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Let Λ be the ring of symmetric functions and let sλ =
∑
t∈SSYT(λ) x

t be the Schur

function labelled by the partition λ, defined combinatorially as the generating
function enumerating semistandard tableaux of shape λ. For example,
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= x21x2 + x21x3 + x1x
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2
3 + x22x3 + x2x

2
3 + 2x1x2x3.

Informally, the plethysm f ◦ g of f, g ∈ Λ is defined by substituting the monomials
in g for the variables in f . This definition is unambiguous and easy to work with
when g is a sum of distinct monomials. We give an example using s(2)(x1, x2) =

x21 +x1x2 +x22 and s(2)(y1, y2, y3) = y21 +y22 +y23 +y1y2 +y1y3 +y2y3. Substituting
monomials we find

(2) (f ◦ g)(x1, x2) = f(x21, x
2
2, x1x2) = x41 + x31x2 + 2x21x

2
2 + x1x

3
2 + x42.



Note that since f is a symmetric function, it does not matter how we order the
monomials of g; for instance,

(3) f(x21, x
2
2, x1x2) = f(x1x2, x

2
1, x

2
2)

Moreover, since g is symmetric, f ◦ g is symmetric. If g has a repeated monomial
then it is substituted in f according to its multiplicity: for instance if g = (x1+x2)2

then s(2) ◦ g = s(2)(x
2
1, x

2
2, x1x2, x1x2). As this may indicate, there are subtleties

in extending the plethysm product to arbitrary g: see [9] for the general definition
and an excellent introduction to plethysm.

A fundamental open problem in algebraic combinatorics is to find the coeffi-
cients 〈sν ◦ sµ, sλ〉 in the decomposition of the plethysm sν ◦ sµ as a linear combi-
nation of Schur functions. This problem can be attacked using representations of
general linear and symmetric groups, invariant theory, and ideas from combinato-
rial enumeration, such as the cycle index and the plethystic semistandard tableaux
defined below. In my talk I surveyed some of these connections and gave some of
the more useful rules for computing plethysms. I ended with a summary of the
state of the art on Foulkes’ Conjecture.

A combinatorial model. Let PSSYT(µν) be the set of semistandard ν-tableaux
whose entries are themselves semistandard µ-tableaux. (This requires the semis-
tandard µ-tableaux to be ordered in some way: as seen in (3), the choice of order
is irrelevant.) We define the weight of a plethystic semistandard tableau to be
the sum of the weights of its µ-tableau entries. The ‘substitute monomials’ rule
implies that sν ◦ sµ =

∑
T∈PSSYT(µν) x

T . This definition appears in [7, Defini-

tion 3.1], where it is used to find the maximal constituent of sν ◦ sµ in the reverse
lexicographic order on partitions. To give a small example, 1 1 1 2 has weight
(3, 1) and, using the same formalism as (1),
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= s(4)(x1, x2) + s(2,2)(x1, x2).(5)

This agrees with (2). Working with further variables gives nothing new: in fact
s(2) ◦ s(2) = s(4) + s(2,2).

General linear groups and invariant theory. Given λ ∈ Par(r), let ∇λ denote the
corresponding Schur functor: thus if V is a polynomial representation of GLd(C)
of degree s then ∇λ(V ) is a polynomial representation of degree rs. For example,
∇(r) and ∇(1r) are the rth symmetric power and rth exterior power functors,
respectively. Let ΦW denote the formal character of a representation W ; for
instance, if E is the natural representation of GLd(C) then

Φ∇λ(E) = s(r)(x1, . . . , xd)
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and correspondingly, ∇λ(E) has a canonical basis of weight vectors indexed by
SSYT(λ). The fundamental bridge between plethysm and Schur functors is the
relation

(6) Φ
∇ν
(
∇µ(E)

) = (sν ◦ sµ)(x1, . . . , xd).

For example, if E = 〈e1, e2〉 then Sym2E = 〈e21, e1e2, e22〉 and

Sym2(Sym2E) =
〈
(e21)(e21), (e21)(e1e2), (e21)(e22), (e1e2)(e1e2), (e1e2)(e22), (e22)(e22)

〉
where the basis vectors are ordered to correspond with (4). Using this we may
verify (6) and see the decomposition in (4) algebraically: the ‘multiply out’ map
Sym2(Sym2E) → Sym4E has kernel spanned by (e21)(e22) − (e1e2)(e1e2), which
is a highest weight vector in ∇(2,2)E. This is interpreted geometrically in a very
instructive example in [6, §11.3]; in my talk I sketched a proof using the related
invariant theory of SL2(C) that

(7) Sym2 SymnE ∼=
∑

0≤s≤n/2

∇(2m−2s,2s)E.

