
Submitted exclusively to the London Mathematical Society
doi:10.1112/0000/000000

ON THE DISTRIBUTION OF CONJUGACY CLASSES BETWEEN THE

COSETS OF A FINITE GROUP IN A CYCLIC EXTENSION

JOHN R. BRITNELL and MARK WILDON

Abstract

Let G be a finite group and H a normal subgroup such that G/H is cyclic. Given a conjugacy class gG of G we

define its centralizing subgroup to be HCG(g). Let K be such that H ≤ K ≤ G. We show that the G-conjugacy

classes contained in K whose centralizing subgroup is K, are equally distributed between the cosets of H in K.

The proof of this result is entirely elementary. As an application we find expressions for the number of conjugacy

classes of K under its own action, in terms of quantities relating only to the action of G.

1. Introduction

Let G be a finite group and H a normal subgroup such that the quotient G/H is cyclic. In this

paper we establish a quite general result (Theorem 1) about the distribution of the conjugacy

classes of G between the cosets of H. A key idea in this work is that of the centralizing subgroup

of a conjugacy class; the centralizing subgroup of gG is defined to be the smallest subgroup

of G containing both H and the centralizer CG(g). This subgroup determines how the class

splits when the conjugacy action is restricted to subgroups of G containing H. We demonstrate

that the centralizing subgroup is fundamental to an understanding of the distribution of the

conjugacy classes of G.

Theorem 1 states that the conjugacy classes with a particular centralizing subgroup K are

equally distributed amongst the cosets of H in K; the proof occupies the greater part of

the paper. In Section 6 we present an interesting application of Theorem 1: enumerating the

conjugacy classes of a subgroup K in the range H ≤ K ≤ G in terms of the numbers of

conjugacy classes of G contained in various subgroups.

The reader may recognize that our main result has a character-theoretic flavour. Indeed it

seems likely that Theorem 1 can be proved by character theory: specifically by means of a

combination of Clifford Theory and Brauer’s Permutation Lemma (for an account of these

subjects see [3]). So far as the authors have investigated, it appears unlikely that such an

approach will lead to a shorter proof than the elementary one given here.

The proof of Theorem 1 relies on a preliminary result (Lemma 2), which states that the

number of conjugacy classes in a generating coset of G/H is equal to the number of conjugacy
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classes of G contained in H which do not split when the action by conjugacy is restricted

to H. Although the proof of this result is straightforward, we are not aware of any previous

appearance of the fact in the literature, at least in this general form. The special case where

|G/H| = 2 is of course well known and often cited, partly because of its usefulness in deriving

the character table of Alt(n) from that of Sym(n); see [2] for example.

In [1] the authors present a result which relies upon a special case of Lemma 2, together

with Hall’s Marriage Theorem. It is shown, in the case where |G/H| is prime, that the set of

conjugacy classes whose centralizing group is G can be partitioned in such a way that each

part contains one class from each coset, and any two classes in the same part contain elements

which commute with one another.

The importance of Lemma 2 in the present paper is that it can be used to derive a set of

linear equations which relate the numbers of conjugacy classes in different cosets of H which

have a given centralizing subgroup. This allows us to reduce the problem to one of linear

algebra: namely, finding the dimension of one of the eigenspaces of a certain matrix. A further

reduction of the problem by means of a tensor factorization allows us to focus on the case

where G/H is a cyclic p-group; in this form, the problem turns out to be readily soluble.

From this brief description of the proof, it will be clear to the reader that the proof is to

be presented backwards. Rather than building up to the main theorem, we shall proceed by

reducing it by stages to a simpler problem. Our justification for this modus operandi, if one is

needed, is that it seems the most—perhaps the only—coherent way to present the argument.

We have not attempted to deal with cases where G/H is non-cyclic. That the quotient should

be abelian is necessary (and sufficient) for each conjugacy class to lie wholly within a single

coset. The case of a non-cyclic, abelian quotient seems problematic however; for example, if G

is nilpotent of class 2, and H is the centre of G, then the elements of G whose centralizing

subgroup is G are precisely the elements of H.† This precludes the possibility of a result directly

analogous to Theorem 1; however our methods do seem to provide some information about the

general case, and the problem is surely worthy of further study.

