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Let E be a two-dimensional complex vector space. The finite-dimensional ir-
reducible polynomial representations of SLy(C) are, up to isomorphism, the sym-
metric powers Sysz for £ € Ny. Working in invariant theory, Hermite discovered
the isomorphism

(1) Sym” Sym‘E =~ Sym’ Sym"E.

This is one of many plethystic isomorphisms of SLg(C)-representations. Another
important example is the Wronskian isomorphism Sym” Sym‘E = A" Sym**" ' E
(see for instance [1]). More generally, let V* denote the Schur functor canoni-
cally labelled by the partition A\. We ask: when is there an SLo(C)-isomorphism
VASym‘E =~ VA Sym™E? In my talk I surveyed some of the answers to this
question and then considered the modular analogue in which C is replaced with
an infinite field of prime characteristic.

The first part is on joint work with Rowena Paget [6]; the second is on work in
progress with my Ph.D. student Eoghan McDowell.



Part 1: Complez plethystic isomorphisms. Let sy denote the Schur function canon-
ically labelled by the partition A\. By the bridge between representation theory
and symmetric functions seen in my introductory talk, there is a plethystic isomor-
phism V* Sym‘E = V# Sym™E if and only if (sx0s(y)) (271, 2) = (s,08,) (71, ).
(It is correct to specialize the variables 1, z2 so that they satisfy z129 = 1 because
this relation is satisfied by the eigenvalues of every matrix in SLo(C).) Substituting
x = g% one obtains (iii) in the theorem below; this is the combinatorial statement
that the generating functions enumerating SSYTyy, . ¢ (A) and SSYTyy .y (1)
by the sum of the contents of each tableau are equal, up to a power of ¢.

Theorem 1. The following are equivalent:
(i) V*Sym‘E =~ V#Sym™E;
(i) (sxnos)(@™" @) = (840 5m)) (@™, 2);
(iii) sa(1,q,...,4%) =s.(1,q,...,4™) up to a (known) power of q;
(iv) CA)+ €+ 1/H(A) =C(u) +m+1/H ().

In (iv), C(A) = {j — ¢ : (i,4) € [A\]} is the multiset of contents of A\, H(\) =
{h¢ijy : (i,5) € [A]} is the multiset of hook lengths, and / denotes the difference
of multisets, allowing negative multiplicities. (This is clarified in the example
following Theorem 2 below.) The equivalence of (iii) and (iv) is proved using a
unique factorization property of the quantum integers [m], = (¢™ —1)/(¢ — 1) =
1+---+¢m™ 1, and Stanley’s Hook Content Formula [7, Theorem 7.12.2], namely
that
s Hapenli — 1+ 041

H(i,j)e[)\] (i )]a
where ¢” is a (known) power of q. For example, Hermite reciprocity (1) follows
from (iv), since {1+¢,...,r+ 0} /{1,...,r} ={1+r....0+7}/{1,...,€}. The
Wronskian isomorphism may be established still more easily, because in this case
the difference multisets on either side of (iv) are equal even before cancellation.

The following theorem is a typical example of a plethystic isomorphism. It was
first proved by King [5, §4.2]. A stronger version including a converse is proved
using the equivalence of (i) and (iii) in Theorem 1.5 of [6].

sx(lug,...,q") =gq

Theorem 2. Let \ be a partition contained in a box with £+1 rows and a columns.
Let A® be its complement in this box. Then

VA Sym‘E =~ v Sym‘E.
As a corollary of (iv) in Theorem 1 we obtain the following appealing result.

Corollary 3. Let X\ be a partition contained in a box with {+1 rows and a columns.
Let A\* be its complement in this box. There is an equality of multisets

(CN)+L+1)UHA) = (CA*) +L+1) UH(N).

