By repeatedly stripping off p-hooks from λ we

obtain the p-core of λ; the number of hooks we remove is the weight of λ.

For an example, see Figure 1. Often it is best to perform these operations

using James’ abacus: for a description of how to use this piece of apparatus,

see [10, pages 76–78]. For instance, it is easy to prove via the abacus that

the p-core of a partition is well defined, something which is otherwise not at

all obvious.

Figure 1. The 3-core of (6, 5, 2) is (3, 1). The thick line

indicates a 3-hook in (6, 5, 2); the other two lines show

3-hooks of partitions obtained en route to the 3-core.
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Theorem 3.3 (Nakayama’s Conjecture). Let p be a prime. The p-blocks of

the symmetric group Sn are labelled by pairs (γ,w), where γ is a p-core and

w ∈ N0 is the associated weight, such that |γ| + wp = n. Thus Sλ lies in

the block labelled by (γ,w) if and only if λ has p-core γ and weight w. 2

Many proofs of Nakayama’s Conjecture are now known. A particularly

elegant proof was given by Broué in [4] using Brauer pairs. Proposition 2.12

in [4] states the following result describing the defect groups of blocks of

symmetric groups. We shall use vertices to give an alternative proof in §6
below.

Theorem 3.4. Let p be a prime. If B is a p-block of Sn of weight w then

the defect group of B is a Sylow p-subgroup of Swp. 2

4. A straightening rule

The object of this section is to prove the refinement of the Standard Basis

Theorem (Theorem 3.1) stated in Proposition 4.1 below. It seems slightly

surprising that this proposition is not already known; since it appears to

be the sharpest possible result in its direction, the author believes that it is

well worth putting it on record.

Proposition 4.1. Let λ be a partition. If u is a column-standard λ-tableau

then its row-straightening u is a standard tableau. Moreover, in SλZ,

eu = eu + x

where x is an integral linear combination of standard polytabloids ev for

tableaux v such that u� v.

Proof. By construction, u is row-standard, so to prove the first part of the

proposition, it suffices to show that u is also column-standard. Let ui,j

denote the entry of u in row i and column j. Suppose, for a contradiction,

that ui+1,j < ui,j . Let

A = {ui+1,1, . . . , ui+1,j},

B = {ui,j , . . . , ui,λi}.

The entries of A lie in row i+ 1 of u and the entries of B lie in row i of u.

Since |A| + |B| = λi + 1, there exists a ∈ A and b ∈ B such that a and b

appear in the same column of u. But then

a ≤ ui+1,j < ui,j ≤ b
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which contradicts the hypothesis that u is column-standard.

To prove the second part of the proposition, it will be useful to define the

dominance order on tabloids: given λ-tabloids s and t corresponding to the

tableaux s and t respectively, we set s� t if and only if s� t. We shall need

Lemma 8.3 in [12], which states that if t is a column-standard tableau, then

(3) et = t + y

where y is an integral linear combination of tabloids v such that t� v.

By the Standard Basis Theorem (Theorem 3.1), there exist integers αv ∈ Z

such that

eu =
∑

αvev

where the sum is over all standard tableaux v. Let w be maximal in the dom-

inance order such that αw 6= 0. By (3), applied with t = w, the tabloid w

appears with coefficient αw in eu. Another application of (3), this time with

t = u, shows that u�w. Hence

(4) eu = αueu + x

where x is an integral linear combination of standard polytabloids ev for

tableaux v such that u� v.

By (3), the tabloid u appears in eu with coefficient 1. Again by (3), this

tabloid cannot appear in the summand x in (4). It follows that αu = 1, as

required. �

In addition to our main theorem, Proposition 4.1 may also be used to

give a very short proof of the key Lemma 2.1 in G. E. Murphy’s paper [16],

which states that if t is a standard tableau and a and b are entries of t such

that a < b and a appears to the right of b in t, then et(ab) is an integral

linear combination of polytabloids es for standard tableaux s such that t�s.

Indeed, since t�t(ab), Proposition 4.1 gives the stronger result that t(ab)�s.

It is interesting to note that the special case of the first part of the propo-

sition in which λ is a rectangular partition is given—as an exercise in the

Pigeonhole Principle—in §10.7 of [5].

5. Proof of the main theorem

We are now ready to prove Theorem 1.1. We shall show that if P is a

Sylow p-subgroup of H(t) then Sλ(P ) 6= 0. The first step is given by the

following lemma, which implies that et ∈ (Sλ)P .

