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Abstract. We present a bijective proof of a family of q-binomial iden-

tities — including Stanley’s identity — each equivalent to the q-Pfaff–

Saalschütz identity. Our proof is far shorter than those previously known

and is the first in which q-binomial coefficients are interpreted as count-

ing subspaces of Fq-vector spaces. As a corollary, we obtain a new

multiplication rule for quantum binomial coefficients and hence a new

presentation of Lusztig’s integral form UZ[q,q−1](sl2) of the Cartan sub-

algebra of the quantum group Uq(sl2).

1. Introduction

The study of binomial identities of the form
(·
·
)(·
·
)

=
∑(·

·
)(·
·
)(·
·
)

dates

back as early as 1303 to an identity stated by Shih-Chieh Chu [Tak73].

Multiple identities of this form were discovered around the 1970s by Nan-

jundiah [Nan58], Stanley [Sta70], Bizley [Biz70], Takács [Tak73] and Székely

[Szé85]. In the setting of hypergeometric series [GKP89, §5.5], it becomes

clear that each of them is an instance of the Pfaff–Saalschütz identity [Zen89]

— in other words, they are all equivalent by a simultaneous linear change

of variables. Each of these identities lifts to a q-analogue of the form[·
·
]
q

[·
·
]
q

=
∑
q·
[·
·
]
q

[·
·
]
q

[·
·
]
q
, with the same equivalences holding. We may

therefore refer to any identity of this form as a q-Pfaff–Saalschütz identity.

The combinatorial proofs to date of q-Pfaff–Saalschütz identities are due

to Andrews and Bressoud [AB84], Goulden [Gou85], Zeilberger [Zei87], Yee

[Yee08], and Schlosser and Yoo [SY17].

Let
[
n
k

]
q

denote the q-binomial coefficient, defined for n, k ∈ N0 as a

polynomial in q in §2. In §3 we present a new bijective proof of the q-Pfaff–

Saalschütz identity in the following form.

Theorem 1.1 (q-Pfaff–Saalschütz identity). Let m, s, t ∈ N0. If e ∈ Z and

−t ≤ e ≤ s then[
m

t

]
q

[
m+ e

s

]
q

=
∑
j>0

q(s−j)(t+e−j)
[
t+ e

j

]
q

[
s− e
s− j

]
q

[
m+ j

s+ t

]
q

.

Our proof is shorter than the ones existing in the literature, and relies

on a combinatorial interpretation of the q-binomial coefficients not previous

used in this context: if q is a prime power, then
[
n
k

]
q

is the number of

k-dimensional subspaces of Fnq [KC02, Thm. 7.1].
1
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The second main result of this paper lifts Theorem 1.1 to an identity

in the quantum group Uq(sl2). In [Lus88], Lusztig defines an integral form

UA(sl2) for Uq(sl2) over A = Z[q, q−1]. It can be thought of as a deformation

of Kostant’s Z-form for U(sl2), and it admits a triangular decomposition

UA(sl2) = U−A (sl2)⊗A U0
A(sl2)⊗A U+

A (sl2).

To construct the subalgebra U0
A(sl2), Lusztig uses the elements[

K; c

t

]
=

[K; c][K; c− 1] · · · [K; c− t+ 1]

{t}q!
, (1.1)

for c ∈ Z and t ∈ N0, where [K; a] = qaK−q−aK−1

q−q−1 and {t}q! is the quantum

factorial defined in §4. A lift of the identity in Theorem 1.1 to the quantum

group gives the multiplication rule for these elements. In the following the-

orem,
{
n
k

}
q

denotes the quantum binomial coefficient, defined as a Laurent

polynomial in q in §4.

Theorem 1.2. Let b, c ∈ Z and s, t ∈ N0. If t− c+ b > 0 and s− b+ c > 0,

then the elements defined in (1.1) satisfy the following multiplication rule:[
K; c

t

][
K; b

s

]
=
∑
i≥0

{
t− c+ b

i− c

}
q

{
s− b+ c

i− b

}
q

[
K; i

t+ s

]
.

Lusztig shows that the elements Kδ
[
K
t

]
for t ≥ 0 and δ ∈ {0, 1} form an

A-basis for U0
A(sl2). In Proposition 5.3, we show that the elements

[
K;c
t

]
for

t ≥ 0 and c ∈ {0, 1} also form an A-basis for UA(sl2). This gives our new

description of the multiplication in U0
A(sl2) in Theorem 6.2. As a corollary,

we obtain a presentation of U0
A(g) for an arbitrary Kac–Moody algebra g of

finite rank: see Corollary 6.4.

Outline. The structure of the rest of this paper is as follows. In §2 we give

preliminary results about q-binomial coefficients, including bijective proofs

of certain basic identities using the vector space interpretation. In §3 we

present our new bijective proof of Theorem 1.1. In §4 we give the quantum

version of this identity, later used to prove Theorem 1.2. The quantum

group Uq(sl2) and Lusztig’s integral form are briefly reviewed in §5. Finally

in §6 we prove Theorem 1.2 and, as a corollary, we obtain a new presentation

of Lusztig’s integral form.

2. q-binomials and subspaces of Fnq

In this section, we state foundational results on q-binomial coefficients.

