MATHEMATISCHES FORSCHUNGSINSTITUT OBERWOLFACH

Report No. 9/2020

DOI: 10.4171/OWR/2020/9

Mini-Workshop: Kronecker, Plethysm, and Sylow Branching Coefficients and their Applications to Complexity Theory

Organized by Christine Bessenrodt, Hannover Chris Bowman, Kent Eugenio Giannelli, Florence

23 February – 29 February 2020

Modular plethysms for $SL_2(F)$ MARK WILDON (joint work with Eoghan McDowell and Rowena Paget)

Let E be a two-dimensional complex vector space. The finite-dimensional irreducible polynomial representations of $SL_2(\mathbf{C})$ are, up to isomorphism, the symmetric powers $Sym^{\ell}E$ for $\ell \in \mathbf{N}_0$. Working in invariant theory, Hermite discovered the isomorphism

(1) $\operatorname{Sym}^r \operatorname{Sym}^\ell E \cong \operatorname{Sym}^\ell \operatorname{Sym}^r E.$

This is one of many *plethystic isomorphisms* of $\operatorname{SL}_2(\mathbf{C})$ -representations. Another important example is the Wronskian isomorphism $\operatorname{Sym}^r \operatorname{Sym}^{\ell} E \cong \bigwedge^r \operatorname{Sym}^{\ell+r-1} E$ (see for instance [1]). More generally, let ∇^{λ} denote the Schur functor canonically labelled by the partition λ . We ask: when is there an $\operatorname{SL}_2(\mathbf{C})$ -isomorphism $\nabla^{\lambda} \operatorname{Sym}^{\ell} E \cong \nabla^{\mu} \operatorname{Sym}^m E$? In my talk I surveyed some of the answers to this question and then considered the modular analogue in which \mathbf{C} is replaced with an infinite field of prime characteristic.

The first part is on joint work with Rowena Paget [6]; the second is on work in progress with my Ph.D. student Eoghan McDowell.

Part 1: Complex plethystic isomorphisms. Let s_{λ} denote the Schur function canonically labelled by the partition λ . By the bridge between representation theory and symmetric functions seen in my introductory talk, there is a plethystic isomorphism $\nabla^{\lambda} \operatorname{Sym}^{\ell} E \cong \nabla^{\mu} \operatorname{Sym}^{m} E$ if and only if $(s_{\lambda} \circ s_{(\ell)})(x^{-1}, x) = (s_{\mu} \circ s_{\mu})(x^{-1}, x)$. (It is correct to specialize the variables x_1, x_2 so that they satisfy $x_1x_2 = 1$ because this relation is satisfied by the eigenvalues of every matrix in $\operatorname{SL}_2(\mathbf{C})$.) Substituting $x = q^2$ one obtains (iii) in the theorem below; this is the combinatorial statement that the generating functions enumerating $\operatorname{SSYT}_{\{1,\ldots,\ell\}}(\lambda)$ and $\operatorname{SSYT}_{\{1,\ldots,m\}}(\mu)$ by the sum of the contents of each tableau are equal, up to a power of q.

Theorem 1. The following are equivalent:

- (i) $\nabla^{\lambda} \operatorname{Sym}^{\ell} E \cong \nabla^{\mu} \operatorname{Sym}^{m} E;$
- (ii) $(s_{\lambda} \circ s_{(\ell)})(x^{-1}, x) = (s_{\mu} \circ s_{(m)})(x^{-1}, x);$
- (iii) $s_{\lambda}(1,q,\ldots,q^{\ell}) = s_{\mu}(1,q,\ldots,q^{m})$ up to a (known) power of q;
- (iv) $C(\lambda) + \ell + 1/H(\lambda) = C(\mu) + m + 1/H(\mu).$

In (iv), $C(\lambda) = \{j - i : (i, j) \in [\lambda]\}$ is the multiset of contents of λ , $H(\lambda) = \{h_{(i,j)} : (i, j) \in [\lambda]\}$ is the multiset of hook lengths, and / denotes the difference of multisets, allowing negative multiplicities. (This is clarified in the example following Theorem 2 below.) The equivalence of (iii) and (iv) is proved using a unique factorization property of the quantum integers $[m]_q = (q^m - 1)/(q - 1) = 1 + \cdots + q^{m-1}$, and Stanley's Hook Content Formula [7, Theorem 7.12.2], namely that

$$s_{\lambda}(1,q,\ldots,q^{\ell}) = q^{B} \frac{\prod_{(i,j)\in[\lambda]} [j-i+\ell+1]_{q}}{\prod_{(i,j)\in[\lambda]} [h_{(i,j)}]_{q}}$$

where q^B is a (known) power of q. For example, Hermite reciprocity (1) follows from (iv), since $\{1 + \ell, \ldots, r + \ell\}/\{1, \ldots, r\} = \{1 + r, \ldots, \ell + r\}/\{1, \ldots, \ell\}$. The Wronskian isomorphism may be established still more easily, because in this case the difference multisets on either side of (iv) are equal even before cancellation.