Throughout this paper we adopt the convention that a summation sign indicates a sum over

a single variable, which is in every case the variable denoted by the first letter appearing in

the conditions below the sign.

2. Statement of the main theorem and the principal lemma

Throughout this paper, we shall assume that G is a finite group, and that H is a normal

subgroup of G such that G/H is cyclic.

†The authors would like to thank Peter Neumann for this observation.
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Definition. For an element g ∈ G, we define the centralizing subgroup ∆g of g with

respect to H, to be HCG(g). For each conjugacy class X of G, we define the centralizing

subgroup ∆X to be ∆g for an element g ∈ X.

In the present section we consider centralizing subgroups only with respect to H, and shall not

always mention H explicitly. Later in the paper, however, we shall have occasion to refer to

centralizing subgroups with respect to other subgroups of G.

We can now state our main theorem.

Theorem 1. Let G be a finite group, and let H be a normal subgroup of G such that G/H

is cyclic. Let K be such that H ≤ K ≤ G. Then the G-conjugacy classes contained in K whose

centralizing subgroup is K, are equally distributed between the cosets of H in K.

Before introducing the lemma which will be the principal tool in the proof of Theorem 1, it

is convenient to make the following definition.

Definition. We define an integral (G, H)-class to be a conjugacy class of G whose cen-

tralizing subgroup with respect to H is G.

Equivalently, an integral (G, H)-class is one which does not split when the conjugacy action is

restricted to H.

Lemma 2. Suppose that the coset Hx is a generator of the quotient group G/H. Then the

number of conjugacy classes contained in Hx is equal to the number of integral (G, H)-classes

contained in H.

Proof. If h ∈ H and ∆h = G, then CG(h) meets every coset of H in G, and in particular

it meets Hx. Now the number of integral (G, H)-classes in H is∑
h∈H

∆h=G

1
|hG|

=
1
|G|

∑
h∈H

∆h=G

|CG(h)|

=
1
|H|

∑
h∈H

|CHx(h)|

=
1
|H|

∑
g∈Hx

|CH(g)|

=
1
|G|

∑
g∈Hx

|CG(g)|

=
∑

g∈Hx

1
|gG|

,

which is the number of conjugacy classes in Hx. This establishes the lemma.
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We now want to widen our focus in two respects: by including conjugacy classes whose

centralizing group is a proper subgroup of G, and by considering all of the cosets of H in G.

The following lemma lays the foundations.

Lemma 3. Suppose that Hx and Hy have equal order in the quotient group G/H. Then

there exists a permutation σ of the elements of G such that

(i) every subgroup of G is σ-invariant,

(ii) g1σ g2σ = g2σ g1σ if and only if g1g2 = g2g1,

(iii) σ permutes the conjugacy classes of G,

(iv) (Hx)σ = Hy.

Proof. Since Hx and Hy have equal order in G/H, there exists an integer a, coprime

with |G/H|, such that (Hx)a ⊆ Hy. Now we may suppose that a is also coprime with |H|, and

hence that a is invertible modulo |G|. Therefore the map g 7→ ga is a permutation of G, and

clearly has the properties claimed in the lemma.

The number of conjugacy classes with a particular centralizing subgroup is equal in cosets

of equal order in G/H, since a conjugacy class in Hx is mapped by σ to a conjugacy class

in Hy, while the centralizing subgroup is invariant. It follows that we lose nothing by selecting

a representative coset of each order in G/H. The following definition takes advantage of this

fact.

Definition. Let n = |G/H|.
(i) For a divisor d of n, we define Kd to be the unique subgroup of G which contains H as

a subgroup of index d.

(ii) For a divisor d of n, we define Γd to be a representative coset of order d in G/H. (So

Kd is the subgroup generated by Γd.)

(iii) If c|n and d|c, then we define N c
d to be the number of conjugacy classes in Γd whose

centralizing subgroup is Kc.

In terms of this new notation, we may restate Theorem 1 simply as follows.

Theorem. Suppose that c|n and d|c. Then N c
d = N c

1 .