Certain proofs are included both for completeness and to familiarize the

reader with the vector space interpretation of q-binomial coefficients. These

tools will be instrumental in §3, where we present the new proof of Theo-

rem 1.1. We refer the reader to [KC02] for further background.
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We define the q-integer by

[n]q = qn−1 + · · ·+ q + 1 =
qn − 1

q − 1

for n ∈ N0. The definitions of q-factorial and q-binomial coefficient follow

naturally: [n]q! = [n]q[n− 1]q . . . [1]q and[
n

k

]
q

=
[n]q!

[k]q![n− k]q!

for n, k ∈ N0. We set
[
n
k

]
q

= 0 whenever n < k.

Remark 2.1. Under this convention, the sum in Theorem 1.1 is finite, with

non-zero summands for max{0, e} 6 j 6 min{t+ e, s}.

The q-binomial coefficients have numerous combinatorial interpretations:

as generating functions of subsets of N0 by the sum of their elements, parti-

tions in a (n− k)× k rectangle, inversions in permutations, an so on [Sta12,

Chapter 1]. In the following proposition and for the remainder of this sec-

tion, q is a prime power.

Proposition 2.2. The number of k-dimensional subspaces of Fnq equals
[
n
k

]
q
.

Proof. See [KC02, Thm. 7.1]. �

Example 2.3. Let n = 2, k = 1. By definition,
[
2
1

]
q

= q2−1
q−1 = q + 1.

When q = 3, there are indeed four lines through the origin in the projective

plane F2
3, as shown in Figure 1.

Figure 1. The four one-dimensional subspaces of F2
3, visu-

alizing F2
3 as a subset of the plane.

This interpretation allows to lift bijective proofs of classical binomial iden-

tities, in which
(
n
k

)
counts the number of k-subsets of {1, . . . , n}, into bi-

jective proofs of their q-analogues. As an illustrative example, we give a

bijective proof of the following basic identity, used later in the proof of The-

orem 1.1. Throughout we use 6 for containment of subspaces.

Lemma 2.4. Let k 6 ` 6 n be non-negative integers. Then[
n

`

]
q

[
`

k

]
q

=

[
n

k

]
q

[
n− k
`− k

]
q

.



4 Á. GUTIÉRREZ, Á. L. MARTÍNEZ, M. SZWEJ, AND M. WILDON

Proof. If k = 0, the identity holds trivially. Assume now that k > 1. By

Proposition 2.2, the left-hand side is the number of pairs of subspaces (U,W )

of V = Fnq satisfying U 6W 6 V , dimU = k and dimW = `.

Similarly, the right-hand side counts the number of pairs (U,W ), where U

is a k-dimensional subspace of V and W is an (`− k)-dimensional subspace

of the (n− k)-dimensional quotient space V/U .

The natural bijection between these two sets given by

(U,W ) 7→ (U,W/U)

proves that they are of equal size. �

While some q-binomial identities are very similar to their binomial spe-

cializations, in general a more careful treatment is required. One of the

main reasons for this is the non-uniqueness of complements to a subspace of

a vector space.

Proposition 2.5. Let k 6 n be non-negative integers. If U is a k-dimensional

subspace of Fnq then U has qk(n−k) distinct complements inside Fnq .

Proof. We will construct a basis of a complement of U . As the first vector

of the basis, choose any w1 outside of U — this can be done in qn−qk ways.

Similarly, for w2 choose any vector which does not belong to U ⊕ 〈w1〉Fq

— this can be done in qn − qk+1 many ways. Repeating this process n− k
times, we construct

(qn − qk)(qn − qk+1) . . . (qn − qn−1)

many bases, each spanning a complement. However, each complement is

obtained in

(qn−k − 1)(qn−k − q) . . . (qn−k − qn−k−1)

many ways. The number of distinct complements of U in Fnq is therefore the

quotient of the two quantities displayed above, namely qk(n−k). �

Example 2.6. As seen in Figure 1, when q = 3, n = 2 and k = 1 each line

has 3 distinct complements in the plane F2
3.

The second basic identity needed in the proof of Theorem 1.1 is as follows.

Again we give a bijective proof.

Lemma 2.7. Let k 6 n be non-negative integers. Then[
n

k

]
q

=

[
n

n− k

]
q

.

Proof. Let V be an n-dimensional Fq-vector space. The map U 7→ {θ ∈
V ? : θ(U) = 0} is a bijection between k-dimensional subspaces of V and the

(n− k)-dimensional subspaces of the dual space V ?. �
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Another important difference when compared to binomial coefficients and

subsets is the analogue of set union. Indeed, by taking a direct sum of two

subspaces we lose information about the vectors which belong to neither of

the direct summands. A more careful approach, frequently used in our proof

of Theorem 1.1 is through extension.

Proposition 2.8. Let k, `,m, n be non-negative integers satisfying ` 6 k 6
n and ` 6 m 6 n. Let Vk be a k-dimensional subspace of V = Fnq and

V` an `-dimensional subspace of Vk. The number of distinct m-dimensional

extensions Vm of V` inside of V , such that Vm ∩ Vk = V`, equals

q(m−`)(k−`)
[
n− k
m− `

]
q

.