Symmetric groups. Now suppose that E = 〈e1, . . . , ed〉 where d ≥ r. Let λ be a
partition of r. The polynomial representation ∇λ(E) of GLd(C) has a (1r)-weight
space, denoted ∇λ(E)(1r), in which the diagonal matrix diag(α1, . . . , αd) acts by
multiplication by x1 . . . xd. This weight space is invariant under the permutation
matrices in GLd(C) that permute e1, . . . , ed amongst themselves. The fundamental
bridge between representations of general linear and symmetric groups is that
∇λ(E)(1r) ∼= Sλ, where Sλ is the Specht module canonically labelled by λ.

To see how composition of polynomial representations is reflected in weight
spaces, an example is helpful. Observe that SymrE(1r) = 〈e1e2 . . . er〉 is the trivial
module and, more generally,(

SymmE
)⊗n
(1mn)

= 〈ei1 . . . eim ⊗ · · · ⊗ ej1 . . . ejm〉

where (in slightly informal notation),
(
{i1, . . . , im}, . . . , {j1, . . . , jm}

)
is an ordered

partition of {1, . . . , r}. Hence the weight space is isomorphic to the permutation
module of Smn acting on the cosets of the Young subgroup Sm× · · ·×Sm of Smn.
Suppose we replace ⊗n with the Schur functor Symn. The basis for the weight
space then becomes

(ei1...im) . . . (ej1 . . . ejm) ∈ Symn SymmE

where concatenation shows the product for Symn. The order of sets in the partition
is now irrelevant, and so the weight space is isomorphic to the permutation module
of Smn acting on the cosets of the wreath product Sm o Sn containing the Young
subgroup Sm × · · · × Sm as its base group. This is the Foulkes module H(mn).

More generally, one can show that

(8) ∇ν
(
∇µ(E)

)
(1nm)

∼=
(
(̃Sµ)

⊗n
⊗ InfSmoSnSn

Sν
)xSmn

SmoSn
.
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Here the tilde denotes that the action of Sm×· · ·×Sm on (Sµ)⊗n is extended to a
top group Sn in the wreath product Sm oSn by permuting factors; in the example
above, the representation we induce is the trivial representation of Sm o Sn.

Rules for computing plethysm. Generalizing the result of Iijima [7] mentioned
above, de Boeck, Paget and the author [4, Theorem 1.5] proved the following
theorem.

Theorem 1. The maximal constituents of sν◦sµ are precisely the maximal weights
of the plethystic semistandard tableaux of shape µν .

This strengthened an earlier result proved by Paget and Wildon in [11] using (8).
Also in [4], the authors gave a simpler proof of a result originally due to Brion [1],
strengthened with an explicit combinatorial bound on the stable multiplicity.

Theorem 2. Let ν ∈ Par(n) and let µ be a partition. If r ∈ N then

〈sν ◦ sµ+(1r), sλ+(nr)〉 ≥ 〈sν ◦ sµ, sλ〉
for all partitions λ. Moreover 〈sν ◦sµ+N(1r), sλ+N(nr)〉 is constant for N ≥ n(µ1 +
· · ·+ µr−1) + (n− 1)µr + µr+1 − (λ1 + · · ·+ λr).

Still in [4], the authors proved the following two theorems, generalizing results
due to Newell, Conca and Varbaro [2], and Ikenmeyer [8, Theorem 4.3.4] respec-
tively.

Theorem 3. Let ν ∈ Par(n) and let µ be a partition. If r is at least the greatest
part of µ then 〈sν ◦ s(r)tµ, s(nr)tλ〉 = 〈sν ◦ sµ, sλ〉 for all partitions λ.

Theorem 4. Let µ be a partition. If 〈s(n?)◦sµ, sλ?〉 ≥ 1 then 〈s(n+n?)◦sµ, sλ+λ?〉 ≥
〈s(n) ◦ sµ, sλ〉.

Many further results on plethysm are known and it will be clear that the selec-
tion above is biased to the author’s work.

Foulkes’ Conjecture. In the language of symmetric functions, Foulkes’ Conjecture
states that if n ≥ m then 〈s(n)◦s(m), sλ〉 ≥ 〈s(m)◦s(n), sλ〉 for all partitions λ ofmn.

Equivalently, using the symmetric group, H(nm) is isomorphic to a submodule of
H(mn). Foulkes’ Conjecture is proved only when n ≤ 5 (see [3] for the case n = 5),
when m+n ≤ 19 (computationally in [5] for m+n ≤ 19, extending [10]) and when
n is very large compared to m (see [1]). The full decomposition of s(n) ◦ s(m) is
known for all m only when n = 2, when we have (7) and s(n)◦s(2) =

∑
λ∈Par(n) s2λ.

Problem 9 in Stanley’s influential survey article [12] is to find a combinatorial
interpretation of the multiplicity 〈s(n) ◦ s(m), sλ〉. Even a solution in the special
case s(n) ◦ s(3) would be of considerable interest.
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