The following theorem is a typical example of a plethystic isomorphism. It was first proved by King [5, §4.2]. A stronger version including a converse is proved using the equivalence of (i) and (iii) in Theorem 1.5 of [6].

Theorem 2. Let λ be a partition contained in a box with $\ell+1$ rows and a columns. Let λ^{\bullet} be its complement in this box. Then

$$\nabla^{\lambda} \operatorname{Sym}^{\ell} E \cong \nabla^{\lambda^{\bullet}} \operatorname{Sym}^{\ell} E.$$

As a corollary of (iv) in Theorem 1 we obtain the following appealing result.

Corollary 3. Let λ be a partition contained in a box with $\ell+1$ rows and a columns. Let λ^{\bullet} be its complement in this box. There is an equality of multisets

$$(C(\lambda) + \ell + 1) \cup H(\lambda^{\bullet}) = (C(\lambda^{\bullet}) + \ell + 1) \cup H(\lambda).$$

For example, if $\lambda = (4,3,3,1)$ and the box has 4 rows and 5 columns then $\lambda^{\bullet} = (4,2,2,1)$ and the equality in Corollary 3 may be checked using the bold numbers in the tableaux below.

$C(\lambda) + 4$					$H(\lambda)$					
4_0	5_1	6_2	7_3	1_0		7_3	5_2	4_1	1_0	1_0
3_0	4_1	5_2	1_0	3_1		5_2	3_1	2_0	3_1	2_0
2_0	3_1	4_2	2_0	4_1		4_2	2_1	1_0	4_1	3_0
1_0	1_0	2_1	5_2	7_3		1_0	7_3	6_2	5_1	4_0
$H(\lambda^{\bullet})$						$C(\lambda^{\bullet}) + 4$				

The author is grateful for Christine Bessenrodt for observing that Corollary 3 holds in a stronger version also considering arm-lengths, as indicated above by subscripts. This was proved by Bessenrodt [3] by an ingenious application of [2, Theorem 3.2]. A longer inductive proof can be given by adapting the proof of Corollary 3 in [8]. Finding a representation theoretic interpretation of this stronger result was suggested at the workshop as an open problem.

In [6] many further plethystic isomorphisms, and obstructions to such isomorphisms, are proved. In particular, in [6, Theorem 1.4] we extend another result of King [5, §4] to give a complete classification of all isomorphisms between $\nabla^{\lambda} \operatorname{Sym}^{\ell} E$ and $\nabla^{\lambda'} \operatorname{Sym}^{m} E$, where λ' is the conjugate partition to λ . In [6, §10] we give a complete classification of all isomorphisms $\nabla^{\lambda} \operatorname{Sym}^{\ell} E \cong \nabla^{\mu} \operatorname{Sym}^{m} E$ in which λ and μ are (separately) either hook partitions, two-row partitions, or two-column partitions. One curious family we obtain is $\nabla^{(3\ell-3,2\ell-1)} \operatorname{Sym}^{\ell} E \cong \nabla^{(\ell+1,1^{\ell-2})} \operatorname{Sym}^{3\ell-4} E$ for all $\ell \geq 2$. The author suggests finding a geometric or invariant theory interpretation of this isomorphism as an open problem.

Part 2: Modular plethysms. Let F be an infinite field of prime characteristic p and let E be the natural representation of $SL_2(F)$. It is now important to distinguish the two versions of the symmetric power. Given a polynomial representation Vof $SL_2(F)$, let $Sym_r V = (V^{\otimes r})^{S_r}$ be the invariant submodule under the place permutation action of S_r on $V^{\otimes r}$ and let

$$\operatorname{Sym}^{r} V = V^{\otimes r} / \langle v^{(1)} \otimes \cdots \otimes v^{(r)} \cdot \sigma - v^{(1)} \otimes \cdots \otimes v^{(r)} \rangle$$

be the module of coinvariants. For example, the matrices giving the action of

$$\begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \in \operatorname{SL}_2(F)$$

on $\text{Sym}^2 E$ and $\text{Sym}_2 E$ in a basis e_1, e_2 of E are

$$\begin{pmatrix} e_1^2 & e_2^2 & e_1e_2 & e_1 \otimes e_1 & e_2 \otimes e_2 & e_1 \otimes e_2 + e_2 \otimes e_1 \\ \alpha^2 & \beta^2 & \alpha\beta \\ \gamma^2 & \delta^2 & \gamma\delta \\ 2\alpha\gamma & 2\beta\delta & \alpha\delta + \beta\gamma \end{pmatrix} \qquad \begin{pmatrix} \alpha^2 & \beta^2 & 2\alpha\beta \\ \gamma^2 & \delta^2 & 2\gamma\delta \\ \alpha\gamma & \beta\delta & \alpha\delta + \beta\gamma \end{pmatrix}$$