Proof. See [KC02, p. 23] for a bijective proof. �

Example 2.9. If k = `, the extensions Vm are in a one-to-one correspon-

dence with the (m − `)-dimensional subspaces of the quotient space V/Vk.

The formula in Proposition 2.8 correctly simplifies to
[
n−k
m−k

]
q
. If instead

` = 0 and m = n − k, then extensions Vm are precisely the complements

of Vk in V . The formula in Proposition 2.8 simplifies to q(n−k)k, in agreement

with Proposition 2.5.

The third basic identity needed in the proof of Theorem 1.1 is a q-lift of

Vandermonde’s convolution. Again it has a bijective proof.

Proposition 2.10 (q-Vandermonde’s convolution). Let m 6 n be non-

negative integers. Then[
n

m

]
q

=
m∑
`=0

q`(n−k−m+`)

[
k

`

]
q

[
n− k
m− `

]
q

for any non-negative integer k 6 n.

Proof. In [KC02, p. 23] the authors give a simple bijective proof that[
n

m

]
q

=
m∑
`=0

q(m−`)(k−`)
[
k

`

]
q

[
n− k
m− `

]
q

Now change variables by ` 7→ m − ` and k 7→ n − k and apply Lemma 2.7

(which we proved bijectively) to get the result. �

Remark 2.11. Since the q-integers are polynomials in q with coefficients

in C, to prove a q-binomial identity it suffices to prove it for infinitely many

values of q, such as the prime powers. In particular, the identities obtained

in this section hold for all q ∈ C \ {0}.



6 Á. GUTIÉRREZ, Á. L. MARTÍNEZ, M. SZWEJ, AND M. WILDON

3. A new bijective proof of Theorem 1.1

In this section we construct the bijective map that establishes Theorem 1.1

— the main difficulty is to construct a suitable domain and codomain. We

observe immediately that the left-hand side of Theorem 1.1 counts pairs of

subspaces of dimensions s and t in Fmq and Fm+e
q , respectively. The right-

hand side requires a more detailed description. A big step toward this goal

is the following lemma. In it we use X⊥Y to denote an arbitrary vector

space complement of X inside Y , and UX a fixed subspace of X.

Lemma 3.1. Let m, s, t, e, j, k be non-negative integers with s− e > 0 and

t + e − k > 0. Let W be an m-dimensional subspace of V = Fm+e
q . The

number of septuples

(A,B,C,UC , D,A
⊥C , A⊥W ),

satisfying the following conditions:

• dimA = t, dimB = s, dimC = s + t − k, dimD = j − e, and

dimUC = s− e,
• A 6 C 6W , D 6 UC 6 C 6W , B 6 V , and A⊥C 6 A⊥W 6W ,

• A ∩ UC = D, B ∩A⊥W = A⊥C , and A⊥W ∩ C = A⊥C

equals

qt(m−t)q(s−j)(t+e−j)q(m−s−t+k)k

[
t+ e

k

]
q

[
t+ e− k
j − k

]
q

[
s− e
s− j

]
q

[
m

s+ t− k

]
q

.

The conditions, the choice of septuple, as well as the formula, arise nat-

urally in the process of construction in the proof below.

Proof of Lemma 3.1. We illustrate the proof in Figure 2, building on the

set-up in Figure 3a. Choose an (s + t − k)-dimensional subspace C of W

(Figure 3b) in
[

m
s+t−k

]
q

many ways and fix an a subspace UC of C of di-

mension s − e (Figure 3c). Next, choose a (j − e)-dimensional subspace D

of UC (Figure 3d) in
[
s−e
j−e
]
q

=
[
s−e
s−j
]
q

many ways. By Proposition 2.8, the

subspace D of dimension j− e can be extended to a t-dimensional subspace

A of C (Figure 3e), such that A ∩ UC = D, in q(s−j)(t+e−j)[t+e−k
j−k

]
q

many

ways. Thus, we obtain

q(s−j)(t+e−j)
[
t+ e− k
j − k

]
q

[
s− e
s− j

]
q

[
m

s+ t− k

]
q

many triples (A,C,D) of subspaces of W , satisfying:

• dimA = t, dimC = s+ t− k, and dimD = j − e,
• A 6 C 6W , D 6 UC 6 C 6W ,

• A ∩ UC = D.

Let A⊥C be a complement of A in C (Figure 3f) — using Proposition 2.5 we

can choose it in qt(s−k) many ways. By Proposition 2.8, the subspace A⊥C of
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Figure 2. The construction of septuples in diagrams

V

W

(a) Fix W ∼= Fm
q inside V ∼= Fm+e

q .

C

V

W

(b) Choose C ∼= Fs+t−k
q inside W

in
[

m
s+t−k

]
q

many ways.

C

V

W

UC

(c) Fix UC
∼= Fs−e

q inside C.

C

D
V

W

UC

(d) Choose D ∼= Fj−e
q inside UC

in
[
s−e
s−j
]
q

many ways.

A

C

D
V

W

UC

(e) Extend D to A ∼= Ft
q

inside C and outside of UC

in q(s−j)(t+e−j)[t+e−k
j−k

]
many ways.