For example, if A\ = (4,3,3,1) and the box has 4 rows and 5 columns then
A® = (4,2,2,1) and the equality in Corollary 3 may be checked using the bold

numbers in the tableaux below.
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C(\) +4 H(\)

4551|6273 | 19 T3 |52 41 10| 1o
3041|952 | 10|31 95 |31 (203112
20|31 (42244 4521 | 1o |41 |3
1o [10[ 21|52 |73 1o | 73| 62|51 |49
H() C(A*) +4

The author is grateful for Christine Bessenrodt for observing that Corollary 3
holds in a stronger version also considering arm-lengths, as indicated above by
subscripts. This was proved by Bessenrodt [3] by an ingenious application of
[2, Theorem 3.2]. A longer inductive proof can be given by adapting the proof of
Corollary 3 in [8]. Finding a representation theoretic interpretation of this stronger
result was suggested at the workshop as an open problem.

In [6] many further plethystic isomorphisms, and obstructions to such isomor-
phisms, are proved. In particular, in [6, Theorem 1.4] we extend another re-
sult of King [5, §4] to give a complete classification of all isomorphisms between
VA Sym‘E and V» Sym™E, where ) is the conjugate partition to A. In [6, §10]
we give a complete classification of all isomorphisms V» Sym‘E = V#Sym™FE
in which A and p are (separately) either hook partitions, two-row partitions, or
two-column partitions. One curious family we obtain is V3¢=3:2(-1) §ym‘F =~
V(117 Sym®~*F for all £ > 2. The author suggests finding a geometric or
invariant theory interpretation of this isomorphism as an open problem.

Part 2: Modular plethysms. Let F be an infinite field of prime characteristic p and
let E be the natural representation of SLy(F'). It is now important to distinguish
the two versions of the symmetric power. Given a polynomial representation V'
of SLy(F), let Sym, V = (V)% be the invariant submodule under the place
permutation action of S, on V" and let

Symrv — V®T/<’U(1) Q- ®’U(T) .o —’U(l) Q- ®’U(T)>

be the module of coinvariants. For example, the matrices giving the action of
a B
(%) cstm

on Sym*F and Sym,E in a basis e, e; of E are

e% e% €169 e1®e; ea®ex e1®ex+ex®e;
a?  B? af a? 32 2a8

~? 52 ~v6 ~2 52 276
200y 288 ad + By ay B4 ad + By

respectively. (Here, as usual e? is the image of e; ® e; in the quotient module

defined above.) Observe that if p = 2 then Sym?E has a 2-dimensional invari-

ant submodule (e?, e3), whereas Sym, E has this 2-dimensional module only as
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a quotient. More generally, it is known that Sym"E 2 (Sym, E)° where o de-
notes contravariant duality, defined on a representation p : SL(E) — GL(V) by
p°(9) = p(g")" (see [4, §2.7 and p44 Example 1]).

The distinction between the two versions of the symmetric power is critical in
the following modular generalization of the Wronskian isomorphism.

Theorem 4. For all r, { € N, there is an SLy(F)-isomorphism

Sym,. Sym‘E = /\ Sym"1E.

We prove this isomorphism by an explicit construction: it is non-obvious and
slightly subtle to prove SLy(F)-equivariance. We also generalize Theorem 2.

Theorem 5. Let )\ be a partition contained in a box with £+1 rows and a columns.
Let A® be its complement in this box. Then

VA Sym‘E = VA" Sym, E.

One important idea in the proof is that if V' is a polynomial representation of
SLy(F) of dimension d then A"V = A""V* = AT Vo,

It follows from the theorem of King on conjugation of partitions mentioned
above that there is an SLy (C)-isomorphism V(11" Sym? F =~ v(+1.1%) gyp+a-tp
for all a,b € N and £ > b. The final result below shows that this does not extend
to the modular case.

Theorem 6. There exist infinitely many pairs (a,b) such that, provided e is suffi-
ciently large, the eight representations of SLa(F') obtained from v(a+1.1") Sym? °
by
(i) Replacing V with its contravariant dual functor V°;
(ii) Replacing (a + 1,1°) with (b+ 1,1%) and p° + b with p® + a;
(iii) Replacing Sym‘E with Sym,E
are all non-isomorphic.

Determining which of the other plethystic isomorphisms in [6] have modular
generalizations appears to be a fruitful topic for further research.
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