respectively. (Here, as usual e_1^2 is the image of $e_1 \otimes e_1$ in the quotient module defined above.) Observe that if p = 2 then $\operatorname{Sym}^2 E$ has a 2-dimensional invariant submodule $\langle e_1^2, e_2^2 \rangle$, whereas $\operatorname{Sym}_2 E$ has this 2-dimensional module only as

a quotient. More generally, it is known that $\operatorname{Sym}^r E \cong (\operatorname{Sym}_r E)^\circ$ where \circ denotes contravariant duality, defined on a representation $\rho : \operatorname{SL}(E) \to \operatorname{GL}(V)$ by $\rho^\circ(g) = \rho(g^t)^t$ (see [4, §2.7 and p44 Example 1]).

The distinction between the two versions of the symmetric power is critical in the following modular generalization of the Wronskian isomorphism.

Theorem 4. For all $r, \ell \in \mathbf{N}$, there is an $SL_2(F)$ -isomorphism

$$\operatorname{Sym}_r \operatorname{Sym}^{\ell} E \cong \bigwedge' \operatorname{Sym}^{r+\ell-1} E.$$

We prove this isomorphism by an explicit construction: it is non-obvious and slightly subtle to prove $SL_2(F)$ -equivariance. We also generalize Theorem 2.

Theorem 5. Let λ be a partition contained in a box with $\ell+1$ rows and a columns. Let λ^{\bullet} be its complement in this box. Then

$$\nabla^{\lambda} \operatorname{Sym}^{\ell} E \cong \nabla^{\lambda^{\bullet}} \operatorname{Sym}_{\ell} E.$$

One important idea in the proof is that if V is a polynomial representation of $\operatorname{SL}_2(F)$ of dimension d then $\bigwedge^r V \cong \bigwedge^{d-r} V^* \cong \bigwedge^{d-r} V^\circ$.

It follows from the theorem of King on conjugation of partitions mentioned above that there is an $\operatorname{SL}_2(\mathbf{C})$ -isomorphism $\nabla^{(a+1,1^b)} \operatorname{Sym}^{\ell} E \cong \nabla^{(b+1,1^a)} \operatorname{Sym}^{\ell+a-b} E$ for all $a, b \in \mathbf{N}$ and $\ell \geq b$. The final result below shows that this does not extend to the modular case.

Theorem 6. There exist infinitely many pairs (a, b) such that, provided e is sufficiently large, the eight representations of $SL_2(F)$ obtained from $\nabla^{(a+1,1^b)} \operatorname{Sym}^{p^e+b}$ by

- (i) Replacing ∇ with its contravariant dual functor ∇° ;
- (ii) Replacing $(a + 1, 1^b)$ with $(b + 1, 1^a)$ and $p^e + b$ with $p^e + a$;

(iii) Replacing $\operatorname{Sym}^{\ell} E$ with $\operatorname{Sym}_{\ell} E$

are all non-isomorphic.

Determining which of the other plethystic isomorphisms in [6] have modular generalizations appears to be a fruitful topic for further research.

References

- Abdelmalek Abdesselam and Jaydeep Chipalkatti, On the Wronskian combinants of binary forms, J. Pure Appl. Algebra 210 (2007), no. 1, 43–61.
- [2] Christine Bessenrodt, On hooks of Young diagrams, Ann. Comb. 2 (1998), no. 2, 103–110.
- [3] Christine Bessenrodt, personal communication, April 2019.
- [4] James A. Green, Polynomial representations of GL_n, Lecture Notes in Mathematics, vol. 830, Springer-Verlag, Berlin, 1980.
- [5] Ronald C. King, Young tableaux, Schur functions and SU(2) plethysms, J. Phys. A 18 (1985), no. 13, 2429–2440.
- [6] Rowena Paget and Mark Wildon, Plethysms of symmetric functions and representations of SL₂(C), arXiv:1907.07616 (July 2019), 51 pages.

- [7] Richard P. Stanley, *Enumerative combinatorics. Vol. 2*, Cambridge Studies in Advanced Mathematics, vol. 62, Cambridge University Press, Cambridge, 1999, With a foreword by Gian-Carlo Rota and appendix 1 by Sergey Fomin.
- [8] Mark Wildon, A corollary of Stanley's Hook Content Formula, arXiv:1904.08904 (April 2019), 8 pages.