A⊥C

A

C

V

W

(f) Choose a complement A⊥C ∼= Fs−k
q of

A inside C in qt(s−k) many ways.

A⊥C

A

A⊥W

V

W

(g) Extend A⊥C to A⊥W ∼= Fm−t
q

inside W and outside of C

in qt(m−s−t+k) many ways.

B

A⊥C

A

A⊥W

V

W

(h) Extend A⊥C to B ∼= Fs
q

inside V and outside of A⊥W

in qk(m−s−t+k)
[
t+e
k

]
q

many ways.
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dimension s−k can be extended to an (m−t)-dimensional vector space A⊥W

in W (Figure 3g), such that A⊥W ∩ C = A⊥C , in qt(m−s−t+k) many ways.

This extension, as the notation already suggests, is a complement of A in W .

Indeed, A⊥W ∩ A = A⊥W ∩ (C ∩ A) = (A⊥W ∩ C) ∩ A = A⊥C ∩ A = 0

and dimA⊥W + dimA = (m− t) + t = m = dimW .

From Proposition 2.8 applied to A⊥C as a subspace of A⊥W , the (s− k)-

dimensional vector space A⊥C can be extended to an s-dimensional vector

space B in V (Figure 3h), such that B ∩A⊥W = A⊥C , in qk(m−s−t+k)
[
t+e
k

]
q

many ways. By construction, the vector spaces A⊥C , A⊥W and B satisfy

the conditions:

• dimB = s,

• B 6 V , A⊥C 6 A⊥W 6W ,

• B ∩A⊥W = A⊥C , A⊥W ∩ C = A⊥C .

We have therefore chosen a septuple satisfying the specified conditions,

and the total number of choices is the product of the number of choices we

made at each step; this gives the desired expression. �

To prove Theorem 1.1 when e < 0, we need the following standard result.

Lemma 3.2. Let f ∈ Q(q)[X] have degree d as a polynomial in X. If

f(qh) = 0 for at least d + 1 values of h ∈ N0, then f = 0. Moreover, if

g ∈ Q(q)[X,X−1] vanishes at (qh, q−h) for infinitely many values of h ∈ N0,

then g = 0.

Proof. The first part is a well-known fact about polynomials with coeffi-

cients in an integral domain. For the second part, take A sufficiently large

that XAg(X,X−1) is a polynomial in X. The conclusion follows from the

first part. �

Proof of Theorem 1.1 (q-Pfaff–Saalschütz identity). Assume 0 6 e 6 s. To

simplify the right-hand side of Theorem 1.1, we apply the q-Vandermonde’s

convolution (Proposition 2.10) to the term
[
m+j
s+t

]
q
, followed by Lemma 2.4

to the product
[
t+e
j

]
q

[
j
k

]
q
:∑

j>0

q(s−j)(t+e−j)
[
t+ e

j

]
q

[
s− e
s− j

]
q

[
m+ j

s+ t

]
q

=
∑
j>0

q(s−j)(t+e−j)
[
t+ e

j

]
q

[
s− e
s− j

]
q

∑
k>0

q(m−s−t+k)k

[
m

s+ t− k

]
q

[
j

k

]
q

=
∑
j>0

∑
k>0

q(s−j)(t+e−j)q(m−s−t+k)k

[
t+ e

k

]
q

[
t+ e− k
j − k

]
q

[
s− e
s− j

]
q

[
m

s+ t− k

]
q

.

These two steps encode bijections from Proposition 2.10 and Lemma 2.4.

Hence, upon further multiplying both sides by qt(m−t), the identity from

Theorem 1.1 is bijectively equivalent to
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qt(m−t)
[
m

t

]
q

[
m+ e

s

]
q

= qt(m−t)
∑
j>0

∑
k>0

q(s−j)(t+e−j)q(m−s−t+k)k

[
t+ e

k

]
q[

t+ e− k
j − k

]
q

[
s− e
s− j

]
q

[
m

s+ t− k

]
q

. (3.1)

Now let q be a prime power. Let W be a fixed m-dimensional subspace

of V = Fm+e
q . Consider the set T of triples (A,B,A⊥W ) of subspaces of V

satisfying

• dimA = t and dimB = s,

• A 6W and B 6 V .

By Proposition 2.2 and Proposition 2.5, |T | is the left-hand side of equal-

ity (3.1). Let Sj,k denote the set of septuples described in Lemma 3.1. Define

S =
⋃
j,k∈N Sj,k. By Lemma 3.1, |S| is the right-hand side of (3.1).

It now sufficient to exhibit a bijection between the sets T and S. The

bijection follows directly from the step-by-step construction detailed above

(see also Figure 3h).

One direction of the bijection is the natural projection S → T defined by

(A,B,C,UC , D,A
⊥C , A⊥W ) 7→ (A,B,A⊥W ).

For the inverse, recall the conditions in the third bullet point of Lemma 3.1.

We will show that the triple uniquely determines the corresponding septuple.

Indeed, since A⊥C = B ∩ A⊥W , we have C = A ⊕ A⊥C = A⊕ (B ∩ A⊥W ).