Lemma 5.1. Let t be a λ-tableau. The polytabloid et is fixed by every

permutation in H(t).
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Proof. Let h ∈ H(t). By definition, h permutes the columns of t as blocks

for its action, so C(t)h = C(t). Moreover, th = t. Hence

eth =
∑
g∈C(t)

tgh sgn(g) =
∑

x∈C(t)h

thx sgn(x) =
∑
x∈C(t)

tx sgn(x) = et,

as required. �

To proceed further it will be useful to make a specific choice for the λ-

tableau t. Since the subgroups H(t) for different tableau t are conjugate,

this incurs no loss in generality. We shall take t to be the greatest λ-tableau

in the dominance order; thus if λ = (λ1, . . . , λk) and 1 ≤ j ≤ k, then the

entries of t in its jth row are

Rj = {λ1 + · · ·+ λj−1 + 1, . . . , λ1 + · · ·+ λj}.

For example, if λ = (8, 4, 1) then t is the tableau shown after the statement

of Theorem 1.1.

Lemma 5.2. Let t be the greatest λ-tableau in the dominance order and

let Q be a p-subgroup of H(t). The polytabloid et is not contained in the

kernel of the Brauer homomorphism from (Sλ)Q to Sλ(Q).

Proof. Let

U =
∑
R<Q

TrQR(Sλ)R

be the kernel of the Brauer homomorphism with respect to Q. In the sum

defining U it suffices to take only those subgroups R which are maximal

subgroups of Q, for if R′ < R < Q then

TrQR′(S
λ)R

′
= TrQR

(
TrRR′(Sλ)R

′
)
⊆ TrPR(Sλ)R.

Hence, if V is the subspace of Sλ defined by

V =
〈
es + esg + · · ·+ esg

p−1 : s a standard λ-tableau, g ∈ Q
〉
,

then U is contained in V . We shall use Proposition 4.1 to show that et 6∈ V .

Suppose that there is a standard λ-tableau s, and a permutation g ∈ Q,

such that et appears with a non-zero coefficient in the expression of

(5) es + esg + · · ·+ esg
p−1

as an linear combination of standard polytabloids. Choose i such that et

appears with a non-zero coefficient in the expression of esg
i.

Let u be the column-standard tableau whose columns agree setwise with sgi;

by (2), eu = ±esgi . It therefore follows from Proposition 4.1 that

esgi = ±eu + x
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where x is a linear combination of polytabloids ev for standard tableaux v

such that u� v. Since t is the greatest tableau in the dominance order, and

the standard polytabloids are linearly independent, we must have t = u.

If two elements lying in the same row of t appear in the same column

of sgi, then these elements appear in different rows of u. Hence t 6= u, a

contradiction. We may therefore assume that, for each j, the elements of Rj

appear in different columns of sgi. Since g permutes the elements of each

set Rj , it follows that for each j, the elements of Rj appears in different

columns of s. Since s is standard, row j of s must consist exactly of the

elements of Rj ; that is, s = t. But, by Lemma 5.1, etg = et, and so

es + esg + . . .+ esg
p−1 = pes = 0.

This contradicts our assumption that et has a non-zero coefficient in (5).

Therefore et 6∈ V , as required. �

Lemmas 5.1 and 5.2 imply that Sλ(P ) 6= 0. Theorem 1.1 now follows

from Theorem 2.1. The full strength of Lemma 5.2 will be used in §7 below.

6. Defect groups of blocks of the symmetric group

We now apply Corollary 1.2 to the initial partitions defined in (1) to give

a new proof of Theorem 3.4 on the defect groups of the symmetric group.

Throughout this section, we denote by [m]p the highest power of p dividing

the natural number m. We shall need the following general result from block

theory, which connects Brauer’s original definition of the defect of a block

with our definition via vertices. For a proof, see [8, Theorem 61.8].

Theorem 6.1. Let B be a p-block of a finite group G. Let pa be the highest

power of p dividing |G|. Suppose that the defect groups of B have order pd.

If χ is an irreducible character lying in B, then pa−d divides χ(1). Moreover,

there is an irreducible character χ lying in B such that [χ(1)]p = pa−d. 2

We shall also need a companion result, which has an entirely combinatorial

proof.

Lemma 6.2. Let γ be a p-core and let w ∈ N. If [n!]p = pa and [(wp)!]p = pb

then

[dimSγ+wp]p = pa−b.

Moreover, if µ is any other partition with p-core γ and weight w then

[dimSµ]p ≥ pa−b.
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Proof. We shall use the p-quotient of a partition, as defined in [10, 2.7.29].