3. Reduction to linear algebra

By multiple applications of Lemma 2 we derive a set of linear equations in the quantities N c
d ,

allowing us to reduce the proof of Theorem 1 to a problem of linear algebra. To obtain the

linear equations, we need for each particular choice of (i, j), to express the following numbers

in terms of the quantities N c
d :

(i) the number Lj
i of integral (Kj ,Ki)-classes in Ki,
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(ii) the number Rj
i of integral (Kj ,Ki)-classes in a generating coset of Kj/Ki.

Lemma 2 tells us that these numbers are equal.

We first handle the quantity Lj
i . It is straightforward to identify the G-conjugacy classes

of Ki whose centralizing subgroups with respect to Ki, contain Kj . But it is necessary to allow

for the fact that these classes may split when the conjugacy action is restricted to Kj . In fact,

a G-conjugacy class in Ki with centralizing subgroup Kc splits into n/lcm(j, c) classes under

the action of Kj . If d is a divisor of i, then Ki contains φ(d) cosets of H whose order in G/H

is d, where φ is Euler’s totient function; one of these is our representative coset Γd. Suppose

that an element of Γd has centralizing subgroup Kc with respect to H. Then its centralizing

subgroup with respect to Ki is Klcm(i,c). So the quantity Lj
i is given by the formula

Lj
i =

∑
d|i

φ(d)
∑
c|n
d|c

j|lcm(i,c)

n

lcm(j, c)
N c

d . (1)

To find Rj
i in terms of the quantities N c

d , we need to describe a generating coset of Kj/Ki

as a union of cosets of H. This requires us to look at the arithmetic of i and j a little more

closely.

Lemma 4. Suppose that i|j, and let i = uv, where v is the largest divisor of i coprime

with j/i. Suppose that Ci is the cyclic subgroup of order i inside a cyclic group Cj of order j.

Then

(i) any element of a generating coset of Cj/Ci has order divisible by j/v,

(ii) if d|v, then the number of elements of order jd/v in a generating coset is uφ(d).

Proof. An element of order k in Cj is contained in a generating coset of Cj/Ci if and only

if lcm(i, k) = j. Suppose that this is the case. If p is a prime divisor of j which does not

divide v, then pa, the highest power of p dividing j, is strictly greater than the highest power

of p dividing i, and so pa must divide k. Since no prime divisor of j/v can divide v, it follows

that j/v divides k.

The number of elements of Cj with order k is φ(k), and the number of generating cosets of Ci

in Cj is φ(j/i), and so the number of elements of order k in each such coset is φ(k)/φ(j/i).

Suppose that k = dj/v where d is a divisor of v; then since v is coprime with j/v we see that

φ(k)/φ(j/i) = φ(d)φ(j/v)/φ(j/i).

Now the prime divisors of j/v are precisely the prime divisors of j/i. Since φ(pr)/φ(ps) = pr−s

for any prime p and positive integers r ≥ s, it follows that φ(j/v)/φ(j/i) = i/v = u, which

gives the required result.
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Now arguing similarly to the calculation of Lj
i above, we find that

Rj
i =

∑
d|v

uφ(d)
∑
c|n

jd/v|c
j|lcm(i,c)

n

lcm(j, c)
N c

jd/v,

where u and v are as in Lemma 4. The condition that j|lcm(i, c) allows us to replace the

condition that jd/v|c with the simpler condition that d|c. Hence

Rj
i =

∑
d|v

uφ(d)
∑
c|n
d|c

j|lcm(i,c)

n

lcm(j, c)
N c

jd/v, (2)

where v is the greatest divisor of i coprime with j/i, and u = i/v.

Lemma 2 gives us the following linear equation.

Ωj
i : Lj

i = Rj
i . (3)

Notice that when j = i, we have v = i and u = 1, and it is not hard to see that the equation Ωj
i

becomes trivial since the two sides are identical. If j 6= i then Ωj
i is non-trivial.

We next make an observation which relates the set of equations {Ωj
i} to the statement of

Theorem 1.

Proposition 5. The linear equation Ωj
i is satisfied if N c

d = N c
1 for all c|n and d|c.

Proof. The equation becomes∑
d|i

φ(d)
∑
c|n
d|c

j|lcm(i,c)

n

lcm(j, c)
N c

1 =
∑
d|v

uφ(d)
∑
c|n
d|c

j|lcm(i,c)

n

lcm(j, c)
N c

1 ,

which is satisfied since ∑
d|i

φ(d) = i = uv =
∑
d|v

uφ(d).

