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Let E be a two-dimensional complex vector space. The finite-dimensional ir-
reducible polynomial representations of SL2(C) are, up to isomorphism, the sym-

metric powers Sym`E for ` ∈ N0. Working in invariant theory, Hermite discovered
the isomorphism

(1) Symr Sym`E ∼= Sym` SymrE.

This is one of many plethystic isomorphisms of SL2(C)-representations. Another

important example is the Wronskian isomorphism Symr Sym`E ∼=
∧r

Sym`+r−1E
(see for instance [1]). More generally, let ∇λ denote the Schur functor canoni-
cally labelled by the partition λ. We ask: when is there an SL2(C)-isomorphism

∇λ Sym`E ∼= ∇µ SymmE? In my talk I surveyed some of the answers to this
question and then considered the modular analogue in which C is replaced with
an infinite field of prime characteristic.

The first part is on joint work with Rowena Paget [6]; the second is on work in
progress with my Ph.D. student Eoghan McDowell.



Part 1: Complex plethystic isomorphisms. Let sλ denote the Schur function canon-
ically labelled by the partition λ. By the bridge between representation theory
and symmetric functions seen in my introductory talk, there is a plethystic isomor-
phism ∇λ Sym`E ∼= ∇µ SymmE if and only if (sλ◦s(`))(x−1, x) = (sµ◦sµ)(x−1, x).
(It is correct to specialize the variables x1, x2 so that they satisfy x1x2 = 1 because
this relation is satisfied by the eigenvalues of every matrix in SL2(C).) Substituting
x = q2 one obtains (iii) in the theorem below; this is the combinatorial statement
that the generating functions enumerating SSYT{1,...,`}(λ) and SSYT{1,...,m}(µ)
by the sum of the contents of each tableau are equal, up to a power of q.

Theorem 1. The following are equivalent:
(i) ∇λ Sym`E ∼= ∇µ SymmE;
(ii) (sλ ◦ s(`))(x−1, x) = (sµ ◦ s(m))(x

−1, x);

(iii) sλ(1, q, . . . , q`) = sµ(1, q, . . . , qm) up to a (known) power of q;
(iv) C(λ) + `+ 1/H(λ) = C(µ) +m+ 1

/
H(µ).

In (iv), C(λ) = {j − i : (i, j) ∈ [λ]} is the multiset of contents of λ, H(λ) =
{h(i,j) : (i, j) ∈ [λ]} is the multiset of hook lengths, and

/
denotes the difference

of multisets, allowing negative multiplicities. (This is clarified in the example
following Theorem 2 below.) The equivalence of (iii) and (iv) is proved using a
unique factorization property of the quantum integers [m]q = (qm − 1)/(q − 1) =
1 + · · ·+ qm−1, and Stanley’s Hook Content Formula [7, Theorem 7.12.2], namely
that

sλ(1, q, . . . , q`) = qB
∏

(i,j)∈[λ][j − i+ `+ 1]q∏
(i,j)∈[λ][h(i,j)]q

where qB is a (known) power of q. For example, Hermite reciprocity (1) follows
from (iv), since {1 + `, . . . , r + `}

/
{1, . . . , r} = {1 + r, . . . , ` + r}

/
{1, . . . , `}. The

Wronskian isomorphism may be established still more easily, because in this case
the difference multisets on either side of (iv) are equal even before cancellation.

The following theorem is a typical example of a plethystic isomorphism. It was
first proved by King [5, §4.2]. A stronger version including a converse is proved
using the equivalence of (i) and (iii) in Theorem 1.5 of [6].

Theorem 2. Let λ be a partition contained in a box with `+1 rows and a columns.
Let λ• be its complement in this box. Then

∇λ Sym`E ∼= ∇λ
•

Sym`E.

As a corollary of (iv) in Theorem 1 we obtain the following appealing result.

Corollary 3. Let λ be a partition contained in a box with `+1 rows and a columns.
Let λ• be its complement in this box. There is an equality of multisets(

C(λ) + `+ 1
)
∪H(λ•) =

(
C(λ•) + `+ 1

)
∪H(λ).

For example, if λ = (4, 3, 3, 1) and the box has 4 rows and 5 columns then
λ• = (4, 2, 2, 1) and the equality in Corollary 3 may be checked using the bold
numbers in the tableaux below.