By [10, Theorem 2.7.37], if λ is a partition with p-quotient (λ(0), . . . , λ(p−1))

then there is a bijection between hooks in λ of length divisible by p and the

hooks of the λ(i); a hook of length rp in µ corresponds to a hook of length r

in one of the µ(i). The reader may care to verify this for the partition

(6, 5, 2) shown in Figure 1, which has ((2),∅, (1)) as one of its 3-quotients.

By definition of the p-quotient, |λ(0)|+ · · ·+ |λ(p− 1)| is the p-weight of λ.

The partition γ+wp has ((w),∅, . . . ,∅) as a p-quotient, and so its hooks

of length divisible by p have lengths p, 2p, . . . , wp. (This can also be seen

directly from its partition diagram.) Hence the highest power of p dividing

the product of the hook-lengths of γ +wp is [(wp)!]p = pb. The first part of

the lemma now follows from the Hook Formula for the dimension of Specht

modules (see [10, Theorem 2.3.21]).

The second part of the lemma will follow from the Hook Formula if we can

show that the highest power of p dividing the product of the hook-lengths

of µ is at most pb. Let (µ(0), . . . , µ(p − 1)) be a p-quotient of µ. Suppose

that µ(i) is a partition of ci. Writing hα for the hook-length of a node α of

a partition, we have

∏
α∈µ

[hα]p = pw
p−1∏
i=0

∏
α∈µ(i)

[hα]p = pw
p−1∏
i=0

[
ci!

dimSµ(i)

]
p

.

Rearranging and substituting [w!]p for pb−w we get

(6) pb
/∏
α∈µ

[hα]p =

[(
w

c0, c1, . . . , cp−1

)]
p

p−1∏
i=0

[
dimSµ(i)

]
p
.

Clearly the right-hand side of (6) is integral, as we required. �

Let γ be a p-core, let w ∈ N and let n = |γ| + wp. Let B be the p-

block of Sn with p-core γ and weight w. Applying Corollary 1.2 to the

initial partition γ+wp defined in (1), we see that there is a vertex of Sγ+wp

containing a Sylow p-subgroup of Swp. Hence B has a defect group D that

contains a Sylow p-subgroup of Swp. To complete the proof of Theorem 3.4

we must show that D is no larger.

When defined over fields of characteristic zero, Specht modules afford the

irreducible characters of Sn. It therefore follows from Theorem 6.1 that if pd

is the order of the defect group D and µ is a partition with p-core γ and

weight w, then

(7) [dimSµ]p ≥ pa−d
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where pa = [n!]p. Moreover, equality holds in (7) for at least one such

partition µ. But by Lemma 6.2, if pb = [(wp)!]p then

[dimSµ]p ≥ pa−b

with equality when µ = γ + wp. Thus the minimum in (7) occurs when

µ = γ + wp, and hence pd = pb. Therefore D has the same order as a Sylow

subgroup of Swp. This completes the proof of Theorem 3.4.

6.1. On Brauer’s Height Zero Conjecture. Let G be a finite group and

let χ be an ordinary character of G lying in a p-block with defect group of

order pd. Let pa be the highest power of p dividing |G|. If

[χ(1)]p = pa−d+h

then we say that h is the height of χ. (It follows from Theorem 6.1 that

h ∈ N0.) R. Brauer made the following conjecture on character heights.

Conjecture 6.3 (Brauer’s Height Zero Conjecture). Every ordinary irre-

ducible character in a block B of a finite group has height zero if and only

if B has an abelian defect group.

Proposition 3.9 in Olsson’s paper [19] on character heights and the McKay

Conjecture gives a proof of Brauer’s Height Zero Conjecture for symmetric

groups. It is worth noting that equation (6) can be used to give a short

alternative proof. If µ is a partition with p-quotient (µ(0), . . . , µ(p − 1)),

where µ(i) is a partition of ci, then by (6),

ph =

[(
w

c0, c1, . . . , cp−1

)]
p

p−1∏
i=0

[
dimSµ(i)

]
p

where h is the height of the ordinary character of Sµ.

If w < p then ci < p for each i, and so each Sµ(i) has dimension coprime

to p. It follows that in blocks of the symmetric group of abelian defect,

every ordinary irreducible character has height 0.

If w ≥ p then we may choose the ci so that c0 + c1 + · · ·+ cp−1 = w and

the multinomial coefficient is divisible by p, and then set µ(i) = (ci). Hence

in a block of non-abelian defect, there is an ordinary irreducible character

of non-zero height.