Hence UC = UA⊕(B∩A⊥W ) (recall that UC was defined as a fixed subspace

of C) and D = A ∩ UC = A ∩ UA⊕ (B∩A⊥W ). Therefore, the map T → S
defined by

(A,B,A⊥W ) 7→(
A,B,A⊕ (B ∩A⊥W ), UA⊕ (B∩A⊥W ), A ∩ UA⊕ (B∩A⊥W ), B ∩A⊥W , A⊥W

)
is the desired inverse. This proves Theorem 1.1 for 0 ≤ e ≤ s when q is a

prime power, and the result for indeterminate q follows from Remark 2.11.

To prove the theorem for −t ≤ e ≤ 0, we define a function f by

f(X) =

[
m

t

]
q

(qm−s+1X; q)s
(q; q)s

−
∑
j>0

q(s−j)(t−j) (qt−j+1X; q)j
(q; q)j

· X
s−j(qj+1X−1; q)s−j

(q; q)s−j
·
[
m+ j

s+ t

]
q

where (a; q)α denotes the shifted factorial product

(a; q)α = (1− a)(1− qa) . . . (1− qα−1a).
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Note that
[
n
k

]
q

= (qn−k+1; q)k/(q; q)k and hence

f(qe) =

[
m

t

][
m+ e

s

]
−
∑
j≥0

q(s−j)(t−j)
[
t+ e

j

]
qe(s−j)

[
s− e
j

][
m+ j

s+ j

]
which is the difference of the two sides in Theorem 1.1. By the combinatorial

argument above we have f(qe) = 0 for all e ∈ {0, 1, . . . , s}. Since f(X) ∈
Q(q)[X] and deg f 6 s, Lemma 3.2 implies that f = 0. In particular,

f(qe) = 0 for all e ∈ Z such that −t ≤ e ≤ s.
�

Corollary 3.3 (Pfaff–Saalschütz identity). Let m, s, t ∈ N0. If e ∈ Z and

−t ≤ e ≤ s then(
m

t

)(
m+ e

s

)
=
∑
j>0

(
t+ e

j

)(
s− e
s− j

)(
m+ j

s+ t

)
.

Proof. Take q → 1 in Theorem 1.1. �

Remark 3.4. In the binomial case, one may consider A,B,C,D,UC , V,W

as sets and subsets instead of vector spaces and subspaces. Replacing A⊥C

and A⊥W with the set-theoretic differences C \ A and W \ A, respectively,

the steps in the proof of Theorem 1.1 simplify significantly, giving a new

bijective proof of the binomial identity in Corollary 3.3.

To illustrate the generality of Theorem 1.1, we show it is equivalent to

Stanley’s identity; this makes clear a symmetry that is hidden in our state-

ment of Theorem 1.1.

Example 3.5 (Stanley’s q-binomial identity). Let x, y,A,B ∈ N. Then[
x+A

B

]
q

[
y +B

A

]
q

=
∑
K>0

q(A−K)(B−K)

[
x+ y +K

K

]
q

[
y

A−K

]
q

[
x

B −K

]
q

is equivalent to Theorem 1.1 via the simultaneous substitutions

(m, e, s, t, j) 7→ (B + y,A+ x−B − y,A+ x−B,B + y −A,K −B + x),

(A,B, x, y,K) 7→ (m− t,m+ e− s, t+ e, s− e,m− s− t+ j).

As we mentioned in the introduction, multiple q-identities of this form

have been rediscovered over the years. In the language of hypergeometric

series, it becomes clear that they are all equivalent to the q-Pfaff–Saalschütz

formula.

Remark 3.6. The q-binomial identity in Theorem 1.1 corresponds, in the

notation of hypergeometric series, to the q-Pfaff–Saalschütz formula

3φ2

(
qs−m−e, q−t−e, q−t

q−m−t−e, qs+1−t−e ; q, q

)
=

(q−m; q)t(q
−s−t; q)t

(q−m−t−e; q)t(q−s+e; q)t
,
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which in full generality [Zen89, (5)] states that for all a, b, c ∈ C and n ∈ N0:

3φ2

(
a, b, q−n

c, q1−nab/c
; q, q

)
=

(c/a; q)n(c/b; q)n
(c; q)n(c/ab; q)n

.

4. The quantum Pfaff–Saalschütz identity

Let q ∈ C \ {0,±1}. To lift the identity in Theorem 1.1 to Theorem 1.2,

we first express its quantum analogue. We define the quantum integer by

{n}q = qn−1 + qn−3 + · · ·+ q1−n =
qn − q−n

q − q−1

for n ∈ N0. The definitions of quantum factorial and quantum binomial

coefficient again follow naturally: {n}q! = {n}q{n− 1}q . . . {1}q and{
n

k

}
q

=
{n}q!

{k}q!{n− k}q!
,

for n, k ∈ N0. We set
{
n
k

}
q

= 0 whenever n < k. As we have seen, the

q-binomial coefficients admit multiple combinatorial interpretations. On

the other hand, quantum binomial coefficients are often used in algebra: for

example
{
n
k

}
is the character of the representation

∧k Symn−1 C2 of SL2(C).

The connection between the two, established in the following two results is

a fundamental bridge in algebraic combinatorics, connecting combinatorial

enumeration, plethysms of symmetric functions, and representation theory.