Definition. We define L to be the matrix with rows indexed by pairs from {(i, j) : j|n, i|j}
and columns by pairs from {(d, c) : c|n, d|c}, such that each entry L

(d,c)
(i,j) is the coefficient of N c

d

in Lj
i . Similarly, we define R to be the matrix whose entry R

(d,c)
(i,j) is the coefficient of N c

d in Rj
i .

Proposition 5 gives us a subspace of the kernel of L− R whose dimension is the number of

divisors τ(n) of n. To establish Theorem 1 it will suffice to show that this is in fact the full

kernel.

Proposition 6. The matrix L is invertible.
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Proof. We show that L has non-zero determinant. Let S be the group of permutations of

the set {(i, j) : j|n, i|j}. Then

det L =
∑
σ∈S

sgn(σ)
∏
(i,j)

L
(i,j)σ
(i,j) , (4)

where sgn(σ) is the sign of σ. Now let σ be a particular permutation, and consider the cycle

(i, j) = (i0, j0)
σ7−→ (i1, j1)

σ7−→ · · · σ7−→ (it, jt) = (i, j).

Suppose that σ contributes non-trivially to the sum (4). Then the product
t−1∏
k=0

L
(ik+1,jk+1)
(ik,jk)

must be non-zero. We see from the definition (1) of Lj
i that L

(d,c)
(i,j) = 0 unless d|i. So ik+1|ik

for all k, and it clearly follows that i0 = i1 = · · · = it = i. Furthermore, we see that L
(d,c)
(i,j) = 0

unless d|c and j|lcm(i, c). Now since we have shown that the values ik in our cycle are equal, it

follows that we require ik|jk+1 for all k, and hence that lcm(ik, jk+1) = jk+1. We therefore see

that jk|jk+1 for all k, and so j0 = j1 = · · · = jt = j. Clearly this implies that σ is the identity

permutation, and hence that

detL =
∏
(i,j)

L
(i,j)
(i,j).

Now we see from (1) that the coefficient of N j
i in Lj

i is φ(i)n/j, and it follows that detL is

non-zero.

The nullity of the matrix L−R is equal to that of I−RL−1, and hence to the multiplicity of 1

as an eigenvalue of RL−1. By establishing lower bounds for the dimensions of the eigenspaces

of RL−1 for its other eigenvalues, we shall establish τ(n) as an upper bound for this dimension;

this will suffice to prove Theorem 1. In fact we shall eventually establish the following result,

which characterizes the matrix RL−1 completely.

Lemma 7. RL−1 is diagonalizable, and its characteristic polynomial is∏
d|n

(
x− µ(d)

d

)τ(n/d)

,

where µ is the Möbius function.

4. Reduction to the prime-power case

To prove Lemma 7, it will first be necessary to reduce the problem to the case where n is a

power of a prime; we do this by means of a tensor factorization. For a given integer n, let

A(n) = {Ay
x(n) : y|n, x|y}

be a set of variables. Then if r and s are coprime integers, we may identify the set A(rs) with

the tensor product A(r)⊗A(s) by identifying Ay
x(r)⊗Az

w(s) with Ayz
xw(rs).
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Now our notation N j
i involves an implicit argument n. We shall consider the expression Xj

i (n)

obtained from Lj
i (given explicitly at (1) above) by replacing each N c

d with the variable Ac
d(n).

Let m and M be coprime integers such that mM = n; suppose j|m, i|j, J |M , I|J . Then we

have

XjJ
iI (mM) =

∑
d|iI

φ(d)
∑

c|mM
d|c

jJ|lcm(iI,c)

mM

lcm(jJ, c)
Ac

d(mM)

=
∑
d|i

∑
D|I

∑
c|m
d|c

j|lcm(i,c)

∑
C|M
D|C

J|lcm(I,C)

mφ(d)Ac
d(m)

lcm(j, c)
⊗ Mφ(D)AC

D(M)
lcm(J,C)

= Xj
i (m)⊗XJ

I (M).

Now let Y j
i (n) be the expression obtained from Rj

i (given at (2) above) by replacing each N c
d

with Ac
d(n). Then an argument similar to that above shows that

Y jJ
iI (mM) = Y j

i (m)⊗ Y J
I (M).