7. The Brauer correspondence for the symmetric group

We now use the Brauer homomorphism to determine the Green corre-

spondents of Specht modules labelled by initial partitions. As a corollary of

this result (see Corollary 7.5), we get a complete description of how blocks
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of symmetric groups relate, under the Brauer correspondence, to blocks of

their local subgroups.

Throughout this section, let F be a field of characteristic p, let γ be a

p-core and let w ∈ N. Let m = |γ| and let n = m + wp. The following

lemma gives some of the convenient properties of the Specht modules Sγ+wp

and Sγ .

Lemma 7.1. The Specht module Sγ+wp is a simple FSn-module with trivial

source. The Specht module Sγ is a simple projective FSm-module.

Proof. Because γ + wp is the greatest partition in the dominance order la-

belling a Specht module in the block with core γ and weight w, it follows

from [12, Corollary 12.2] that Sγ+wp is simple. Similarly, it follows from [12,

Theorem 12.1] that Sγ+wp is the only module in its block that appears as a

composition factor of Mγ+wp. Hence Sγ+wp is a direct summand of Mγ+wp,

and so has trivial source. For the second part, observe that since γ is a

p-core, Sγ is an indecomposable module lying in a block of Sm of defect

zero. Hence Sγ is simple and projective. �

Our next proposition gives some useful information about the Brauer

quotients of Specht modules labelled by initial partitions. In it, we say

that a subgroup G of Sn has support of size k if the number of elements of

{1, 2, . . . , n} that are moved by some permutation in G is k.

Proposition 7.2. If Q is a p-subgroup of Swp with support of size rp then

NSn(Q)/Q ∼= Sn−rp ×NSrp(Q)/Q

and Sγ+wp(Q) contains a FNSn(Q)/Q-submodule isomorphic, under this

identification, to

Sγ+(w−r)p ⊗ F.

If P is a Sylow p-subgroup of Swp then Sγ+wp(P ) ∼= Sγ ⊗ F .

Proof. As in §5, let t be the greatest tableau of shape γ+wp in the dominance

order on tableaux. By replacing Q with one of its conjugates if necessary,

we can assume that Q is contained in the symmetric group on the set

Y = {γ1 + (w − r)p+ 1, . . . , γ1 + wp}.

Let X = {1, 2, . . . , n}\Y . Clearly we have NSn(Q) = SX ×NSY
(Q), which

implies the first assertion in the theorem.

Let U be the kernel of the Brauer homomorphism from (Sγ+wp)Q to

Sγ+wp(Q). Since Q is contained in the subgroup H(t) defined in Theo-

rem 1.1, it follows from Lemma 5.2 that et + U is a non-zero element of
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Sγ+wp(Q). Let W be the submodule of Sγ+wp(Q) generated by et + U .

By Lemma 5.1, et is fixed by every permutation in SY , so NSY
(Q)/Q acts

trivially on W .

Let s be the greatest tableau of shape γ+(w−r)p in the dominance order.

Restricting to the action of SX ∼= Sn−rp, we see that there is a surjective

map of FSn−rp-modules,

Sγ+(w−r)p →W

defined by extending es 7→ et + U . This map is non-zero since et 6∈ U .

Moreover, by Lemma 7.1, Sγ+(w−r)p is a simple FSn−rp-module. Hence

W ∼= Sγ+(w−r)p ⊗ F

as a module for FNSn(Q)/Q.

It only remains to show that if P is a Sylow p-subgroup of SY ∼= Swp, then

Sγ+wp(P ) ∼= Sγ ⊗ F . By the previous paragraph, Sγ+wp(P ) has a submod-

ule W isomorphic to Sγ⊗F . By Lemma 7.1, Sγ is a projective FSm-module,

and since NSY
(P )/P has order coprime to p, the trivial FNSY

(P )/P -module

is projective. Hence W is projective as a module for F (SX ×NSY
(P )), and

so it splits off as a direct summand of Sγ+wp(P ). Since Sγ+wp has trivial

source, it follows from Theorem 2.2 that Sγ+wp(P ) is indecomposable (and

projective) as an FNSn(P )/P -module. Therefore Sγ+wp(P ) = W . The

result follows. �

By Theorem 2.2(ii), the Green correspondent of a trivial source module is

equal to its Brauer quotient. Proposition 7.2 therefore implies Theorem 7.3

below, which gives a complete description of the local properties of Specht

modules labelled by initial partitions. Since Sγ+wp agrees with the Young

module Y γ+wp (see [13] or [14, Definition 4.6.1]), this theorem also follows,

after a little work, from results on the vertices of Young modules—see for

example [14, Theorem 4.6.3]. It is worth noting that the proof given here is

independent of the theory of Young modules.