Lemma 4.1. Let n ∈ N0. Then:

[n]q2 = qn−1{n}q.

Proof. This follows directly from the definitions:

[n]q2 =
q2n − 1

q2 − 1
=
qn

q
· q

n − q−n

q − q−1
= qn−1{n}q. �

Corollary 4.2. Let k 6 n be non-negative integers. Then[
n

k

]
q2

= qk(n−k)

{
n

k

}
q

.

Proof. This is immediate from Lemma 4.1. �

We can now state and prove the quantum version of Theorem 1.1.

Theorem 4.3 (Quantum Pfaff–Saalschütz identity). Let m, s, t ∈ N0. If

e ∈ Z and −t ≤ e ≤ s then{
m

t

}
q

{
m+ e

s

}
q

=
∑
j>0

{
t+ e

j

}
q

{
s− e
s− j

}
q

{
m+ j

s+ t

}
q

.
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Proof of Theorem 4.3. By Corollary 4.2, replacing q with q2 in Theorem 1.1

gives the required identity up to a power of q. The routine calculation

qt(m−t)qs(m+e−s) = q2(s−j)(t+e−j)qj(t+e−j)q(s−j)(j−e)q(s+t)(m+j−s−t),

shows that the powers of q cancel on both sides. �

The form of Theorem 4.3 we need for the proof of Theorem 1.2 is as

follows.

Corollary 4.4. Let h, s, t ∈ N0. If b, c ∈ Z, t− c+ b > 0, and s− b+ c > 0

then {
h+ c

t

}
q

{
h+ b

s

}
q

=
∑
i>0

{
t− c+ b

i− c

}
q

{
s− b+ c

i− b

}
q

{
h+ i

t+ s

}
q

.

Proof. Make the substitution (m, e, j) 7→ (h+ c, b− c, i− c) in Theorem 4.3.

The top entries in Theorem 4.3 are non-negative by assumption, and they

remain non-negative after the substitution. �

5. Lusztig’s integral form of Uq(sl2)

The quantum group Uq(sl2) is the unital associative algebra over Q(q)

with generators E, F , K, K−1 subject to the relation

KEK−1 = q2E, KFK−1 = q−2F, EF − FE =
K −K−1

q − q−1

and the expected KK−1 = K−1K = 1. By Theorem 3.1.5 in [HK02] it has

a triangular decomposition as

Uq(sl2) = U−q (sl2)⊗Q(q) U0
q (sl2)⊗Q(q) U+

q (sl2)

where U−q (sl2) (resp. U0
q (sl2), resp. U+

q (sl2)) is the Q(q)-subalgebra gener-

ated by F (resp. K±1, resp. E). Let

[K; a] =
qaK − q−aK−1

q − q−1
. (5.1)

In [Lus88], Lusztig defines the divided powers E(n) = En

{n}q ! and F (n) = Fn

{n}q ! ,

as well as the Lusztig elements
[
K;c
t

]
for t ∈ N0 and c ∈ Z already seen

in (1.1). By definition
[
K;c

0

]
= 1 and to simplify notation we set

[
K
t

]
=
[
K; 0
t

]
.

Lusztig’s element
[
K;c
t

]
should be thought of as a quantization of the element(

H + c

t

)
=

(H + c)(H + c− 1) · · · (H + c− t+ 1)

t!
,

belonging to Kostant’s Z-form of the enveloping algebra of sl2. Recall in the

following definition that A = Z[q, q−1].

Definition 5.1. Lusztig’s integral form UA(sl2) for Uq(sl2) is the A-algebra

generated by the divided powers E(n) = En

{n}q ! and Fn

{n}q ! for n ∈ N and the

elements K,K−1 and
[
K
t

]
for t ∈ N.
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The divided powers satisfy the following relations for n,m ∈ N:

E(n)E(m) =

{
n+m

n

}
q

E(n+m), (5.2)

F (n)F (m) =

{
n+m

n

}
q

F (n+m). (5.3)

We also have the following relations [Lus88, §4.3]:[
K; c

t

]
E(n) = E(n)

[
K; c+ 2n

t

]
, (5.4)[

K; c

t

]
F (n) = F (n)

[
K; c− 2n

t

]
, (5.5)

E(n)F (m) =
∑
t>0

F (m−t)
[
K; 2t−m− n

t

]
E(n−t). (5.6)

Proposition 5.2 (Lusztig). The A-algebras UA(sl2) and U0
A(sl2) are free

as A-modules.

(a) The A-algebra UA(sl2) has an A-basis given by the elements

F (a)Kδ

[
K

t

]
E(b)

for a, b, t ∈ N0 and δ ∈ {0,min(1, t)}.
(b) The elements Kδ

[
K
t

]
for t ∈ N0 and δ ∈ {0,min(1, t)} form a basis

for the Cartan subalgebra U0
A(sl2).

Proof. The first part follows from Theorem 4.5 and Proposition 2.17 in

[Lus90]. The second part follows from Theorem 4.5 and Proposition 2.14 in

[Lus90]. �

We will now introduce a new A-basis of Lusztig’s integral form and its

Cartan subalgebra. In the following section, we will combine these results

with the multiplication rule from Theorem 1.2 to deduce a new presentation

of these algebras.