This tensor factorization transfers easily to the matrices L and R; for the rest of this section

we shall use the more explicit notation L(n) and R(n) for these matrices. Then it is easy to

see from the equations above that (provided that rows and columns are suitably ordered),

L(n) = L(m)⊗ L(M), R(n) = R(m)⊗R(M),

and it follows that

R(n)L(n)−1 = R(m)L(m)−1 ⊗R(M)L(M)−1.

The reduction of Lemma 7 to the case where n is a prime power is now straightforward.

For we notice that R(n)L(n)−1 is diagonalizable if its tensor factors are; its eigenvalues are

the products of the eigenvalues of the tensor factors, with corresponding multiplicities. It is

not difficult to see that if Lemma 7 is true for prime powers then the multiplicativity of the

arithmetic functions µ and τ will ensure that it is true for all n.

5. Proof in the prime-power case

We consider the matrix RL−1 in the case when n is a prime power pa. According to Lemma 7

(which we have to verify), this matrix should have precisely three eigenspaces: a 1-eigenspace

of dimension a + 1, a (−1/p)-eigenspace of dimension a, and a kernel with dimension
a∑

b=2

τ(pa−b) =
a(a− 1)

2
.

We have already, in Proposition 5, established the existence of an (a + 1)-dimensional space

of eigenvectors with eigenvalue 1. We shall show next that the kernel of RL−1 has dimension

at least a(a − 1)/2. Lastly we shall exhibit a set of a linearly independent row eigenvectors

for RL−1 with eigenvalue −1/p, thus completing the proof of Lemma 7.
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Proposition 8.

dim kerRL−1 ≥
(

a

2

)
=

a(a− 1)
2

.

Proof. It is clearly sufficient to show that the nullity of R is at least
(
a
2

)
. Choose r and s

such that 0 ≤ r < s ≤ a. There is a row of R corresponding to the expression Rps

pr defined

in (2); this expression involves the quantities u and v. Since v is the largest divisor of pr coprime

with ps/pr, it is clearly equal to 1; it follows that u = pr. We derive the simplified formula

Rps

pr = pr
a∑

b=s

pa−bNpb

ps .

But the summation here does not depend on r; in fact, it is clear that Rps

pr = pr × Rps

1 . Thus

each of the
(
a
2

)
rows indexed by values r, s such that 1 ≤ r < s ≤ a is a linear multiple of a

row for which r = 0. This establishes the proposition.

We note that the eigenspace of RL−1 for the eigenvalue −1/p is equal to the kernel of pR+L.

Proposition 9.

dim ker(pR + L) ≥ a.

Proof. Recall that both the rows and the columns of our matrix are indexed by pairs (i, j)

such that j|pa and i|j. For b ∈ {0, . . . , a − 1}, define wb to be the row vector whose (i, j)th

entry is given by 
1 if i = j = pb,

p2 − 1 if i = pb and j = pb+1,

−p if i = j = pb+1,

0 otherwise.

It is clear that the vectors wb are linearly independent, since for each b the (pb, pb+1)th

coefficient is p2 − 1 for wb and 0 for wc whenever c 6= b.

To show that wb(pR + L) = 0, we need to show that

(pRpb

pb + Lpb

pb) + (p2 − 1)(pRpb+1

pb + Lpb+1

pb )− p(pRpb+1

pb+1 + Lpb+1

pb+1) = 0.

The expressions Rpk

pk and Lpk

pk are identical for all k, and thus the left-hand-side of the equation

above becomes

(p + 1)Lpb

pb + (p2 − 1)(pRpb+1

pb + Lpb+1

pb )− p(p + 1)Lpb+1

pb+1 = 0. (5)
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From (1) and (2) we obtain the following equations:

Lpb

pb =
b∑

k=0

φ(pk)

(
b∑

l=k

pa−bNpl

pk +
a∑

l=b+1

pa−lNpl

pk

)
,

Lpb+1

pb =
b∑

k=0

φ(pk)
a∑

l=b+1

pa−lNpl

pk ,

Rpb+1

pb = pb
a∑

l=b+1

pa−lNpl

pb+1 .