2



C(λ) + 4

H(λ•)

10

20
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52
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10 21 52 73

20

10

41

31

10

H(λ)

10

10

10

2031

21

41

42

52

52

73

73 62 51 40

41 30

31 20

10

C(λ•) + 4

The author is grateful for Christine Bessenrodt for observing that Corollary 3
holds in a stronger version also considering arm-lengths, as indicated above by
subscripts. This was proved by Bessenrodt [3] by an ingenious application of
[2, Theorem 3.2]. A longer inductive proof can be given by adapting the proof of
Corollary 3 in [8]. Finding a representation theoretic interpretation of this stronger
result was suggested at the workshop as an open problem.

In [6] many further plethystic isomorphisms, and obstructions to such isomor-
phisms, are proved. In particular, in [6, Theorem 1.4] we extend another re-
sult of King [5, §4] to give a complete classification of all isomorphisms between

∇λ Sym`E and ∇λ′ SymmE, where λ′ is the conjugate partition to λ. In [6, §10]

we give a complete classification of all isomorphisms ∇λ Sym`E ∼= ∇µ SymmE
in which λ and µ are (separately) either hook partitions, two-row partitions, or

two-column partitions. One curious family we obtain is ∇(3`−3,2`−1) Sym`E ∼=
∇(`+1,1`−2) Sym3`−4E for all ` ≥ 2. The author suggests finding a geometric or
invariant theory interpretation of this isomorphism as an open problem.

Part 2: Modular plethysms. Let F be an infinite field of prime characteristic p and
let E be the natural representation of SL2(F ). It is now important to distinguish
the two versions of the symmetric power. Given a polynomial representation V
of SL2(F ), let Symr V = (V ⊗r)Sr be the invariant submodule under the place
permutation action of Sr on V ⊗r and let

Symr V = V ⊗r
/
〈v(1) ⊗ · · · ⊗ v(r) · σ − v(1) ⊗ · · · ⊗ v(r)〉

be the module of coinvariants. For example, the matrices giving the action of(
α β
γ δ

)
∈ SL2(F )

on Sym2E and Sym2E in a basis e1, e2 of E are


e21 e22 e1e2

α2 β2 αβ
γ2 δ2 γδ

2αγ 2βδ αδ + βγ

 
e1 ⊗ e1 e2 ⊗ e2 e1 ⊗ e2 + e2 ⊗ e1
α2 β2 2αβ
γ2 δ2 2γδ
αγ βδ αδ + βγ


respectively. (Here, as usual e21 is the image of e1 ⊗ e1 in the quotient module
defined above.) Observe that if p = 2 then Sym2E has a 2-dimensional invari-
ant submodule 〈e21, e22〉, whereas Sym2E has this 2-dimensional module only as

3



a quotient. More generally, it is known that SymrE ∼= (SymrE)◦ where ◦ de-
notes contravariant duality, defined on a representation ρ : SL(E) → GL(V ) by
ρ◦(g) = ρ(gt)t (see [4, §2.7 and p44 Example 1]).

The distinction between the two versions of the symmetric power is critical in
the following modular generalization of the Wronskian isomorphism.

Theorem 4. For all r, ` ∈ N, there is an SL2(F )-isomorphism

Symr Sym`E ∼=
r∧

Symr+`−1E.

We prove this isomorphism by an explicit construction: it is non-obvious and
slightly subtle to prove SL2(F )-equivariance. We also generalize Theorem 2.

Theorem 5. Let λ be a partition contained in a box with `+1 rows and a columns.
Let λ• be its complement in this box. Then

∇λ Sym`E ∼= ∇λ
•

Sym`E.

One important idea in the proof is that if V is a polynomial representation of

SL2(F ) of dimension d then
∧r

V ∼=
∧d−r

V ? ∼=
∧d−r

V ◦.
It follows from the theorem of King on conjugation of partitions mentioned

above that there is an SL2(C)-isomorphism∇(a+1,1b) Sym`E ∼= ∇(b+1,1a) Sym`+a−bE
for all a, b ∈ N and ` ≥ b. The final result below shows that this does not extend
to the modular case.

Theorem 6. There exist infinitely many pairs (a, b) such that, provided e is suffi-

ciently large, the eight representations of SL2(F ) obtained from ∇(a+1,1b) Sympe+b

by
(i) Replacing ∇ with its contravariant dual functor ∇◦;

(ii) Replacing (a+ 1, 1b) with (b+ 1, 1a) and pe + b with pe + a;

(iii) Replacing Sym`E with Sym`E
are all non-isomorphic.

Determining which of the other plethystic isomorphisms in [6] have modular
generalizations appears to be a fruitful topic for further research.
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