Proposition 5.3. Lusztig’s integral form and its Cartan subalgebra admit

the following bases:

(1) The A-algebra U0
A(sl2) has an A-basis

B =

{[
K

t

]
: t ≥ 0

}
∪
{[
K; 1

t

]
: t ≥ 1

}
;

(2) The elements F (a)
[
K;c
t

]
E(b) for a, b, t ∈ N0 and c ∈ {0,min(1, t)},

form an A-basis of UA(sl2).

Proof. First we compute using (5.1) that

qt[K; 1]− q−1[K;−t] = qt
qK − q−1K−1

q − q−1
− q−1 q

−tK − qtK−1

q − q−1
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=
qt+1K − q−(t+1)K

q − q−1

= {t+ 1}qK.

Multiplying both sides by [K; 0] · · · [K;−t+1] and dividing by {t+1}q!, the

right-hand side becomes K
[
K; 0
t

]
, while the left-hand side becomes qt

[
K;1
t+1

]
−

q−1
[
K; 0
t+1

]
. Thus

K

[
K

t

]
= qt

[
K; 1

t+ 1

]
− q−1

[
K

t+ 1

]
.

Since integer powers of q are units in A, this gives an invertible change

of basis from the basis claimed in (1) to the A-basis of U0
A(sl2) in Propo-

sition 5.2(b). This proves (1) and (2) is a direct consequence of (1) and

Proposition 5.2(a). �

Remark 5.4. It is a notable feature of our basis B that it contains neither K

nor K−1. Instead, as a special case of Proposition 5.3, we may write

K =

[
K; 1

1

]
− q−1

[
K

1

]
,

K−1 =

[
K; 1

1

]
− q
[
K

1

]
.

6. The multiplication rule of Lusztig’s elements
[
K;c
t

]
and

a new presentation of Lusztig’s integral form UA(sl2)

In this section we present further new results about Lusztig’s integral

form and its Cartan subalgebra, including the multiplication rule from The-

orem 1.2, and a new presentation of these algebras.

Proof of Theorem 1.2. We first unpack the definition of Lusztig’s elements

in (1.1):[
K; c

t

]
=

[K; c][K; c− 1] · · · [K; c− t+ 1]

{t}q!
=

∏t−1
s=0(Kqc−s −K−1q−(c−s))∏t

s=1(qs − q−s)
.

Observe that upon specializing K,K−1 to qh, q−h, respectively, Lusztig ele-

ment specializes to a quantum binomial coefficient:[
K; c

t

]∣∣∣∣∣K=qh

K−1=q−h

=

∏t−1
s=0(qhqc−s − q−hq−(c−s))∏t

s=1(qs − q−s)
=

{
h+ c

t

}
q

.

In particular, for any integer h > max{−b,−c}, the multiplication rule

claimed in this theorem specializes to the identity in Theorem 4.3. Since

there are infinitely many such values of h, we conclude the proof by applying

Lemma 3.2 to the function g ∈ Q(q)[K,K−1] defined by

g(K,K−1) =

[
K; c

t

][
K; b

s

]
−
∑
i≥0

{
t− c+ b

i− c

}
q

{
s− b+ c

i− b

}
q

[
K; i

t+ s

]
,
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treating K as an indeterminant. �

To give the new presentations, we now need one more identity in the

Lusztig’s integral form, which we state and prove in the proposition below.

Recall that A = Z[q, q−1] and note that the A-algebra U0
A(sl2) has an au-

tomorphism Φc for each c ∈ Z, defined by restricting the automorphism of

Q(q)[K,K−1] which sends K 7→ qcK and K−1 7→ q−cK−1. In the following

proposition, we set
[
K;c
t

]
= 0 if t < 0.

Proposition 6.1. Let t ≥ 1 and c ∈ Z. The following relation holds[
K; c+ 2

t

]
= (qt + q−t)

[
K; c+ 1

t

]
−
[
K; c

t

]
+

[
K; c

t− 2

]
.

Proof. First observe that this relation is obtained by applying the automor-

phism Φc to the following relation:[
K; 2

t

]
= (qt + q−t)

[
K; 1

t

]
−
[
K

t

]
+

[
K

t− 2

]
. (6.1)

We prove this simplified identity by considering two cases, giving full details

to indicate an efficient approach.

• Case t = 1: by (5.1) we have

(q + q−1)

[
K; 1

1

]
−
[
K; 0

1

]
= (q + q−1)

qK − q−1K−1

q − q−1
− K −K−1

q − q−1

=
q2K − q−2K−1

q − q−1

=

[
K; 2

1

]
.

• Case t ≥ 2: Multiplying (6.1) by {t}q!
/

[K; 0] · · · [K; 2 − t + 1] the

left-hand side becomes [K; 2][K; 1] and the right-hand side becomes

(qt + q−t)[K; 1][K; 2 − t] − [K; 2 − t][K; 1 − t] + {t}q{t − 1}q, so it

suffices to show that

[K; 2][K; 1]− (qt + q−t)[K; 1][K; 2− t] + [K; 2− t][K; 1− t]

equals {t}q{t− 1}q. Multiplying further by (q − q−1)2, we obtain

(q2K − q−2K)(qK − q−1K−1)

− (qt + q−t)(qK − q−1K−1)(q2−tK − q−2+tK−1)

+ (q2−tK − qt−2K−1)(q1−tK − q−1+tK−1) (6.2)

which we must show equals

(q−q−1)2{t}q{t−1}q = (qt−q−t)(qt−1−q1−t) = q2t−1 +q1−2t−q−q−1.