We consider the coefficient of Npl

pk in (5) in various cases:

(i) If 0 ≤ k ≤ l ≤ b then Npl

pk occurs in Lpb

pb and in Lpb+1

pb+1 , but nowhere else in (5). Its

coefficient in (5) is

(p + 1)φ(pk)pa−b − p(p + 1)φ(pk)pa−b−1 = 0.

(ii) If 0 ≤ k ≤ b < l, then Npl

pk occurs in Lpb

pb , Lpb+1

pb+1 and in Lpb+1

pb . Its coefficient in (5) is

(p + 1)φ(pk)pa−l − p(p + 1)φ(pk)pa−l + (p2 − 1)φ(pk)pa−l = 0.

(iii) If b + 1 = k ≤ l then Npl

pk occurs in Lpb+1

pb+1 and in Rpb+1

pb . Its coefficient in (5) is

−p(p + 1)φ(pb+1)pa−l + (p2 − 1)pb+1pa−l = 0,

since φ(pb+1) = (p− 1)pb.

Since the three cases considered here exhaust all of the variables Npl

pk which occur in (5), this

completes the proof of the proposition.

We have now completed the proof of Theorem 1. We remind the reader of the structure

of the proof: Propositions 5, 8 and 9 together imply the correctness of Lemma 7 in the case

where |G/H| is a prime power. By the argument of Section 4, this is sufficient to establish it

in the general case. It follows that Proposition 5 describes the general solution to the system

of equations Ωj
i defined at (3), and this suffices to prove Theorem 1.

6. Application: Counting the conjugacy classes of a subgroup

As an application of Theorem 1, we find expressions for the number of conjugacy classes of

the subgroup Kd under its own action, in terms of quantities relating only to the action of G.

We first define these quantities.

Definition. We define

(i) Td to be the number of G-conjugacy classes in the coset Γd;

(ii) Sd to be the number of G-conjugacy classes in the subgroup Kd;

(iii) S∗
d to be the number of conjugacy classes of Kd under its own action.

Now we have the following theorem.



ON THE DISTRIBUTION OF CONJUGACY CLASSES 11

Theorem 10.

(i) S∗
d = n

∑
c|n

∑
a|c

µ(c/a)
hcf(a, d)
lcm(a, d)

Tc,

(ii) S∗
d = n

∑
c|n

∑
a|c

∑
b|c

µ(c/a)µ(c/b)
φ(c)

hcf(a, d)
lcm(a, d)

Sb.

Proof. Let X be a G-conjugacy class inside Kd, and suppose that the centralizing subgroup

of X with respect to H is Kc. Then the number of classes into which X splits under conjugacy

by Kd is n/lcm(c, d). For each divisor b of d there are φ(b) cosets of H in Kd whose order in

the quotient group Kd/H is b, and it follows from these facts that

S∗
d =

∑
b|d

φ(b)
∑
c|n
b|c

n

lcm(c, d)
N c

b =
∑
c|n

∑
b|hcf(c,d)

φ(b)n
lcm(c, d)

N c
1 ,

in which we have used Theorem 1 to replace N c
b with N c

1 . Now∑
b|hcf(c,d)

φ(b) = hcf(c, d),

and so

S∗
d =

∑
c|n

n
hcf(c, d)
lcm(c, d)

N c
1 .

Now it is clear that

Tb =
∑
c|n
b|c

N c
b =

∑
c|n
b|c

N c
1 ,

where here again we have invoked Theorem 1. We look for quantities αb such that
∑

b|n αbTb = S∗
d .

We require that ∑
c|n

∑
b|c

αbN
c
1 =

∑
c|n

n
hcf(c, d)
lcm(c, d)

N c
1 ,

and clearly this implies that ∑
b|c

αb = n
hcf(c, d)
lcm(c, d)

.

By the Möbius inversion formula (treating d as constant) this condition is satisfied if and only

if

αb = n
∑
a|b

µ(b/a)
hcf(a, d)
lcm(a, d)

,

and the first part of the theorem now follows easily.

Finally, we observe that Sd =
∑

b|d φ(b)Tb, and so by Möbius inversion we have

φ(c)Tc =
∑
b|c

µ(c/b)Sb.

By means of a simple substitution it is now easy to derive the second part of the theorem from

the first.
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