Theorem 7.3. Let P be a Sylow p-subgroup of Swp and let γ be a p-core.

The Specht module Sγ+wp has P as one of its vertices, and its source is

the trivial FP -module. The Green correspondent of Sγ+wp is the FNSn(P )-

module Sγ ⊗ F . �

We end by using Proposition 7.2 to describe how blocks of symmetric

groups behave under the Brauer correspondence. (For the original proof by

M. Broué, see [4].) Our definition of the Brauer correspondence is taken

from Alperin [1, §14]; thus if H is a subgroup of a finite group G and b

is a block of H, then we say that b corresponds to the block B of G, and
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write bG = B, if b, considered as a F (H ×H)-module, is a summand of the

restriction of B to H×H, and B is the unique block of G with this property.

We shall need the following lemma, which generalises a well-known result

about the Green correspondence (see, for example [1, §14, Corollary 4]) to

Brauer quotients.

Lemma 7.4. Let G be a finite group and let M be an indecomposable FG-

module with vertex P and trivial source. Let Q be a subgroup of P . Suppose

that M lies in the block B of G. If M(Q), considered as an FNG(Q)-module,

has a summand in the block b of NG(Q), then bG is defined and bG = B.

Proof. By [22, Exercise 27.4], when considered as an FNG(Q)-module, M(Q)

has a summand whose vertex containsQ. Hence there is some defect groupD

of b which contains Q. Therefore NG(Q) ⊇ CG(Q) ⊇ CG(D), and so by

part 3 of Lemma 1 on page 101 of [1], bG is defined.

Again by [22, Exercise 27.4], M(Q) is a direct summand of M ↓NG(Q).

Hence M(Q) is not killed by B↓NG(Q)×NG(Q), and so

B↓NG(Q)×NG(Q) b 6= 0.

Hence bG = B, as required. �

Corollary 7.5. Let Q be a p-subgroup of Swp with support of size rp. In

the Brauer correspondence between blocks of Sn and blocks of NSn(Q) ∼=
Sn−rp×NSrp(Q), the p-block of Sn with core γ and weight w corresponds to

b⊗ b0(NSrp(Q))

where b is the p-block of Sn−rp with core γ and weight w−r, and b0(NSrp(Q))

is the principal block of NSrp(Q).

Proof. It follows from Proposition 7.2 that Sγ+wp(Q) has a summand in the

block b⊗ b0(NSwp(Q)). Now apply Lemma 7.4. �

In his earlier proof of Corollary 7.5, Broué notes that the group NSrp(Q)

has a unique p-block (see [4, Lemma 2.6]). The correspondence described in

Corollary 7.5 is therefore bijective.

8. The vertices of S(n−2,2)

We end by using Theorem 1.1 to find the vertices of S(n−2,2) over fields of

odd characteristic. We shall need Corollary 1 of [9], which states that if G is

a finite group, F is a field of characteristic p, and M is an indecomposable

FG-module of dimensional coprime to p, then M has a Sylow p-subgroup

of G as one of its vertices. Our result is as follows.
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Theorem 8.1. Let n ≥ 4. When defined over a field of odd characteristic p,

the Specht module S(n−2,2) is indecomposable, and its vertex is equal to the

defect group of the p-block in which it lies.

Proof. That S(n−2,2) is indecomposable follows from Theorem 3.2. The di-

mension of S(n−2,2) is n(n − 3)/2. Hence if neither n nor n − 3 is divisible

by p, then, by the result just mentioned, S(n−2,2) has a Sylow p-subgroup of

Sn as its vertex. This is also a defect group of its p-block.

If p divides n and p > 3 then (n − 2, 2) has p-core (p − 2, 2) and weight

n/p− 1. Hence the defect group of its block is a Sylow p-subgroup of Sn−p.

It follows from Theorem 1.1 that S(n−2,2) has a vertex containing a Sylow

p-subgroup of Sn−p. Therefore the vertex of S(n−2,2) agrees with its defect

group. If p = 3 then (n− 2, 2) lies in the block with p-core (4, 2) and weight

(n − 6)/3. Theorem 1.1 implies that there is a vertex containing a Sylow

3-subgroup of Sn−6, as required.

The only remaining case is when p divides n− 3 and p > 3. In this case

(n−2, 2) has p-core (p+1, 2) and weight (n−3)/p−1, and the result follows

from Theorem 1.1 as before. �
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