The powers of K that may appear in the expansion of (6.2) are K2,

K0 and K−2. The coefficient of K2 is q3− (qt+q−t)q3−t+q3−2t = 0.
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Similarly, the coefficient of K−2 is q−3−(qt+q−t)q−3+t+q−3+2t = 0.

Finally, the coefficient of K0 is

− q2−1 − q−2+1 + (qt + q−t)(q1+(−2+t) + q−1+(2−t))

− q(2−t)+(−1+t) − q(t−2)+(1−t) = q2t−1 + q1−2t − q − q−1

as desired. �

Theorem 6.2. The Cartan subalgebra U0
A(sl2) has a presentation given by

the generators
[
K;c
t

]
for c ∈ Z, t ∈ N0, the multiplication relation in Theo-

rem 1.2, and the relation in Proposition 6.1.

Proof. We need to show that the product of any two generators
[
K;c
t

][
K;d
s

]
can be written as an A-linear combination of Lusztig’s elements from the

relation in Theorem 1.2, and the relation in Proposition 6.1. Notice that

by Theorem 1.2 this is true if t − c + b ≥ 0 and s − b + c ≥ 0. Moreover[
K;c

0

]
= 1. Therefore, it suffices to show that one can express any

[
K;c
t

]
for

c ∈ Z and t ∈ N as a linear combination of elements in the A-basis B in

Proposition 5.3(1).

We do this by induction on t ∈ N. We show that the base case t = 1

follows by a second induction on c, where the base cases c = 0, 1 hold by

definition. If c ≥ 2, assume that the result is true for c′ < c. Then we can

use Proposition 6.1 to write
[
K;c

1

]
as an A-linear combination of

[
K;c−1

1

]
and[

K;c−2
1

]
, and so we are done by induction hypothesis on c. If c < 0, we may

assume that the result is true for c′ > c. We then rearrange the relation in

Proposition 6.1 to write[
K; c

1

]
= (q + q−1)

[
K; c+ 1

1

]
−
[
K; c+ 2

1

]
so again by induction hypothesis on c, we are done.

Let us now consider the inductive step for t > 1. By the induction

hypothesis on t, the last term
[
K;c
t−2

]
in Proposition 6.1 can be expressed as

an A-linear combination of elements in B. The relation without that term

has the same form as for the case t = 1, and the inductive argument on c

for the t = 1 case carries over verbatim. �

Corollary 6.3. Lusztig’s integral form UA(sl2) has a presentation given by

the monomials E(n)
[
K;c
t

]
F (m) for n,m, t ≥ 0, c ∈ Z, relations (5.2), (5.3),

(5.4), (5.5) and (5.6), together with Proposition 6.1 and the multiplication

relation in Theorem 1.2.

Proof. Relation (5.2) (resp. (5.3)) allows us to rewrite products of divided

powers E(n)E(m) (resp. F (n)F (m)) as A-multiples of a single divided power.

Theorem 6.2 allows us to rewrite products of Lusztig’s elements
[
K;c
t

]
as

A-linear combinations of other Lusztig’s elements. Finally, relations (5.4),

(5.5) and (5.6) allow us to write any product of monomials E(n)
[
K;c
t

]
F (m)

in terms of other such monomials. �
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Even though we have stated our results for UA(sl2), these bases general-

ize to arbitrary (finite) rank. Consider Lusztig’s form of the quantum group

UA(g) for an arbitrary Kac–Moody algebra g with generalized Cartan ma-

trix of finite rank n, that is, with Cartan datum (I, ·) such that |I| = n.

(The bilinear form · plays no role in the following.) By 1.4.7 and 3.1.13

in [Lus10], its Cartan subalgebra is isomorphic to U0
A(sl2)⊗n, and we obtain

the following corollary.

Corollary 6.4. Let g be a Kac–Moody algebra of finite rank n, and let K±1
i

for i = 1, . . . , n be the generators of the Cartan subalgebra of the quantum

group Uq(g). Then Lusztig’s form for the Cartan subalgebra U0
A(g) has an

A-basis given by the elements[
K1 ; c

t1

][
K2 ; c2

t2

]
· · ·
[
Kr ; cr
tr

]
with ci ∈ {0,min(1, ti)}. Furthermore, it has a presentation with these gen-

erators and the relations in Theorem 6.2 for each set of elements
[
Ki ;c
t

]
,

together with the commutativity relations
[
Ki ;c
t

][
Kj ;b
s

]
=
[
Kj ;b
s

][
Ki ;c
t

]
for

1 ≤ i < j ≤ n.
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18 Á. GUTIÉRREZ, Á. L. MARTÍNEZ, M. SZWEJ, AND M. WILDON

[Lus10] G. Lusztig. Introduction to quantum groups. Modern Birkhäuser Classics, New
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